Download citation
Download citation
link to html
The crystal structure of the title complex, poly­[[di­aquacadmium(II)]-μ3-(1-carboxy­benzene-3,5-di­carboxyl­ato-O1:O3,O3′:O5,O5′)], [Cd(C9H4O6)(H2O)2]n, features two-dimensional polymeric network layers which are hydrogen-bonded to one another. The Cd atom is coordinated by seven O atoms, two of which belong to water mol­ecules arranged trans to each other, above and below the layers. Each polymeric layer is tiled with (Cd)3(C9O6)3 rings formed by alternating Cd atoms and (C9O6) ligands. The layers are parallel to the \overline 101 crystal plane and the neighbouring layers are separated by 3.2508 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100188X/ya6007sup1.cif
Contains datablocks global, Cd-BTC

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100188X/ya6007Isup2.hkl
Contains datablock I

CCDC reference: 159714

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.071
  • Data-to-parameter ratio = 19.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
PLAT_354 Alert C Short O-H Bond (0.82A) O(7) - H(7B) = 0.64 Ang. PLAT_354 Alert C Short O-H Bond (0.82A) O(8) - H(8B) = 0.67 Ang. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.874 Tmax scaled 0.811 Tmin scaled 0.594
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

[Cd(C9H4O6)(H2O)2]n, (I), was synthesized as part of a study into polymeric compounds containing metals and benzene-1,3,5-tricarboxylic acid (BTC) (Plater et al., 1997, 1998, 1999; Yaghi et al., 1996).

The title compound was shown to be polymeric, with the Cd atom coordinated to seven O atoms, the Cd—O bond lengths varying in the range 2.2479 (18)–2.5557 (16) Å (Fig. 1 and Table 1), thus showing good agreement with previously reported Cd—O values.

The O atoms coordinating each metal atom belong to three BTC molecules; two of these are bonded via bidentate chelating carboxylate groups (C1/O1/O2 and C8/O5/O6), whilst the third one is coordinated in a monodentate manner through its carboxylic carbonyl O3 atom. Each Cd atom is also bonded to two water molecules.

The Cd atoms and BTC ligands form a two-dimensional infinite network tiled with `macrocycles', each comprising three Cd atoms and three BTC groups (Fig. 2). The layers are parallel to the 101 plane, the distance between the planes of neighbouring layers being equal to 3.2508 (2) Å. Water molecules are located between the layers with the Cd—O7 and Cd—O8 vectors approximately perpendicular to the network layer planes (inclination angles are 90 and 85° for Cd—O7 and Cd—O8 respectively; Fig. 3).

The C5/O3/O4 carboxylic group hydrogen (H4) was objectively located from the difference Fourier map; it participates in the intra-layer hydrogen bond with one of the carboxylate O atoms (O1). The position of this carboxylic H atom is consistent with the C—O bond lengths values (see Table 1) and IR data. In contrast, the H atoms of water molecules are responsible for inter-layer hydrogen bonding (Table 2).

Experimental top

Benzene-1,3,5-tricarboxylic acid (99.4 mg), cadmium acetate (128 mg) and water (10 ml) were placed inside a 23 ml Parr bomb. Once sealed, the bomb was heated to 483 K at 100 K h-1. After maintaining this temperature for 2 h, the bomb was cooled to 463 K at 5 K h-1, and after 6 h at 463 K was cooled to room temperature at 4 K h-1. The bomb was opened and the colourless solid collected by filtration, washed with water and dried in air. IR spectra were obtained using a pressed KBr disk, using the ATI FT–IR system (Mattson Genesis series).

Refinement top

The carboxylic acid and water H atoms (H4, H7A, H7B, H8A and H8B) were located in the difference map and were refined isotropically. Other H atoms were placed in geometrically calculated positions and included in the refinement in the riding model approximation. The highest residual density value was 1.50 e Å3 at 0.53 Å from O6.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX in OSCAIL (McArdle, 1994, 2000), ATOMS (Dowty, 1999) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound. Ellipsoids are shown at 50% probability. O atoms related by symmetry are included to show the coordination sphere for Cd (symmetry transformations are as in Table 1)
[Figure 2] Fig. 2. A fragment of polymeric network Cd–BTC layer in the crystal of the title compound.
[Figure 3] Fig. 3. The 010 plane, showing orientation of Cd–BTC layers within the unit cell with Cd–H2O bonds perpendicular to the layers.
poly[[diaquacadmium(II)]-µ3-(1-carboxybenzene-3,5-dicarboxylato- O1:O3,O3':O5,O5')] top
Crystal data top
[Cd(C9H4O6)(H2O)2]F(000) = 1384
Mr = 356.55Dx = 2.225 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.7328 (9) ÅCell parameters from 5038 reflections
b = 9.1088 (4) Åθ = 2.5–31.5°
c = 13.3636 (6) ŵ = 2.09 mm1
β = 117.884 (1)°T = 293 K
V = 2123.12 (16) Å3Block, colourless
Z = 80.3 × 0.1 × 0.1 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2892 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.027
ϕω scansθmax = 31.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2728
Tmin = 0.679, Tmax = 0.928k = 1311
9718 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.004
178 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
[Cd(C9H4O6)(H2O)2]V = 2123.12 (16) Å3
Mr = 356.55Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.7328 (9) ŵ = 2.09 mm1
b = 9.1088 (4) ÅT = 293 K
c = 13.3636 (6) Å0.3 × 0.1 × 0.1 mm
β = 117.884 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2892 reflections with I > 2σ(I)'
Tmin = 0.679, Tmax = 0.928Rint = 0.027
9718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 1.50 e Å3
3512 reflectionsΔρmin = 1.24 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

In general, H atoms were placed geometrically and refined using a riding model. Those H-atoms in the water molecules and coordinated to O(4) were located from the difference Fourier map and freely refined, resulting in two slightly short O—H bond lengths.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.687943 (8)0.596639 (15)0.306263 (13)0.02501 (6)
O10.57508 (9)0.71297 (17)0.19291 (15)0.0338 (4)
O20.66510 (10)0.87374 (18)0.28706 (15)0.0305 (4)
C10.59721 (11)0.8448 (2)0.21845 (17)0.0203 (4)
C20.54019 (11)0.9647 (2)0.16342 (16)0.0173 (3)
C30.56389 (11)1.1099 (2)0.18466 (17)0.0191 (4)
H30.61491.13160.23360.023*
C40.51184 (11)1.2232 (2)0.13320 (17)0.0193 (4)
O30.61022 (11)1.39649 (16)0.22526 (19)0.0408 (5)
O40.49129 (10)1.47841 (19)0.11398 (18)0.0431 (5)
H40.513 (2)1.570 (3)0.133 (3)0.042 (9)*
C50.54226 (12)1.3750 (2)0.16124 (19)0.0234 (4)
C60.43503 (11)1.1925 (2)0.06043 (16)0.0203 (4)
H60.40021.26860.02720.024*
C70.41071 (11)1.0468 (2)0.03777 (16)0.0185 (3)
C80.32913 (11)1.0101 (2)0.04461 (16)0.0209 (4)
O50.27966 (10)1.10853 (18)0.08861 (17)0.0346 (4)
O60.31282 (10)0.87555 (18)0.07048 (14)0.0280 (3)*
C90.46349 (11)0.9333 (2)0.08902 (16)0.0188 (4)
H90.44740.83620.07350.023*
O70.72039 (12)0.5924 (2)0.15562 (19)0.0340 (4)
H7A0.751 (3)0.539 (5)0.170 (3)0.078 (15)*
H7B0.725 (3)0.659 (5)0.146 (3)0.062 (14)*
O80.65948 (14)0.6168 (2)0.4548 (2)0.0390 (5)
H8A0.668 (2)0.693 (5)0.485 (3)0.073 (14)*
H8B0.672 (3)0.562 (5)0.492 (4)0.080 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01422 (8)0.01641 (8)0.03118 (10)0.00101 (5)0.00043 (6)0.00069 (5)
O10.0226 (8)0.0121 (7)0.0469 (10)0.0001 (6)0.0005 (7)0.0002 (6)
O20.0162 (7)0.0202 (7)0.0415 (9)0.0020 (6)0.0021 (6)0.0032 (6)
C10.0176 (9)0.0151 (8)0.0248 (9)0.0012 (7)0.0071 (8)0.0019 (7)
C20.0152 (8)0.0118 (8)0.0225 (9)0.0016 (6)0.0068 (7)0.0003 (6)
C30.0140 (8)0.0139 (8)0.0245 (9)0.0007 (6)0.0048 (7)0.0012 (6)
C40.0168 (8)0.0139 (8)0.0231 (9)0.0013 (7)0.0058 (7)0.0002 (7)
O30.0186 (8)0.0150 (8)0.0616 (12)0.0029 (6)0.0038 (8)0.0045 (7)
O40.0193 (8)0.0146 (8)0.0678 (13)0.0007 (6)0.0027 (8)0.0008 (8)
C50.0179 (9)0.0137 (8)0.0299 (10)0.0005 (7)0.0039 (8)0.0017 (7)
C60.0161 (8)0.0150 (8)0.0233 (9)0.0002 (6)0.0038 (7)0.0005 (7)
C70.0133 (8)0.0166 (8)0.0200 (8)0.0019 (7)0.0032 (7)0.0000 (7)
C80.0149 (8)0.0208 (9)0.0211 (9)0.0020 (7)0.0035 (7)0.0021 (7)
O50.0155 (7)0.0248 (8)0.0448 (10)0.0017 (6)0.0014 (7)0.0045 (7)
C90.0162 (8)0.0162 (8)0.0205 (9)0.0025 (6)0.0056 (7)0.0010 (7)
O70.0289 (10)0.0263 (10)0.0402 (10)0.0034 (8)0.0106 (8)0.0031 (8)
O80.0448 (12)0.0270 (10)0.0433 (11)0.0046 (8)0.0190 (10)0.0043 (9)
Geometric parameters (Å, º) top
Cd1—O12.2851 (15)C4—C61.394 (3)
Cd1—O22.5557 (16)C4—C51.484 (3)
Cd1—O3i2.3011 (16)O3—Cd1iii2.3010 (16)
Cd1—O5ii2.5225 (17)O4—H40.92 (3)
Cd1—O6ii2.2479 (18)C6—C71.396 (3)
Cd1—O72.381 (2)C6—H60.9300
Cd1—O82.309 (2)C7—C91.398 (3)
C1—O11.269 (2)C7—C81.503 (3)
C1—O21.247 (3)O5—Cd1iv2.5225 (17)
C5—O31.223 (3)O6—Cd1iv2.2479 (17)
C5—O41.305 (3)C9—H90.9300
C8—O51.251 (2)O7—H7A0.73 (5)
C8—O61.273 (2)O7—H7B0.63 (4)
C1—C21.492 (3)O8—H8A0.78 (4)
C3—C41.390 (3)O8—H8B0.66 (4)
C3—H30.9300
O6ii—Cd1—O1145.90 (6)C2—C3—C4120.41 (18)
O6ii—Cd1—O3i134.03 (6)C2—C3—H3119.8
O1—Cd1—O3i80.04 (6)C4—C3—H3119.8
O6ii—Cd1—O889.15 (7)C3—C4—C6120.47 (18)
O1—Cd1—O888.82 (8)C3—C4—C5116.67 (17)
O3i—Cd1—O895.22 (8)C6—C4—C5122.85 (18)
O6ii—Cd1—O789.16 (7)C5—O3—Cd1iii136.67 (14)
O1—Cd1—O790.64 (7)C5—O4—H4112 (2)
O3i—Cd1—O788.46 (8)O3—C5—O4124.60 (19)
O8—Cd1—O7176.13 (8)O3—C5—C4120.49 (18)
O6ii—Cd1—O5ii54.57 (6)O4—C5—C4114.91 (18)
O1—Cd1—O5ii159.34 (6)C4—C6—C7119.57 (18)
O3i—Cd1—O5ii79.73 (6)C4—C6—H6120.2
O8—Cd1—O5ii88.84 (8)C7—C6—H6120.2
O7—Cd1—O5ii93.00 (7)C6—C7—C9119.67 (17)
O6ii—Cd1—O292.51 (6)C6—C7—C8120.81 (17)
O1—Cd1—O253.42 (5)C9—C7—C8119.48 (17)
O3i—Cd1—O2133.45 (6)O5—C8—O6121.3 (2)
O8—Cd1—O284.56 (7)O5—C8—C7121.21 (18)
O7—Cd1—O292.04 (7)O6—C8—C7117.46 (17)
O5ii—Cd1—O2146.56 (5)C2—C9—C7120.54 (17)
C1—O1—Cd198.89 (12)C2—C9—H9119.7
C1—O2—Cd186.77 (12)C7—C9—H9119.7
O2—C1—O1120.91 (18)Cd1—O7—H7A108 (3)
O2—C1—C2120.73 (18)Cd1—O7—H7B106 (4)
O1—C1—C2118.35 (18)H7A—O7—H7B121 (5)
C3—C2—C9119.33 (17)Cd1—O8—H8A116 (3)
C3—C2—C1119.51 (17)Cd1—O8—H8B115 (4)
C9—C2—C1121.15 (17)H8A—O8—H8B112 (5)
O6ii—Cd1—O1—C13.2 (2)C1—C2—C3—C4179.25 (19)
O3i—Cd1—O1—C1179.00 (16)C2—C3—C4—C60.6 (3)
O8—Cd1—O1—C183.49 (15)C2—C3—C4—C5179.77 (19)
O7—Cd1—O1—C192.68 (15)Cd1iii—O3—C5—O43.2 (5)
O5ii—Cd1—O1—C1167.08 (18)Cd1iii—O3—C5—C4175.93 (18)
O2—Cd1—O1—C10.61 (13)C3—C4—C5—O31.1 (4)
O6ii—Cd1—O2—C1179.14 (14)C6—C4—C5—O3179.7 (2)
O1—Cd1—O2—C10.61 (13)C3—C4—C5—O4178.1 (2)
O3i—Cd1—O2—C10.08 (18)C6—C4—C5—O41.1 (3)
O8—Cd1—O2—C191.96 (14)C3—C4—C6—C71.1 (3)
O7—Cd1—O2—C189.89 (14)C5—C4—C6—C7179.77 (19)
O5ii—Cd1—O2—C1171.54 (13)C4—C6—C7—C90.5 (3)
Cd1—O2—C1—O11.0 (2)C4—C6—C7—C8177.02 (19)
Cd1—O2—C1—C2179.63 (18)C6—C7—C8—O55.3 (3)
Cd1—O1—C1—O21.2 (2)C9—C7—C8—O5177.1 (2)
Cd1—O1—C1—C2179.48 (15)C6—C7—C8—O6172.62 (19)
O2—C1—C2—C33.2 (3)C9—C7—C8—O65.0 (3)
O1—C1—C2—C3176.2 (2)C3—C2—C9—C71.1 (3)
O2—C1—C2—C9178.1 (2)C1—C2—C9—C7179.80 (19)
O1—C1—C2—C92.6 (3)C6—C7—C9—C20.5 (3)
C9—C2—C3—C40.5 (3)C8—C7—C9—C2178.14 (18)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2v0.73 (5)2.11 (5)2.836 (3)176 (5)
O7—H7B···O5vi0.63 (4)2.24 (4)2.867 (3)170 (5)
O8—H8A···O6vii0.78 (4)1.95 (4)2.730 (3)175 (4)
O8—H8B···O7viii0.66 (4)2.39 (4)3.044 (3)167 (5)
O4—H4···O1iii0.92 (3)1.71 (3)2.604 (2)164 (3)
Symmetry codes: (iii) x, y+1, z; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y+2, z; (vii) x+1, y, z+1/2; (viii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C9H4O6)(H2O)2]
Mr356.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.7328 (9), 9.1088 (4), 13.3636 (6)
β (°) 117.884 (1)
V3)2123.12 (16)
Z8
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.679, 0.928
No. of measured, independent and
observed [I > 2σ(I)'] reflections
9718, 3512, 2892
Rint0.027
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 0.97
No. of reflections3512
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.50, 1.24

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX in OSCAIL (McArdle, 1994, 2000), ATOMS (Dowty, 1999) and ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—O12.2851 (15)C1—O11.269 (2)
Cd1—O22.5557 (16)C1—O21.247 (3)
Cd1—O3i2.3011 (16)C5—O31.223 (3)
Cd1—O5ii2.5225 (17)C5—O41.305 (3)
Cd1—O6ii2.2479 (18)C8—O51.251 (2)
Cd1—O72.381 (2)C8—O61.273 (2)
Cd1—O82.309 (2)
O6ii—Cd1—O1145.90 (6)O1—Cd1—O5ii159.34 (6)
O6ii—Cd1—O3i134.03 (6)O3i—Cd1—O5ii79.73 (6)
O1—Cd1—O3i80.04 (6)O8—Cd1—O5ii88.84 (8)
O6ii—Cd1—O889.15 (7)O7—Cd1—O5ii93.00 (7)
O1—Cd1—O888.82 (8)O6ii—Cd1—O292.51 (6)
O3i—Cd1—O895.22 (8)O1—Cd1—O253.42 (5)
O6ii—Cd1—O789.16 (7)O3i—Cd1—O2133.45 (6)
O1—Cd1—O790.64 (7)O8—Cd1—O284.56 (7)
O3i—Cd1—O788.46 (8)O7—Cd1—O292.04 (7)
O8—Cd1—O7176.13 (8)O5ii—Cd1—O2146.56 (5)
O6ii—Cd1—O5ii54.57 (6)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2iii0.73 (5)2.11 (5)2.836 (3)176 (5)
O7—H7B···O5iv0.63 (4)2.24 (4)2.867 (3)170 (5)
O8—H8A···O6v0.78 (4)1.95 (4)2.730 (3)175 (4)
O8—H8B···O7vi0.66 (4)2.39 (4)3.044 (3)167 (5)
O4—H4···O1vii0.92 (3)1.71 (3)2.604 (2)164 (3)
Symmetry codes: (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+2, z; (v) x+1, y, z+1/2; (vi) x, y+1, z+1/2; (vii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds