Download citation
Download citation
link to html
The crystal structure of the title compound, trans-[PdCl(CH3)(C18H15P)2], was found to be isomorphous with several related platinum(II) and palladium(II) complexes. The Pd atom has a slightly distorted square-planar geometry, with most important bond lengths and angles of Pd-P = 2.3289 (7) and 2.3224 (7) Å, Pd-Cl = 2.4227 (6) Å and Pd-C = 2.054 (2) Å, and P-Pd-P = 177.38 (2)°, P-Pd-Cl = 88.97 (2) and 89.03 (2)°, and C-Pd-Cl = 175.23 (8)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801000848/ya6005sup1.cif
Contains datablock pdpph

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801000848/ya6005Isup2.hkl
Contains datablock I

CCDC reference: 159710

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.071
  • Data-to-parameter ratio = 26.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 31.70 From the CIF: _reflns_number_total 9837 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 10734 Completeness (_total/calc) 91.64% Alert C: < 95% complete General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.246 Tmax scaled 0.916 Tmin scaled 0.774
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

As part of a systematic investigation of the structure–reactivity relationships for the platinum group metal complexes, crystals of trans-chloro(methyl)bis(tripenylphosphine)palladium(II), (I), were prepared. The complex was found to be isomorphous with the platinum analogue (Bardi & Piazzesi, 1981), as well as with the closely related palladium and platinum triphenylarsine complexes (Rath et al., 1995; Roodt et al., 1995).

The Pd atom has a slightly distorted square-planar coordination environment with the phosphine ligands in a trans orientation. The P1—Pd—P2 angle is 177.38 (2)°, with Pd—P1 and Pd—P2 bond distances of 2.3289 (7) and 2.3224 (7) Å, respectively (see Table 1). The Pd—Cl bond is relatively long at 2.4227 (6) Å, obviously due to a strong labilizing influence of a trans-Me ligand [Pd—C1 2.054 (2) Å]. The C1—Pd—Cl angle of 175.23 (8)° deviates substantially from 180°. The slight distortion of the Pd square-planar coordination is also manifested in some decrease of the P1—Pd—Cl and P2—Pd—Cl [88.97 (2) and 89.03 (2)°, respectively] and a corresponding increase of the C1—Pd—P1 and C1—Pd—P2 angles [91.50 (7) and 90.63 (7)°, respectively].

All bond distances and angles within the PPh3 ligands are within normal ranges (see Table 1). The PPh3 groups are in almost perfectly eclipsed conformation with the biggest pseudo-torsion angle of the CPh—P1···P2—CPh type being equal to only 7.5°.

In Table 2, the title compound is compared with other closely related PtII and PdII complexes from the literature. It is noteworthy that all complexes with the general formula [MRY(EPh3)2], where M = Pd or Pt, RY = Cl2 or MeCl, and E = P or As, belong to one of just two types of isomorphous structures. The non-symmetric complexes with RY = MeCl are isomorphous with the title compound (P21/n, Z = 4, type I), whereas the complexes with symmetric substitution (RY = Cl2) crystallize in the triclinic system, the molecule of the complex occupying a special position in the inversion centre (P1, Z = 1, type II). The triclinic modification of complex [PtMeCl(PPh3)2] (Otto et al., 1995) presents a notable exception from this rule: this structure accommodates a non-symmetric molecule within the type II crystal structure, the Me group and Cl atoms being disordered over two positions related by the inversion centre.

Another observation, which follows from the data presented in Table 2, is that the Pt—L bonds are slightly shorter than the Pd—L bonds in corresponding complexes with differences of ca 0.030 and 0.020 Å for L = P and As, respectively. This observation could, to some extent, be explained by the difference in the covalent radii of Pd (1.380 Å) and Pt (1.370 Å) (Sheldrick, 1997b). The M—Cl bonds are very similar though, while no conclusive deductions could be made concerning the M—C bond distance due to the large uncertainty associated with them.

Experimental top

[PdMeCl(COD)] was prepared according to the literature (Chatt et al., 1957; Rülke et al., 1993). Crystals were obtained using the following procedure: a solution of 21 mg (0.079 mmol) of PPh3 in 5 ml of acetone was added very carefully (so as to disturb the mixture as little as possible) to a solution of 10 mg (0.037 mmol) of [PdMeCl(COD)] in 5 ml of acetone. Light yellow prisms of the title compound soon precipitated from the reaction mixture and were collected by filtration in an almost quantitative yield. 1H NMR (CDCl3): 7.65–7.76 (m, 15H), 7.30–7.45 (m, 18H), -0.035 (t, 3H, 3JP—H = 12.5 Hz) p.p.m. 31P NMR (CDCl3) 31.2 p.p.m.

Refinement top

The data were collected on a Siemens SMART CCD diffractometer using an exposure time of 20 s per frame. A total of 1890 frames were collected with a frame width of 0.25° being used.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are of arbitrary size.
trans-Chloro(methyl)bis(triphenylphosphine)palladium(II) top
Crystal data top
[PdCl(CH3)(C18H15P)2]F(000) = 1392
Mr = 681.42Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8068 (4) ÅCell parameters from 5564 reflections
b = 23.3389 (9) Åθ = 2.2–24.4°
c = 12.3650 (5) ŵ = 0.80 mm1
β = 111.537 (1)°T = 293 K
V = 3169.4 (2) Å3Prism, light yellow
Z = 40.37 × 0.24 × 0.11 mm
Data collection top
Siemens SMART CCD
diffractometer
9837 independent reflections
Radiation source: fine-focus sealed tube4925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 31.7°, θmin = 1.7°
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.621, Tmax = 0.735k = 3432
32413 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
9837 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[PdCl(CH3)(C18H15P)2]V = 3169.4 (2) Å3
Mr = 681.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8068 (4) ŵ = 0.80 mm1
b = 23.3389 (9) ÅT = 293 K
c = 12.3650 (5) Å0.37 × 0.24 × 0.11 mm
β = 111.537 (1)°
Data collection top
Siemens SMART CCD
diffractometer
9837 independent reflections
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
4925 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.735Rint = 0.076
32413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.85Δρmax = 0.43 e Å3
9837 reflectionsΔρmin = 0.61 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.674140 (18)0.151643 (8)0.003725 (17)0.03079 (6)
P10.66219 (6)0.12867 (3)0.19089 (6)0.03063 (16)
P20.68079 (6)0.17084 (3)0.18281 (6)0.03196 (16)
Cl0.70295 (6)0.05093 (3)0.04632 (6)0.04242 (17)
C10.6652 (3)0.23771 (10)0.0404 (2)0.0456 (7)
H1A0.58450.25150.05390.0627 (16)*
H1B0.68420.24400.10860.0627 (16)*
H1C0.72270.25790.02410.0627 (16)*
C1110.5315 (2)0.08493 (10)0.2759 (2)0.0336 (6)
C1120.4667 (2)0.05369 (10)0.2219 (2)0.0406 (7)
H1120.48990.05520.14150.0627 (16)*
C1130.3680 (3)0.02045 (11)0.2866 (3)0.0510 (8)
H1130.32550.00030.24970.0627 (16)*
C1140.3331 (3)0.01806 (12)0.4051 (3)0.0587 (9)
H1140.26610.00390.44850.0627 (16)*
C1150.3970 (3)0.04822 (12)0.4605 (3)0.0597 (9)
H1150.37400.04610.54080.0627 (16)*
C1160.4943 (3)0.08121 (12)0.3964 (2)0.0474 (7)
H1160.53660.10160.43410.0627 (16)*
C1210.7962 (2)0.08767 (10)0.1843 (2)0.0327 (6)
C1220.9025 (3)0.09334 (12)0.0894 (3)0.0465 (7)
H1220.90510.11840.03010.0627 (16)*
C1231.0055 (3)0.06265 (14)0.0801 (3)0.0612 (9)
H1231.07690.06770.01580.0627 (16)*
C1241.0025 (3)0.02494 (13)0.1651 (3)0.0624 (10)
H1241.07140.00370.15860.0627 (16)*
C1250.8976 (3)0.01847 (13)0.2602 (3)0.0681 (10)
H1250.89520.00710.31860.0627 (16)*
C1260.7953 (3)0.04969 (12)0.2698 (3)0.0532 (8)
H1260.72460.04510.33510.0627 (16)*
C1310.6534 (2)0.18679 (10)0.2936 (2)0.0330 (6)
C1320.5440 (3)0.21571 (12)0.3436 (2)0.0489 (8)
H1320.47790.20550.32380.0627 (16)*
C1330.5315 (3)0.25947 (12)0.4222 (3)0.0563 (8)
H1330.45710.27810.45620.0627 (16)*
C1340.6293 (3)0.27534 (12)0.4499 (3)0.0561 (8)
H1340.62140.30460.50310.0627 (16)*
C1350.7383 (3)0.24815 (14)0.3992 (3)0.0649 (9)
H1350.80490.25960.41690.0627 (16)*
C1360.7506 (3)0.20355 (12)0.3213 (2)0.0501 (8)
H1360.82510.18500.28790.0627 (16)*
C2110.5462 (2)0.14533 (10)0.2080 (2)0.0337 (6)
C2120.4735 (2)0.10292 (11)0.1360 (2)0.0393 (7)
H2120.49430.08780.07620.0627 (16)*
C2130.3705 (3)0.08318 (12)0.1529 (3)0.0496 (8)
H2130.32330.05450.10540.0627 (16)*
C2140.3383 (3)0.10581 (13)0.2392 (3)0.0573 (9)
H2140.26840.09280.24950.0627 (16)*
C2150.4078 (3)0.14741 (13)0.3105 (3)0.0587 (8)
H2150.38490.16260.36890.0627 (16)*
C2160.5124 (3)0.16726 (11)0.2967 (2)0.0470 (7)
H2160.55990.19520.34650.0627 (16)*
C2210.6981 (2)0.24450 (10)0.2373 (2)0.0335 (6)
C2220.8076 (2)0.26523 (11)0.3123 (2)0.0436 (7)
H2220.87490.24110.33720.0627 (16)*
C2230.8202 (3)0.32128 (12)0.3518 (3)0.0566 (9)
H2230.89560.33440.40160.0627 (16)*
C2240.7228 (3)0.35707 (12)0.3179 (3)0.0544 (8)
H2240.73110.39450.34540.0627 (16)*
C2250.6118 (3)0.33783 (12)0.2428 (3)0.0550 (8)
H2250.54470.36210.21990.0627 (16)*
C2260.6001 (3)0.28208 (11)0.2014 (2)0.0464 (7)
H2260.52540.26970.14860.0627 (16)*
C2310.8121 (2)0.13695 (10)0.2909 (2)0.0363 (6)
C2320.8135 (3)0.11636 (12)0.3959 (3)0.0539 (8)
H2320.74200.11590.41120.0627 (16)*
C2330.9202 (4)0.09639 (14)0.4786 (3)0.0769 (11)
H2330.91930.08150.54810.0627 (16)*
C2341.0267 (3)0.09816 (14)0.4599 (3)0.0723 (11)
H2341.09840.08560.51720.0627 (16)*
C2351.0282 (3)0.11832 (13)0.3573 (3)0.0621 (9)
H2351.10110.11980.34460.0627 (16)*
C2360.9213 (3)0.13663 (11)0.2715 (3)0.0505 (8)
H2360.92230.14880.20030.0627 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.03425 (11)0.03080 (10)0.02831 (11)0.00194 (10)0.01265 (9)0.00007 (9)
P10.0328 (4)0.0322 (3)0.0282 (4)0.0014 (3)0.0127 (3)0.0002 (3)
P20.0342 (4)0.0320 (4)0.0294 (4)0.0005 (3)0.0114 (3)0.0021 (3)
Cl0.0531 (4)0.0350 (4)0.0407 (4)0.0076 (3)0.0189 (4)0.0041 (3)
C10.062 (2)0.0344 (15)0.0427 (18)0.0010 (14)0.0219 (16)0.0005 (13)
C1110.0322 (15)0.0346 (14)0.0321 (16)0.0038 (11)0.0093 (13)0.0017 (12)
C1120.0437 (17)0.0376 (15)0.0407 (17)0.0015 (13)0.0157 (15)0.0047 (13)
C1130.0458 (19)0.0464 (17)0.058 (2)0.0098 (15)0.0165 (17)0.0059 (16)
C1140.049 (2)0.0521 (19)0.058 (2)0.0162 (15)0.0004 (18)0.0004 (16)
C1150.069 (2)0.063 (2)0.0362 (18)0.0165 (18)0.0066 (17)0.0015 (16)
C1160.0490 (19)0.0545 (18)0.0373 (18)0.0123 (15)0.0142 (16)0.0012 (14)
C1210.0361 (16)0.0303 (14)0.0336 (16)0.0012 (12)0.0152 (14)0.0032 (12)
C1220.0406 (18)0.0560 (18)0.0446 (19)0.0007 (15)0.0174 (16)0.0011 (15)
C1230.0349 (18)0.082 (2)0.067 (2)0.0078 (17)0.0185 (18)0.020 (2)
C1240.053 (2)0.052 (2)0.100 (3)0.0231 (17)0.048 (2)0.031 (2)
C1250.072 (3)0.051 (2)0.094 (3)0.0159 (18)0.046 (2)0.0105 (19)
C1260.0485 (19)0.0565 (19)0.053 (2)0.0079 (16)0.0167 (17)0.0155 (16)
C1310.0372 (16)0.0346 (14)0.0273 (15)0.0009 (12)0.0121 (13)0.0023 (11)
C1320.0507 (19)0.0491 (17)0.052 (2)0.0100 (15)0.0254 (17)0.0130 (15)
C1330.062 (2)0.0492 (18)0.058 (2)0.0158 (16)0.0219 (18)0.0144 (16)
C1340.072 (2)0.0505 (18)0.0431 (19)0.0063 (17)0.0179 (18)0.0159 (15)
C1350.057 (2)0.073 (2)0.070 (2)0.0088 (19)0.030 (2)0.0218 (19)
C1360.0420 (18)0.0576 (19)0.0492 (19)0.0010 (15)0.0149 (16)0.0125 (15)
C2110.0330 (15)0.0366 (14)0.0298 (14)0.0004 (12)0.0096 (12)0.0010 (12)
C2120.0375 (16)0.0416 (15)0.0391 (17)0.0012 (13)0.0143 (14)0.0047 (13)
C2130.0414 (18)0.0500 (18)0.056 (2)0.0095 (14)0.0156 (16)0.0028 (15)
C2140.049 (2)0.067 (2)0.066 (2)0.0050 (17)0.0328 (19)0.0073 (18)
C2150.069 (2)0.068 (2)0.057 (2)0.0015 (19)0.0448 (19)0.0013 (18)
C2160.0544 (19)0.0526 (18)0.0389 (17)0.0062 (15)0.0231 (16)0.0083 (14)
C2210.0365 (16)0.0346 (14)0.0335 (15)0.0018 (12)0.0176 (13)0.0008 (12)
C2220.0334 (16)0.0392 (16)0.060 (2)0.0028 (13)0.0187 (15)0.0081 (14)
C2230.053 (2)0.0437 (18)0.072 (2)0.0144 (16)0.0226 (19)0.0182 (16)
C2240.067 (2)0.0341 (17)0.072 (2)0.0034 (16)0.037 (2)0.0111 (15)
C2250.066 (2)0.0425 (18)0.061 (2)0.0185 (16)0.0274 (19)0.0072 (15)
C2260.0475 (18)0.0438 (17)0.0424 (18)0.0034 (14)0.0100 (15)0.0028 (14)
C2310.0400 (16)0.0300 (14)0.0341 (16)0.0022 (12)0.0080 (13)0.0060 (11)
C2320.051 (2)0.061 (2)0.043 (2)0.0087 (16)0.0104 (17)0.0067 (16)
C2330.076 (3)0.086 (3)0.046 (2)0.004 (2)0.005 (2)0.0202 (19)
C2340.056 (2)0.068 (2)0.063 (3)0.0175 (19)0.014 (2)0.0028 (19)
C2350.043 (2)0.059 (2)0.076 (3)0.0128 (16)0.011 (2)0.0176 (19)
C2360.0462 (19)0.0553 (19)0.0475 (19)0.0106 (15)0.0141 (16)0.0070 (15)
Geometric parameters (Å, º) top
Pd—P12.3289 (7)C131—C1361.370 (3)
Pd—P22.3224 (7)C132—C1331.380 (4)
Pd—Cl2.4227 (6)C133—C1341.371 (4)
Pd—C12.054 (2)C134—C1351.363 (4)
P1—C1111.827 (3)C135—C1361.389 (4)
P1—C1211.825 (3)C211—C2121.396 (3)
P1—C1311.835 (2)C211—C2161.394 (3)
P2—C2111.828 (2)C212—C2131.386 (3)
P2—C2211.830 (2)C213—C2141.364 (4)
P2—C2311.815 (3)C214—C2151.365 (4)
C111—C1121.393 (3)C215—C2161.386 (4)
C111—C1161.392 (3)C221—C2221.373 (3)
C112—C1131.384 (4)C221—C2261.388 (3)
C113—C1141.370 (4)C222—C2231.385 (3)
C114—C1151.383 (4)C223—C2241.357 (4)
C115—C1161.368 (4)C224—C2251.374 (4)
C121—C1221.374 (4)C225—C2261.387 (4)
C121—C1261.377 (3)C231—C2321.380 (4)
C122—C1231.379 (4)C231—C2361.395 (4)
C123—C1241.361 (4)C232—C2331.380 (4)
C124—C1251.368 (4)C233—C2341.360 (4)
C125—C1261.377 (4)C234—C2351.359 (4)
C131—C1321.386 (3)C235—C2361.385 (4)
C1—Pd—P191.50 (7)C125—C126—C121121.0 (3)
C1—Pd—P290.63 (7)C136—C131—C132118.6 (2)
P1—Pd—P2177.38 (2)C132—C131—P1118.4 (2)
C1—Pd—Cl175.23 (8)C136—C131—P1123.0 (2)
P1—Pd—Cl88.97 (2)C133—C132—C131121.1 (3)
P2—Pd—Cl89.03 (2)C134—C133—C132119.6 (3)
C111—P1—C121105.56 (11)C135—C134—C133119.9 (3)
C111—P1—C131101.16 (11)C134—C135—C136120.6 (3)
C121—P1—C131104.27 (11)C131—C136—C135120.2 (3)
C111—P1—Pd115.52 (8)C216—C211—C212118.4 (2)
C121—P1—Pd109.92 (9)C212—C211—P2119.42 (19)
C131—P1—Pd119.01 (8)C216—C211—P2122.2 (2)
C211—P2—C221103.27 (11)C213—C212—C211120.5 (2)
C211—P2—C231107.09 (12)C214—C213—C212120.1 (3)
C221—P2—C231100.86 (11)C213—C214—C215120.4 (3)
C211—P2—Pd113.09 (8)C214—C215—C216120.7 (3)
C221—P2—Pd120.36 (8)C215—C216—C211119.9 (3)
C231—P2—Pd110.81 (8)C222—C221—C226117.4 (2)
C116—C111—C112117.9 (2)C222—C221—P2122.00 (19)
C112—C111—P1120.9 (2)C226—C221—P2120.5 (2)
C116—C111—P1121.2 (2)C221—C222—C223121.6 (3)
C113—C112—C111120.7 (3)C224—C223—C222120.2 (3)
C114—C113—C112120.1 (3)C223—C224—C225119.8 (3)
C113—C114—C115120.2 (3)C224—C225—C226119.8 (3)
C116—C115—C114119.7 (3)C225—C226—C221121.1 (3)
C115—C116—C111121.5 (3)C232—C231—C236117.8 (3)
C122—C121—C126117.7 (2)C232—C231—P2123.8 (2)
C122—C121—P1119.5 (2)C236—C231—P2118.0 (2)
C126—C121—P1122.7 (2)C231—C232—C233120.5 (3)
C121—C122—C123121.5 (3)C234—C233—C232120.9 (3)
C124—C123—C122120.0 (3)C235—C234—C233119.9 (3)
C123—C124—C125119.6 (3)C234—C235—C236120.1 (3)
C124—C125—C126120.3 (3)C235—C236—C231120.7 (3)
Cl—Pd—P1—C11165.25 (9)Cl—Pd—P2—C21170.73 (9)
Cl—Pd—P1—C12154.03 (8)Cl—Pd—P2—C221166.67 (10)
Cl—Pd—P1—C131174.08 (10)Cl—Pd—P2—C23149.52 (9)

Experimental details

Crystal data
Chemical formula[PdCl(CH3)(C18H15P)2]
Mr681.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.8068 (4), 23.3389 (9), 12.3650 (5)
β (°) 111.537 (1)
V3)3169.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.37 × 0.24 × 0.11
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.621, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
32413, 9837, 4925
Rint0.076
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.071, 0.85
No. of reflections9837
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.61

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Pd—P12.3289 (7)P1—C1211.825 (3)
Pd—P22.3224 (7)P1—C1311.835 (2)
Pd—Cl2.4227 (6)P2—C2111.828 (2)
Pd—C12.054 (2)P2—C2211.830 (2)
P1—C1111.827 (3)P2—C2311.815 (3)
C1—Pd—P191.50 (7)C111—P1—Pd115.52 (8)
C1—Pd—P290.63 (7)C121—P1—Pd109.92 (9)
P1—Pd—P2177.38 (2)C131—P1—Pd119.01 (8)
C1—Pd—Cl175.23 (8)C211—P2—C221103.27 (11)
P1—Pd—Cl88.97 (2)C211—P2—C231107.09 (12)
P2—Pd—Cl89.03 (2)C221—P2—C231100.86 (11)
C111—P1—C121105.56 (11)C211—P2—Pd113.09 (8)
C111—P1—C131101.16 (11)C221—P2—Pd120.36 (8)
C121—P1—C131104.27 (11)C231—P2—Pd110.81 (8)
Cl—Pd—P1—C11165.25 (9)Cl—Pd—P2—C21170.73 (9)
Cl—Pd—P1—C12154.03 (8)Cl—Pd—P2—C221166.67 (10)
Cl—Pd—P1—C131174.08 (10)Cl—Pd—P2—C23149.52 (9)
Comparative X-ray data for trans-[MRCl(L)2] (M = Pd, Pt; R = Me, CH2Cl, Ph, Cl and L = tertiary phosphine- or arsine ligand) complexes. top
ComplexM—L (Å)M—C (Å)M—Cl (Å)TypeaRefs
[PdMeCl(PPh3)2]2.3289 (7)2.054 (2)2.4227 (6)I(i)
2.3224 (7)
[PdMeCl(AsPh3)2]2.3989 (5)2.095 (4)2.4086 (11)I(ii)
2.4067 (5)
[PtMeCl(PPh3)2]2.295 (3)2.08 (1)2.431 (3)I(iii)
2.298 (3)
[PtMeCl(PPh3)2]2.2955 (10)2.02 (2)2.415 (5)II(iv)
[PtMeCl(AsPh3)2]2.3856 (9)2.073 (8)2.410 (2)I(v)
2.3786 (9)
[PdMeCl(PPh2Fc)2]2.3328 (10)2.108 (10)2.378 (3)(vi)
[PdCH2ClCl(PPh3)2]2.337 (1)2.031 (2)2.402 (1)(vii)
2.329 (1)
[PdPhCl(PPh3)2]2.316 (1)2.016 (3)2.407 (1)(viii)
2.324 (1)
[Pd(Cl)2(PPh3)2]2.337 (1)2.290 (1)II(ix)
[Pt(Cl)2(PPh3)2]2.3175 (12)2.2997 (11)II(x)
Notes: (a) See Comment section for definition of structure types. References: (i) this work; (ii) Rath et al. (1995); (iii) Bardi & Piazzesi (1981); (iv) Otto et al. (1995); (v) Roodt et al. (1995); (vi) Otto et al. (2000); (vii) McCrindle et al. (1995); (viii) Flemming et al. (1998); (ix) Ferguson et al. (1982); (x) Johansson & Otto (2000).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds