Download citation
Download citation
link to html
The crystal structure of doxyl­amine hydrogen succinate or di­methyl{[1-phenyl-1-(2-pyridyl)­ethoxy]­ethyl]­ammonium hydrogen succinate, C17H23N2O+·C4H5O4, contains two independent protonated mol­ecules of doxyl­amine with different conformations and two succinate anions in an asymmetric unit. The structure is stabilized by hydrogen bonds involving the cations and the anions, with O...O and N...O distances in the range 2.536 (5)–2.853 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100085X/ya6001sup1.cif
Contains datablocks Global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100085X/ya6001Isup2.hkl
Contains datablock I

CCDC reference: 159754

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.067
  • wR factor = 0.243
  • Data-to-parameter ratio = 19.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.087 Value of mu given = 0.090
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Doxylamine [dimethylaminoethoxy(methyl)benzylpyridine] is a chiral tertiary aminoalkyl ether, with antihistaminic actions on the H1-receptor site (Casy, 1991). The crystal structures of the tetrachlorozincate(II), tetrachlorocobaltate(II) (Parvez & Sabir, 1998) and tetrachlorocuprate(II) (Braitenbach & Parvez, 2000) salts of doxylamine have been reported from our laboratory. The crystal structures of a number of compounds belonging to this class of ethers which possess antiallergic activities have been reported, e.g. diphenhydramine hydrochloride (Glaser & Maartmann-Moe, 1990), diphenhydramine thiourea complex (Wiedenfeld & Knoch, 1987), carbinoxamine maleate (Bertolasi et al., 1980) and clemastine hydrogen fumarate (Parvez & Wendling, 1991). The crystal structure of orphenadrine hydrochloride, a skeletal muscle relaxant, which is closely related to these compounds has also been reported (Glaser et al., 1992). Continuing our investigations on the conformation of this important antiallergic drug, we now report the crystal structure of doxylamine hydrogen succinate, (I).

The asymmetric unit of (I) is composed of two cations of the antihistamine with different conformations and two hydrogen succinate ions (Fig. 1). The C9A–C12A atoms in one of the phenyl rings and the O3A atom had large displacement displacement parameters possibly reflecting a degree of disorder.

In both cations in (I), the pyridine rings are planar; they are inclined by 84.6 (2) and 85.9 (2)° to the phenyl rings. The corresponding angles in the tetrachlorozincate(II), tetrachlorocobaltate(II) (Parvez & Sabir, 1998) and tetrachlorocuprate(II) (Braitenbach & Parvez, 2000) salts of doxylamine were 87.68 (14), 88.1 (2) and 82.9 (3)°, respectively.

The orientations of the pyridyl rings in both cations in (I) are different from their conformations in the dihydrocationic salts of doxylamine mentioned above, wherein both lone electron pairs of ethereal O atoms were oriented towards ammonium and pyridinium H atoms. This difference in orientation is due to a lack of interactions between ethereal O and pyridyl N atoms in (I) and results in a rotation of approximately 180° about the C5—C6 and C5A—C6A bonds in both cations of (I) as compared with those in the doxylamine moiety in the dihydrocationic salts. Furthermore, the cations in (I) differ in the orientation of the aminomethyl groups; the ammonium H atom of one of the cations has switched positions with a methyl group as compared to the other cation resulting in significantly different intramolecular separations between the ethereal O and ammonium N atoms: N2···O1 3.095 (6) versus N2A···O1A 2.870 (6) Å. The difference in the orientation of the aminomethyl groups in the two cations is evident from a comparison of the torsion angles O1—C14—C15—N2 76.9 (6)° and O1A—C14A—C15A—N2A 58.4 (6)°, and C14—C15—N2—C17 - 62.0 (6)° and C14A—C15A—N2A—C17A 51.5 (6)°. The torsion angles corresponding to C5—C6—O1—C14, C6—-O1–C14—C15 and C14—C15—N2—C17 in the two molecules are close to 180° with values in the range 173.2 (4)–179.5 (5)°, with the exception of C6—O1—C14—C15 of 155.7 (5)° in one of the cations.

In general, carboxylic acids tend to form cyclic dimers via hydrogen bonding. The crystal structure of (I) displays an extensive network of hydrogenbonding wherein the succinate ions are linked into chains in a zigzag fashion along the c axis, with O5···O2A and O5A···O2 being 2.538 (5) and 2.536 (5) Å, respectively. Only a few carboxylic acids appear to adopt this arrangement (Bernstein et al., 1994), e.g. L-lysine succinate (Prasad & Vijayan, 1991). The cations are attached to the anion chains via ammonium H atoms involved in the N—H···O interactions with N2···O2 and N2A···O2A distances of 2.744 (5) and 2.853 (5) Å, respectively (see Table 1).

Experimental top

Crystals of (I) (Sigma Inc.) were grown from a solution in ethanol by slow evaporation at room temperature.

Refinement top

All H atoms were located from difference maps and were included at geometrically idealized positions, with O—H = 0.82, N—H = 0.91 and C—H = 0.93–0.97 Å, in a riding mode with isotropic displacement parameters of 1.2 (non-methyl) and 1.5 (methyl) times the displacement parameters of the atoms to which they were attached.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. ORTEPII (Johnson, 1976) drawings of the two independent cations and anions in (I). Displacement ellipsoids have been plotted at the 50% probability level.
Dimethylammoniumethoxy(methyl)benzylpyridine hydrogensuccinate top
Crystal data top
C17H23N2O+·C4H5O4F(000) = 1664
Mr = 388.45Dx = 1.220 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 8.901 (3) ÅCell parameters from 25 reflections
b = 21.075 (4) Åθ = 10.0–15.0°
c = 22.721 (5) ŵ = 0.09 mm1
β = 97.22 (2)°T = 293 K
V = 4228.4 (19) Å3Prism, colourless
Z = 80.40 × 0.30 × 0.30 mm
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.06
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.0°
Graphite monochromatorh = 011
ω/2θ scansk = 027
10376 measured reflectionsl = 2929
9763 independent reflections3 standard reflections every 200 reflections
2872 reflections with I > 2σ(I) intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.243H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 9.25P]
where P = (Fo2 + 2Fc2)/3
9763 reflections(Δ/σ)max < 0.001
507 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H23N2O+·C4H5O4V = 4228.4 (19) Å3
Mr = 388.45Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.901 (3) ŵ = 0.09 mm1
b = 21.075 (4) ÅT = 293 K
c = 22.721 (5) Å0.40 × 0.30 × 0.30 mm
β = 97.22 (2)°
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.06
10376 measured reflections3 standard reflections every 200 reflections
9763 independent reflections intensity decay: <0.1%
2872 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.243H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
9763 reflectionsΔρmin = 0.31 e Å3
507 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3343 (4)0.47810 (18)0.33285 (15)0.0509 (10)
N10.4549 (6)0.3162 (2)0.3206 (2)0.0599 (14)
N20.1845 (4)0.6074 (2)0.29755 (18)0.0390 (11)
H10.09690.60500.31420.047*
C10.4878 (7)0.2783 (3)0.2761 (3)0.0607 (18)
H1A0.51740.23680.28540.073*
C20.4803 (7)0.2974 (3)0.2175 (3)0.0585 (17)
H2A0.50180.26950.18790.070*
C30.4403 (8)0.3585 (3)0.2050 (3)0.070 (2)
H3A0.43420.37310.16610.084*
C40.4084 (8)0.3995 (3)0.2495 (3)0.0651 (19)
H4A0.38250.44150.24100.078*
C50.4158 (6)0.3768 (3)0.3065 (2)0.0416 (14)
C60.3850 (6)0.4185 (3)0.3589 (2)0.0432 (14)
C70.5347 (7)0.4286 (3)0.3989 (2)0.0429 (14)
C80.6468 (7)0.4650 (3)0.3784 (3)0.0565 (17)
H8A0.62870.48390.34120.068*
C90.7847 (8)0.4735 (3)0.4123 (3)0.074 (2)
H90.85770.49900.39820.088*
C100.8152 (9)0.4446 (4)0.4667 (3)0.076 (2)
H10A0.90900.44960.48930.091*
C110.7057 (10)0.4087 (3)0.4867 (3)0.070 (2)
H11A0.72580.38950.52360.084*
C120.5650 (8)0.3997 (3)0.4540 (2)0.0543 (16)
H12A0.49220.37480.46880.065*
C130.2621 (7)0.3887 (3)0.3914 (3)0.0654 (19)
H13A0.24390.41540.42400.098*
H13B0.29480.34760.40610.098*
H13C0.17050.38450.36450.098*
C140.2963 (7)0.5258 (3)0.3720 (2)0.0553 (17)
H14A0.36290.52320.40910.066*
H14B0.19300.51980.38030.066*
C150.3116 (6)0.5902 (3)0.3443 (2)0.0469 (15)
H15A0.31810.62210.37530.056*
H15B0.40570.59140.32690.056*
C160.2011 (7)0.6733 (3)0.2778 (3)0.0616 (18)
H16A0.11830.68380.24820.092*
H16B0.29480.67760.26140.092*
H16C0.20110.70140.31110.092*
C170.1705 (6)0.5638 (3)0.2458 (2)0.0454 (14)
H17A0.08610.57650.21770.068*
H17B0.15460.52130.25880.068*
H17C0.26170.56540.22730.068*
O1A0.0540 (4)0.15355 (18)0.55067 (15)0.0434 (9)
N1A0.1792 (6)0.0219 (2)0.6138 (2)0.0602 (14)
N2A0.1818 (5)0.2214 (2)0.44678 (19)0.0444 (12)
H20.08610.20610.44710.053*
C1A0.3225 (7)0.0007 (3)0.6089 (3)0.0503 (15)
H1B0.35880.03390.63180.060*
C2A0.4149 (6)0.0276 (3)0.5724 (3)0.0522 (16)
H2B0.51090.01120.56980.063*
C3A0.3620 (6)0.0797 (3)0.5393 (3)0.0533 (16)
H3B0.42350.09910.51440.064*
C4A0.2186 (6)0.1032 (2)0.5428 (2)0.0388 (13)
H4B0.18340.13860.52090.047*
C5A0.1280 (6)0.0732 (2)0.5797 (2)0.0363 (13)
C6A0.0359 (6)0.0951 (3)0.5835 (2)0.0441 (14)
C7A0.0557 (7)0.1076 (3)0.6478 (3)0.0566 (17)
C8A0.0160 (9)0.1556 (4)0.6780 (3)0.082 (2)
H8B0.07910.18190.65930.098*
C9A0.0030 (13)0.1670 (5)0.7386 (5)0.122 (4)
H9B0.04620.19990.76040.147*
C10A0.0992 (14)0.1258 (7)0.7623 (4)0.118 (5)
H10B0.12010.13240.80090.142*
C11A0.1640 (13)0.0762 (6)0.7316 (6)0.143 (5)
H11B0.22310.04810.75040.172*
C12A0.1458 (8)0.0665 (4)0.6753 (4)0.086 (2)
H12B0.19310.03250.65450.103*
C13A0.1420 (7)0.0442 (3)0.5536 (3)0.077 (2)
H13D0.24520.05670.55500.115*
H13E0.12290.00460.57410.115*
H13F0.12440.03940.51300.115*
C14A0.1949 (6)0.1853 (3)0.5515 (2)0.0506 (16)
H14C0.20420.20040.59120.061*
H14D0.27810.15650.53940.061*
C15A0.1993 (6)0.2406 (3)0.5090 (2)0.0439 (14)
H15C0.29480.26270.50900.053*
H15D0.11880.26990.52310.053*
C16A0.1953 (8)0.2785 (3)0.4073 (3)0.078 (2)
H16D0.18340.26600.36750.117*
H16E0.11800.30860.42130.117*
H16F0.29310.29750.40780.117*
C17A0.2867 (7)0.1707 (4)0.4233 (3)0.078 (2)
H17D0.27530.13480.44950.117*
H17E0.26420.15820.38470.117*
H17F0.38900.18600.42040.117*
O20.1021 (4)0.60452 (18)0.32998 (15)0.0422 (9)
O30.0240 (4)0.6541 (2)0.40586 (18)0.0684 (14)
O40.5046 (4)0.7175 (2)0.42707 (17)0.0600 (12)
O50.3921 (4)0.7613 (2)0.50865 (16)0.0468 (10)
H30.30540.76560.52520.070*
C180.0953 (6)0.6392 (3)0.3759 (2)0.0390 (13)
C190.2458 (5)0.6617 (3)0.3933 (2)0.0470 (15)
H19A0.30050.68360.35970.056*
H19B0.30480.62480.40140.056*
C200.2360 (5)0.7052 (3)0.4464 (2)0.0408 (14)
H20A0.17300.74140.43960.049*
H20B0.18750.68270.48090.049*
C210.3894 (6)0.7288 (3)0.4591 (2)0.0368 (13)
O2A0.1334 (4)0.21418 (19)0.43556 (15)0.0474 (10)
O3A0.0024 (5)0.1691 (3)0.3592 (2)0.123 (3)
O4A0.5079 (4)0.1128 (2)0.30771 (16)0.0513 (11)
O5A0.3624 (4)0.08584 (19)0.22668 (16)0.0448 (10)
H40.27650.09430.21120.067*
C18A0.1233 (6)0.1823 (3)0.3878 (3)0.0546 (17)
C19A0.2684 (6)0.1619 (3)0.3656 (2)0.0494 (16)
H19C0.32150.13250.39370.059*
H19D0.33270.19870.36320.059*
C20A0.2417 (6)0.1305 (3)0.3054 (2)0.0590 (19)
H20C0.18760.16010.27770.071*
H20D0.17670.09400.30820.071*
C21A0.3829 (6)0.1089 (3)0.2802 (2)0.0370 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.071 (3)0.044 (2)0.038 (2)0.027 (2)0.0075 (19)0.0015 (19)
N10.078 (4)0.037 (3)0.065 (3)0.012 (3)0.009 (3)0.002 (3)
N20.029 (2)0.041 (3)0.049 (3)0.006 (2)0.016 (2)0.004 (2)
C10.077 (5)0.034 (4)0.070 (5)0.013 (3)0.009 (4)0.008 (4)
C20.072 (4)0.053 (4)0.049 (4)0.014 (4)0.002 (3)0.013 (3)
C30.095 (5)0.066 (5)0.048 (4)0.032 (4)0.007 (4)0.004 (4)
C40.097 (5)0.055 (4)0.043 (4)0.027 (4)0.008 (3)0.002 (3)
C50.047 (3)0.037 (3)0.039 (3)0.003 (3)0.002 (3)0.000 (3)
C60.056 (4)0.037 (3)0.037 (3)0.011 (3)0.009 (3)0.004 (3)
C70.060 (4)0.036 (3)0.033 (3)0.012 (3)0.010 (3)0.003 (3)
C80.065 (4)0.050 (4)0.052 (4)0.006 (3)0.001 (3)0.008 (3)
C90.074 (5)0.066 (5)0.078 (5)0.005 (4)0.005 (4)0.004 (4)
C100.088 (6)0.062 (5)0.070 (5)0.006 (4)0.022 (4)0.014 (4)
C110.116 (6)0.062 (5)0.028 (3)0.027 (5)0.005 (4)0.009 (3)
C120.087 (5)0.039 (4)0.037 (3)0.011 (3)0.011 (3)0.004 (3)
C130.061 (4)0.070 (5)0.067 (4)0.001 (4)0.017 (3)0.010 (4)
C140.073 (4)0.054 (4)0.041 (3)0.023 (3)0.017 (3)0.001 (3)
C150.039 (3)0.060 (4)0.041 (3)0.009 (3)0.005 (3)0.008 (3)
C160.067 (4)0.047 (4)0.073 (5)0.007 (3)0.020 (4)0.008 (4)
C170.040 (3)0.039 (3)0.058 (4)0.005 (3)0.007 (3)0.008 (3)
O1A0.032 (2)0.054 (3)0.045 (2)0.0058 (18)0.0074 (16)0.000 (2)
N1A0.063 (4)0.055 (4)0.062 (3)0.005 (3)0.006 (3)0.002 (3)
N2A0.029 (2)0.064 (3)0.039 (3)0.014 (2)0.0016 (19)0.005 (3)
C1A0.058 (4)0.041 (4)0.051 (4)0.013 (3)0.000 (3)0.005 (3)
C2A0.039 (3)0.057 (4)0.061 (4)0.011 (3)0.006 (3)0.002 (3)
C3A0.036 (3)0.067 (5)0.059 (4)0.001 (3)0.012 (3)0.002 (3)
C4A0.037 (3)0.030 (3)0.049 (3)0.002 (3)0.004 (3)0.004 (3)
C5A0.038 (3)0.034 (3)0.038 (3)0.005 (3)0.006 (2)0.003 (3)
C6A0.034 (3)0.046 (4)0.054 (4)0.003 (3)0.012 (3)0.002 (3)
C7A0.059 (4)0.068 (5)0.046 (4)0.026 (4)0.018 (3)0.007 (4)
C8A0.107 (6)0.098 (7)0.037 (4)0.037 (5)0.002 (4)0.012 (4)
C9A0.137 (9)0.128 (10)0.095 (8)0.064 (8)0.008 (7)0.006 (7)
C10A0.156 (11)0.152 (12)0.052 (6)0.081 (9)0.032 (6)0.003 (6)
C11A0.158 (11)0.158 (12)0.133 (10)0.040 (9)0.096 (9)0.049 (9)
C12A0.080 (5)0.101 (6)0.088 (6)0.008 (5)0.049 (5)0.019 (5)
C13A0.053 (4)0.054 (5)0.125 (7)0.018 (4)0.018 (4)0.023 (4)
C14A0.034 (3)0.072 (5)0.046 (3)0.016 (3)0.007 (3)0.003 (3)
C15A0.031 (3)0.059 (4)0.040 (3)0.012 (3)0.002 (2)0.005 (3)
C16A0.096 (6)0.084 (6)0.058 (4)0.038 (5)0.020 (4)0.012 (4)
C17A0.057 (4)0.108 (6)0.066 (5)0.011 (4)0.007 (4)0.043 (4)
O20.0319 (19)0.058 (3)0.038 (2)0.0026 (18)0.0084 (16)0.0145 (19)
O30.029 (2)0.115 (4)0.058 (3)0.012 (2)0.0071 (19)0.040 (3)
O40.027 (2)0.096 (4)0.056 (3)0.003 (2)0.0038 (19)0.026 (2)
O50.033 (2)0.068 (3)0.042 (2)0.002 (2)0.0118 (18)0.014 (2)
C180.035 (3)0.047 (4)0.035 (3)0.005 (3)0.003 (2)0.007 (3)
C190.028 (3)0.062 (4)0.051 (4)0.002 (3)0.006 (3)0.022 (3)
C200.028 (3)0.054 (4)0.040 (3)0.005 (3)0.005 (2)0.015 (3)
C210.031 (3)0.047 (4)0.034 (3)0.001 (3)0.011 (2)0.007 (3)
O2A0.040 (2)0.068 (3)0.035 (2)0.005 (2)0.0076 (17)0.016 (2)
O3A0.035 (3)0.205 (7)0.129 (5)0.003 (3)0.007 (3)0.120 (5)
O4A0.030 (2)0.073 (3)0.049 (2)0.012 (2)0.0050 (18)0.010 (2)
O5A0.033 (2)0.062 (3)0.039 (2)0.010 (2)0.0056 (16)0.007 (2)
C18A0.032 (3)0.082 (5)0.050 (4)0.003 (3)0.002 (3)0.021 (4)
C19A0.031 (3)0.073 (5)0.044 (3)0.007 (3)0.005 (2)0.018 (3)
C20A0.030 (3)0.108 (6)0.039 (3)0.012 (3)0.006 (2)0.025 (4)
C21A0.035 (3)0.043 (3)0.033 (3)0.008 (3)0.004 (2)0.001 (3)
Geometric parameters (Å, º) top
O1—C141.411 (6)C1A—C2A1.363 (8)
O1—C61.437 (6)C2A—C3A1.380 (8)
N1—C11.349 (7)C3A—C4A1.381 (7)
N1—C51.353 (7)C4A—C5A1.385 (7)
N2—C161.472 (7)C5A—C6A1.543 (7)
N2—C171.486 (6)C6A—C7A1.517 (8)
N2—C151.496 (6)C6A—C13A1.530 (8)
C1—C21.385 (8)C7A—C8A1.339 (9)
C2—C31.357 (8)C7A—C12A1.381 (9)
C3—C41.385 (8)C8A—C9A1.426 (11)
C4—C51.373 (8)C9A—C10A1.376 (14)
C5—C61.533 (7)C10A—C11A1.345 (15)
C6—C131.528 (8)C11A—C12A1.327 (12)
C6—C71.531 (8)C14A—C15A1.509 (8)
C7—C81.385 (8)O2—C181.270 (6)
C7—C121.387 (7)O3—C181.227 (6)
C8—C91.375 (8)O4—C211.204 (6)
C9—C101.374 (9)O5—C211.320 (6)
C10—C111.355 (10)C18—C191.519 (7)
C11—C121.386 (9)C19—C201.508 (7)
C14—C151.509 (8)C20—C211.515 (7)
O1A—C14A1.424 (6)O2A—C18A1.269 (6)
O1A—C6A1.438 (6)O3A—C18A1.218 (6)
N1A—C1A1.369 (7)O4A—C21A1.209 (6)
N1A—C5A1.375 (7)O5A—C21A1.301 (6)
N2A—C17A1.474 (7)C18A—C19A1.508 (7)
N2A—C16A1.497 (7)C19A—C20A1.510 (7)
N2A—C15A1.498 (6)C20A—C21A1.515 (7)
C14—O1—C6116.8 (4)C3A—C4A—C5A118.9 (5)
C1—N1—C5117.0 (5)N1A—C5A—C4A121.6 (5)
C16—N2—C17110.1 (4)N1A—C5A—C6A116.9 (5)
C16—N2—C15110.4 (4)C4A—C5A—C6A121.6 (5)
C17—N2—C15113.2 (4)O1A—C6A—C7A109.4 (5)
N1—C1—C2124.1 (6)O1A—C6A—C13A110.3 (5)
C3—C2—C1117.1 (6)C7A—C6A—C13A114.1 (5)
C2—C3—C4120.7 (6)O1A—C6A—C5A105.8 (4)
C5—C4—C3118.8 (6)C7A—C6A—C5A109.4 (5)
N1—C5—C4122.2 (5)C13A—C6A—C5A107.5 (5)
N1—C5—C6115.0 (5)C8A—C7A—C12A120.5 (7)
C4—C5—C6122.8 (5)C8A—C7A—C6A121.3 (6)
O1—C6—C13110.5 (5)C12A—C7A—C6A118.1 (7)
O1—C6—C7109.1 (5)C7A—C8A—C9A121.0 (9)
C13—C6—C7113.1 (5)C10A—C9A—C8A115.3 (11)
O1—C6—C5104.9 (4)C11A—C10A—C9A122.3 (10)
C13—C6—C5110.5 (5)C12A—C11A—C10A121.5 (11)
C7—C6—C5108.3 (4)C11A—C12A—C7A119.3 (9)
C8—C7—C12118.6 (6)O1A—C14A—C15A107.8 (4)
C8—C7—C6119.2 (5)N2A—C15A—C14A113.5 (5)
C12—C7—C6122.1 (6)O3—C18—O2123.4 (5)
C9—C8—C7120.9 (6)O3—C18—C19120.4 (5)
C10—C9—C8120.5 (7)O2—C18—C19116.2 (4)
C11—C10—C9118.6 (7)C20—C19—C18115.7 (4)
C10—C11—C12122.5 (6)C19—C20—C21112.9 (4)
C11—C12—C7118.9 (6)O4—C21—O5120.9 (5)
O1—C14—C15109.7 (4)O4—C21—C20122.6 (5)
N2—C15—C14114.4 (5)O5—C21—C20116.5 (4)
C14A—O1A—C6A116.0 (4)O3A—C18A—O2A122.7 (5)
C1A—N1A—C5A117.1 (5)O3A—C18A—C19A119.5 (5)
C17A—N2A—C16A111.5 (5)O2A—C18A—C19A117.8 (5)
C17A—N2A—C15A113.6 (5)C18A—C19A—C20A112.6 (4)
C16A—N2A—C15A109.8 (4)C19A—C20A—C21A115.5 (4)
C2A—C1A—N1A123.7 (6)O4A—C21A—O5A121.4 (5)
C1A—C2A—C3A118.1 (5)O4A—C21A—C20A122.5 (5)
C2A—C3A—C4A120.6 (6)O5A—C21A—C20A116.1 (4)
C5—N1—C1—C21.6 (9)C1A—N1A—C5A—C6A177.6 (5)
N1—C1—C2—C31.5 (10)C3A—C4A—C5A—N1A1.9 (8)
C1—C2—C3—C40.1 (10)C3A—C4A—C5A—C6A177.2 (5)
C2—C3—C4—C51.0 (11)C14A—O1A—C6A—C7A58.1 (6)
C1—N1—C5—C40.4 (9)C14A—O1A—C6A—C13A68.3 (6)
C1—N1—C5—C6177.9 (5)C14A—O1A—C6A—C5A175.8 (4)
C3—C4—C5—N10.8 (10)N1A—C5A—C6A—O1A172.3 (4)
C3—C4—C5—C6179.0 (6)C4A—C5A—C6A—O1A8.6 (7)
C14—O1—C6—C1360.4 (6)N1A—C5A—C6A—C7A54.6 (7)
C14—O1—C6—C764.6 (6)C4A—C5A—C6A—C7A126.3 (6)
C14—O1—C6—C5179.5 (5)N1A—C5A—C6A—C13A69.8 (6)
N1—C5—C6—O1175.4 (5)C4A—C5A—C6A—C13A109.3 (6)
C4—C5—C6—O16.2 (7)O1A—C6A—C7A—C8A48.1 (7)
N1—C5—C6—C1356.3 (6)C13A—C6A—C7A—C8A172.2 (6)
C4—C5—C6—C13125.3 (6)C5A—C6A—C7A—C8A67.4 (7)
N1—C5—C6—C768.1 (6)O1A—C6A—C7A—C12A134.3 (6)
C4—C5—C6—C7110.2 (6)C13A—C6A—C7A—C12A10.1 (8)
O1—C6—C7—C845.3 (7)C5A—C6A—C7A—C12A110.3 (6)
C13—C6—C7—C8168.8 (5)C12A—C7A—C8A—C9A2.3 (11)
C5—C6—C7—C868.4 (7)C6A—C7A—C8A—C9A179.9 (6)
O1—C6—C7—C12138.2 (5)C7A—C8A—C9A—C10A0.4 (12)
C13—C6—C7—C1214.7 (8)C8A—C9A—C10A—C11A3.5 (15)
C5—C6—C7—C12108.1 (6)C9A—C10A—C11A—C12A4.1 (18)
C12—C7—C8—C91.3 (9)C10A—C11A—C12A—C7A1.3 (16)
C6—C7—C8—C9177.9 (6)C8A—C7A—C12A—C11A1.9 (12)
C7—C8—C9—C101.7 (10)C6A—C7A—C12A—C11A179.6 (8)
C8—C9—C10—C111.3 (11)C6A—O1A—C14A—C15A173.2 (4)
C9—C10—C11—C120.6 (11)C17A—N2A—C15A—C14A51.5 (6)
C10—C11—C12—C70.2 (10)C16A—N2A—C15A—C14A177.1 (5)
C8—C7—C12—C110.5 (8)O1A—C14A—C15A—N2A58.4 (6)
C6—C7—C12—C11177.1 (5)O3—C18—C19—C203.1 (8)
C6—O1—C14—C15155.7 (5)O2—C18—C19—C20177.5 (5)
C16—N2—C15—C14174.0 (4)C18—C19—C20—C21176.7 (5)
C17—N2—C15—C1462.0 (6)C19—C20—C21—O45.3 (8)
O1—C14—C15—N276.9 (6)C19—C20—C21—O5172.7 (5)
C5A—N1A—C1A—C2A0.1 (9)O3A—C18A—C19A—C20A4.5 (10)
N1A—C1A—C2A—C3A1.2 (9)O2A—C18A—C19A—C20A173.9 (6)
C1A—C2A—C3A—C4A0.8 (9)C18A—C19A—C20A—C21A179.9 (6)
C2A—C3A—C4A—C5A0.7 (9)C19A—C20A—C21A—O4A4.3 (9)
C1A—N1A—C5A—C4A1.5 (8)C19A—C20A—C21A—O5A175.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.911.852.744 (5)166
N2A—H2···O2A0.912.012.853 (5)153
O5—H3···O2Ai0.821.732.538 (5)171
O5A—H4···O2ii0.821.722.536 (5)171
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23N2O+·C4H5O4
Mr388.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.901 (3), 21.075 (4), 22.721 (5)
β (°) 97.22 (2)
V3)4228.4 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10376, 9763, 2872
Rint0.06
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.243, 1.04
No. of reflections9763
No. of parameters507
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.31

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.911.852.744 (5)166
N2A—H2···O2A0.912.012.853 (5)153
O5—H3···O2Ai0.821.732.538 (5)171
O5A—H4···O2ii0.821.722.536 (5)171
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds