Download citation
Download citation
link to html
The Ni atom in the title compound, [Ni(C7H6NO2S)2(H2O)2]n, occupies a special position on an inversion centre and has an octa­hedral coordination formed by two water mol­ecules and two pyridyl N and two carboxyl­ate O atoms belonging to four different anionic ligands. Each ligand has a bidentate bridging function, so that each Ni atom is connected to each of its two Ni neighbours by two ligand bridges, thus producing infinite chains running along the a axis in the crystal structure. O—H...O bonds link the chains into a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023550/ya2052sup1.cif
Contains datablocks global, a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023550/ya2052asup2.hkl
Contains datablock a

CCDC reference: 651360

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.084
  • wR factor = 0.191
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT731_ALERT_1_B Bond Calc 0.85(9), Rep 0.85(2) ...... 4.50 su-Ra O3 -H6 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.85(9), Rep 0.85(2) ...... 4.50 su-Ra O3 -H6 1.555 1.555
Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.50 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 12 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 O3 -NI1 -O3 -O2 7.00 0.00 3.555 1.555 1.555 3.655 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 O3 -NI1 -O3 -O2 5.00 0.00 3.555 1.555 1.555 2.655 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 N1 -NI1 -N1 -C5 9.00 0.00 3.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 20 N1 -NI1 -N1 -C1 9.00 0.00 3.555 1.555 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.86(6), Rep 0.85(2) ...... 3.00 su-Ra O3 -H3 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.86(6), Rep 0.85(2) ...... 3.00 su-Ra O3 -H3 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.97(9), Rep 1.97(4) ...... 2.25 su-Ra H6 -O2 1.555 2.655 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.18 Ratio PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 13.00 Deg. O2 -O3 -H3 3.655 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 12.00 Deg. O2 -O3 -H6 2.655 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Three compounds obtained by the reaction of pyridin-4-ylthioacetic acid with nickel(II) salts have been recently crystallographically characterized, namely one zwitterionic complex [Ni(C7H6NO2S)2(H2O)4] (Zhang et al., 2004) and two coordination polymers, [Ni(C7H6NO2S)2(H2O)]n (Huang et al., 2004a) and [Ni2(C7H6NO2S)4(H2O)2]n (Huang et al., 2004b). Herein we report the structure of a new Ni(II) complex (I) with pyridin-4-ylthioacetato ligand.

In the crystal structure of the title compound, the Ni1 atom occupies a special position in the inversion centre and has an octahedral coordination formed by two water molecules, as well as two pyridyl N and two carboxylate O atoms belonging to four different anionic ligands. Each ligand has a bidentate bridging function, so that each Ni atom is connected to each of its two Ni neighbours by two ligand bridges, thus producing infinite chains running along the a-axis in the crystal structure (Fig. 1). The O—H···O bonds link the chains into a three-dimensional framework (Table 2, Fig. 2).

Related literature top

For related literature, see: Huang et al. (2004a,b); Zhang et al. (2004).

Experimental top

Nickel(II) acetate (50 mg, 0.2 mmol), pyridin-4-ylthioacetic acid (39 mg, 0.2 mmol) and NaOH (8 mg, 0.2 mmol) were dissolved in 10 ml of water. The solution was placed in a Teflon-lined stainless-steel bomb (23 ml) and heated at 423 K for 48 h. After cooling to room temperature, green crystals of (I) precipitated from the solution in about 60% yield.

Refinement top

The water H atoms were located and refined, subject to an O—H = 0.85±0.02 Å restraint. The aromatic and aliphatic H atoms were placed at calculated positions (C—H 0.93 Å and 0.97 Å respectively) and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

Three compounds obtained by the reaction of pyridin-4-ylthioacetic acid with nickel(II) salts have been recently crystallographically characterized, namely one zwitterionic complex [Ni(C7H6NO2S)2(H2O)4] (Zhang et al., 2004) and two coordination polymers, [Ni(C7H6NO2S)2(H2O)]n (Huang et al., 2004a) and [Ni2(C7H6NO2S)4(H2O)2]n (Huang et al., 2004b). Herein we report the structure of a new Ni(II) complex (I) with pyridin-4-ylthioacetato ligand.

In the crystal structure of the title compound, the Ni1 atom occupies a special position in the inversion centre and has an octahedral coordination formed by two water molecules, as well as two pyridyl N and two carboxylate O atoms belonging to four different anionic ligands. Each ligand has a bidentate bridging function, so that each Ni atom is connected to each of its two Ni neighbours by two ligand bridges, thus producing infinite chains running along the a-axis in the crystal structure (Fig. 1). The O—H···O bonds link the chains into a three-dimensional framework (Table 2, Fig. 2).

For related literature, see: Huang et al. (2004a,b); Zhang et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL (Sheldrick, 1997a); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Infinite chains in the crystal structure of (I) with atom-labelling scheme, showing the coordination sphere of metal and coordination mode of the ligand. Displacement ellipsoids are drawn at the 30% probability level and H atoms are depicted as small spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines [Symmetry codes: (i): x - 1, y, z; (ii): 1 - x, -y, -z; (iii): -x, -y, -z].
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the a-axis. Hydrogen bonds are shown as dashed lines.
catena-Poly[[diaquanickel(II)]-bis[µ-(4-pyridylsulfanyl)acetato- κ<sup>2</sup>N:O;κ<sup>2</sup>O:N]] top
Crystal data top
[Ni(C7H6NO2S)2(H2O)2]F(000) = 444
Mr = 431.12Dx = 1.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2522 reflections
a = 8.9232 (9) Åθ = 2.3–25.0°
b = 10.6901 (10) ŵ = 1.42 mm1
c = 8.8887 (9) ÅT = 298 K
β = 90.378 (3)°Prism, green
V = 847.87 (14) Å30.32 × 0.24 × 0.16 mm
Z = 2
Data collection top
BRUKER SMART CCD Apex II
diffractometer
1489 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.40 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 107
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.658, Tmax = 0.804l = 1010
2425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + 14.8565P]
where P = (Fo2 + 2Fc2)/3
1489 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.96 e Å3
2 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Ni(C7H6NO2S)2(H2O)2]V = 847.87 (14) Å3
Mr = 431.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9232 (9) ŵ = 1.42 mm1
b = 10.6901 (10) ÅT = 298 K
c = 8.8887 (9) Å0.32 × 0.24 × 0.16 mm
β = 90.378 (3)°
Data collection top
BRUKER SMART CCD Apex II
diffractometer
1489 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1198 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.804Rint = 0.050
2425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0842 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + 14.8565P]
where P = (Fo2 + 2Fc2)/3
1489 reflectionsΔρmax = 0.96 e Å3
123 parametersΔρmin = 0.91 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.0233 (4)
S10.5686 (2)0.1649 (2)0.4472 (2)0.0294 (6)
O10.8661 (6)0.0028 (6)0.1907 (7)0.0311 (14)
O20.8051 (7)0.2052 (6)0.2088 (7)0.0315 (15)
O30.0489 (7)0.1845 (6)0.0462 (7)0.0287 (14)
N10.1893 (8)0.0633 (7)0.1246 (8)0.0298 (18)
C10.3188 (9)0.0012 (9)0.1215 (9)0.0271 (19)
H10.32630.06830.05550.033*
C20.4433 (10)0.0276 (9)0.2126 (11)0.033 (2)
H20.53170.01790.20490.040*
C30.4312 (9)0.1255 (8)0.3141 (10)0.0246 (19)
C40.3014 (10)0.1952 (9)0.3123 (10)0.031 (2)
H40.29240.26470.37450.037*
C50.1847 (10)0.1616 (9)0.2178 (10)0.031 (2)
H50.09800.21000.21890.037*
C60.7218 (10)0.0638 (9)0.4016 (10)0.030 (2)
H6A0.68420.02120.39520.036*
H6B0.79390.06650.48380.036*
C70.8041 (9)0.0940 (8)0.2550 (9)0.0243 (19)
H30.110 (7)0.201 (8)0.025 (6)0.02 (2)*
H60.100 (11)0.202 (11)0.124 (8)0.07 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0199 (8)0.0251 (8)0.0249 (8)0.0015 (7)0.0033 (6)0.0003 (7)
S10.0232 (11)0.0395 (13)0.0255 (11)0.0049 (10)0.0031 (9)0.0067 (10)
O10.029 (3)0.032 (3)0.032 (3)0.000 (3)0.000 (3)0.001 (3)
O20.037 (4)0.030 (4)0.028 (3)0.001 (3)0.003 (3)0.003 (3)
O30.031 (4)0.031 (4)0.025 (3)0.004 (3)0.003 (3)0.009 (3)
N10.021 (4)0.033 (4)0.035 (4)0.002 (3)0.000 (3)0.000 (3)
C10.021 (4)0.031 (4)0.029 (5)0.004 (4)0.005 (3)0.004 (4)
C20.022 (4)0.035 (6)0.043 (5)0.000 (4)0.001 (4)0.003 (4)
C30.017 (4)0.026 (5)0.030 (5)0.006 (3)0.002 (3)0.007 (4)
C40.033 (5)0.027 (5)0.032 (5)0.004 (4)0.005 (4)0.007 (4)
C50.020 (4)0.034 (5)0.037 (5)0.005 (4)0.001 (4)0.015 (4)
C60.023 (5)0.034 (5)0.031 (5)0.004 (4)0.000 (4)0.002 (4)
C70.015 (4)0.033 (5)0.024 (4)0.002 (4)0.009 (3)0.006 (4)
Geometric parameters (Å, º) top
Ni1—O3i2.060 (6)O3—H60.85 (2)
Ni1—O1ii2.081 (6)N1—C51.339 (11)
Ni1—O32.060 (6)N1—C11.346 (11)
Ni1—O1iii2.081 (6)C1—C21.404 (12)
Ni1—N1i2.125 (7)C1—H10.9300
Ni1—N12.125 (7)C2—C31.386 (12)
S1—C31.749 (8)C2—H20.9300
S1—C61.792 (9)C3—C41.378 (12)
O1—C71.260 (10)C4—C51.382 (12)
O1—Ni1iv2.081 (6)C4—H40.9300
O2—C71.258 (11)C5—H50.9300
O3—O2ii2.631 (9)C6—C71.535 (12)
O3—O2v2.792 (8)C6—H6A0.9700
O3—H30.85 (2)C6—H6B0.9700
O3—Ni1—O3i180.0 (3)C5—N1—C1116.4 (7)
O3—Ni1—O1ii91.5 (3)C5—N1—Ni1123.0 (6)
O3i—Ni1—O1ii88.5 (3)C1—N1—Ni1120.4 (6)
O3—Ni1—O1iii88.5 (3)N1—C1—C2123.5 (8)
O3i—Ni1—O1iii91.5 (3)N1—C1—H1118.2
O1ii—Ni1—O1iii180.0 (3)C2—C1—H1118.2
O3—Ni1—N1i88.0 (3)C3—C2—C1118.4 (8)
O3i—Ni1—N1i92.0 (3)C3—C2—H2120.8
O1ii—Ni1—N1i91.7 (3)C1—C2—H2120.8
O1iii—Ni1—N1i88.3 (3)C4—C3—C2118.0 (8)
O3—Ni1—N192.0 (3)C4—C3—S1117.6 (7)
O3i—Ni1—N188.0 (3)C2—C3—S1124.4 (7)
O1ii—Ni1—N188.3 (3)C3—C4—C5119.8 (8)
O1iii—Ni1—N191.7 (3)C3—C4—H4120.1
N1i—Ni1—N1180.0 (6)C5—C4—H4120.1
C3—S1—C6103.5 (4)N1—C5—C4123.6 (8)
C7—O1—Ni1iv129.6 (6)N1—C5—H5118.2
Ni1—O3—O2ii90.8 (3)C4—C5—H5118.2
Ni1—O3—O2v131.1 (3)C7—C6—S1115.8 (7)
O2ii—O3—O2v113.9 (3)C7—C6—H6A108.3
Ni1—O3—H3101 (6)S1—C6—H6A108.3
O2ii—O3—H313 (6)C7—C6—H6B108.3
O2v—O3—H3101 (6)S1—C6—H6B108.3
Ni1—O3—H6119 (9)H6A—C6—H6B107.4
O2ii—O3—H6115 (8)O2—C7—O1125.4 (8)
O2v—O3—H612 (8)O2—C7—C6118.7 (8)
H3—O3—H6102 (10)O1—C7—C6115.9 (8)
O3i—Ni1—O3—O2ii72 (100)N1i—Ni1—N1—C194 (100)
O1ii—Ni1—O3—O2ii6.2 (3)C5—N1—C1—C22.0 (13)
O1iii—Ni1—O3—O2ii173.8 (3)Ni1—N1—C1—C2173.2 (7)
N1i—Ni1—O3—O2ii85.5 (3)N1—C1—C2—C31.8 (14)
N1—Ni1—O3—O2ii94.5 (3)C1—C2—C3—C44.8 (13)
O3i—Ni1—O3—O2v52 (100)C1—C2—C3—S1174.0 (7)
O1ii—Ni1—O3—O2v117.2 (4)C6—S1—C3—C4175.0 (7)
O1iii—Ni1—O3—O2v62.8 (4)C6—S1—C3—C26.2 (9)
N1i—Ni1—O3—O2v151.2 (4)C2—C3—C4—C54.1 (13)
N1—Ni1—O3—O2v28.8 (4)S1—C3—C4—C5174.8 (7)
O3—Ni1—N1—C5137.4 (7)C1—N1—C5—C42.7 (14)
O3i—Ni1—N1—C542.6 (7)Ni1—N1—C5—C4172.3 (7)
O1ii—Ni1—N1—C5131.1 (7)C3—C4—C5—N10.3 (15)
O1iii—Ni1—N1—C548.9 (7)C3—S1—C6—C770.8 (7)
N1i—Ni1—N1—C591 (100)Ni1iv—O1—C7—O24.3 (12)
O3—Ni1—N1—C137.5 (7)Ni1iv—O1—C7—C6175.6 (5)
O3i—Ni1—N1—C1142.5 (7)S1—C6—C7—O227.7 (10)
O1ii—Ni1—N1—C154.0 (7)S1—C6—C7—O1152.4 (6)
O1iii—Ni1—N1—C1126.0 (7)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.85 (2)1.81 (3)2.631 (9)161 (8)
O3—H6···O2v0.85 (2)1.97 (4)2.792 (8)163 (12)
Symmetry codes: (ii) x+1, y, z; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H6NO2S)2(H2O)2]
Mr431.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.9232 (9), 10.6901 (10), 8.8887 (9)
β (°) 90.378 (3)
V3)847.87 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.32 × 0.24 × 0.16
Data collection
DiffractometerBRUKER SMART CCD Apex II
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.658, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
2425, 1489, 1198
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.191, 1.14
No. of reflections1489
No. of parameters123
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + 14.8565P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.96, 0.91

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997b), SHELXTL (Sheldrick, 1997a), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O1i2.081 (6)Ni1—N12.125 (7)
Ni1—O32.060 (6)
O3—Ni1—O1i91.5 (3)O1i—Ni1—N1ii91.7 (3)
O3—Ni1—N1ii88.0 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.85 (2)1.81 (3)2.631 (9)161 (8)
O3—H6···O2iii0.85 (2)1.97 (4)2.792 (8)163 (12)
Symmetry codes: (i) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds