Download citation
Download citation
link to html
Two metal–organic frameworks [PCN-426(Ni) and PCN-427(Cu)] have been designed and synthesized to investigate the structure predictability using a SBB (supermolecular building blocks) approach. Tetratopic ligands featuring 120° angular carboxylate moieties were coordinated with a [Ni33-O)] cluster and a [Cu2O2] unit, respectively. As topologically predicted, 4-connected networks with square coordination adopted the nbo net for the Ni-MOF and ssb net for the Cu-MOF. PCN-426(Ni) was augmented with 12-connected octahedral SBBs, while PCN-427(Cu) was constructed with tetragonal open channels. After a CO2 supercritical drying procedure, the PCN-426(Ni) possessed a Brunauer–Emmett–Teller (BET) surface area as high as 3935 m2 g−1 and impressively high N2 uptake of 1500 cm3 g−1. This work demonstrates the generalization of the SBB strategy, finding an alternative to inconvenient synthetic processes to achieve the desired structural features.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252061501584X/xw5001sup1.cif
Contains datablocks Cu3344_sq, Ni3344_sq

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061501584X/xw5001Cu3344_sqsup2.hkl
Contains datablock aaa_sq

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061501584X/xw5001Ni3344_sqsup3.hkl
Contains datablock aaa_sq

CCDC references: 1414844; 1414843

Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT+ ver. (Bruker, 2001); data reduction: SAINT+ ver. (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL12 (Sheldrick, 2012); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Cu3344_sq) top
Crystal data top
(Cu2O2)(C32H22O8)Dx = 0.726 Mg m3
Mr = 693.58Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/mnmCell parameters from 9993 reflections
a = 18.7570 (5) Åθ = 2.2–21.4°
c = 36.092 (2) ŵ = 0.70 mm1
V = 12698.2 (9) Å3T = 110 K
Z = 8Block, blue
F(000) = 28160.1 × 0.1 × 0.1 mm
Data collection top
Bruker SMART APEX II CCD area detector
diffractometer
6634 independent reflections
Radiation source: fine-focus sealed tube4986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
phi and ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
SADABS (Sheldrick, 2008)
h = 2323
Tmin = 0.934, Tmax = 0.934k = 2323
131327 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.030P)2 + 40.P]
where P = (Fo2 + 2Fc2)/3
6634 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.20137 (3)0.79863 (3)0.226367 (18)0.0439 (2)
Cu20.26578 (3)0.73422 (3)0.282786 (17)0.04118 (19)
O10.29616 (16)0.80305 (18)0.20531 (8)0.0617 (8)
O1S0.14899 (17)0.85101 (17)0.18114 (11)0.0692 (13)
O20.35305 (14)0.75031 (16)0.25339 (7)0.0516 (7)
O2S0.31721 (17)0.68279 (17)0.32821 (11)0.0644 (12)
O30.61530 (15)0.71982 (17)0.24486 (8)0.0574 (8)
O40.66978 (14)0.77253 (16)0.19638 (7)0.0514 (7)
C10.48273 (10)0.76427 (11)0.21648 (4)0.0476 (10)
H1A0.48490.75800.24260.057*
C20.41742 (9)0.77588 (10)0.19931 (5)0.0513 (11)
C30.41419 (10)0.78502 (14)0.16113 (5)0.0542 (11)
H3A0.36960.79300.14940.065*
C40.47625 (11)0.78255 (17)0.14012 (4)0.0568 (12)
C50.54155 (10)0.77094 (15)0.15730 (5)0.0618 (13)
H5A0.58400.76930.14290.074*
C60.54479 (9)0.76180 (12)0.19548 (5)0.0474 (10)
C70.35035 (10)0.77848 (17)0.22116 (7)0.0492 (10)
C80.61517 (10)0.75215 (19)0.21357 (7)0.0585 (12)
C110.4721 (2)0.78201 (17)0.09829 (6)0.0561 (12)
C120.4646 (2)0.84633 (15)0.07957 (7)0.1635 (17)
C130.4621 (2)0.84724 (17)0.04108 (7)0.1635 (17)
H13A0.45690.89120.02830.196*
C140.4671 (2)0.7838 (2)0.02132 (6)0.0689 (15)
C150.4747 (3)0.71953 (17)0.04004 (9)0.1635 (17)
H15A0.47820.67620.02650.196*
C160.4772 (3)0.71861 (15)0.07853 (9)0.1635 (17)
C170.4454 (4)0.91830 (18)0.10045 (11)0.1635 (17)
H17A0.44890.91090.12730.245*
H17B0.39670.93260.09410.245*
H17C0.47870.95580.09290.245*
C180.4989 (6)0.6508 (4)0.09884 (16)0.1635 (17)
H18A0.50100.61110.08120.245*
H18B0.46380.64010.11820.245*
H18C0.54590.65760.11020.245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0483 (3)0.0483 (3)0.0350 (3)0.0115 (3)0.0039 (2)0.0039 (2)
Cu20.0445 (3)0.0445 (3)0.0344 (3)0.0084 (3)0.0034 (2)0.0034 (2)
O10.0488 (18)0.085 (2)0.0509 (16)0.0025 (16)0.0021 (15)0.0138 (17)
O1S0.080 (2)0.080 (2)0.048 (2)0.021 (3)0.0123 (16)0.0123 (16)
O20.0432 (17)0.071 (2)0.0402 (15)0.0025 (14)0.0026 (13)0.0009 (14)
O2S0.0709 (19)0.0709 (19)0.051 (2)0.003 (2)0.0102 (16)0.0102 (16)
O30.0498 (18)0.073 (2)0.0494 (16)0.0100 (15)0.0009 (14)0.0128 (15)
O40.0402 (16)0.070 (2)0.0443 (15)0.0117 (14)0.0003 (13)0.0021 (14)
C10.049 (2)0.046 (2)0.048 (2)0.0068 (19)0.0046 (19)0.002 (2)
C20.053 (3)0.060 (3)0.041 (2)0.015 (2)0.0052 (19)0.002 (2)
C30.047 (3)0.073 (3)0.043 (2)0.006 (2)0.0017 (19)0.002 (2)
C40.041 (2)0.079 (4)0.050 (2)0.012 (2)0.002 (2)0.010 (2)
C50.039 (2)0.103 (4)0.044 (2)0.006 (2)0.0064 (19)0.007 (2)
C60.036 (2)0.060 (3)0.046 (2)0.0097 (19)0.0013 (18)0.003 (2)
C70.055 (3)0.046 (2)0.047 (2)0.004 (2)0.005 (2)0.0067 (19)
C80.044 (2)0.086 (4)0.046 (2)0.012 (2)0.008 (2)0.006 (2)
C110.052 (3)0.067 (3)0.050 (2)0.015 (2)0.001 (2)0.003 (2)
C120.342 (6)0.094 (2)0.0537 (14)0.016 (3)0.011 (2)0.0005 (15)
C130.342 (6)0.094 (2)0.0537 (14)0.016 (3)0.011 (2)0.0005 (15)
C140.053 (3)0.109 (4)0.045 (2)0.010 (3)0.002 (2)0.001 (3)
C150.342 (6)0.094 (2)0.0537 (14)0.016 (3)0.011 (2)0.0005 (15)
C160.342 (6)0.094 (2)0.0537 (14)0.016 (3)0.011 (2)0.0005 (15)
C170.342 (6)0.094 (2)0.0537 (14)0.016 (3)0.011 (2)0.0005 (15)
C180.342 (6)0.094 (2)0.0537 (14)0.016 (3)0.011 (2)0.0005 (15)
Geometric parameters (Å, º) top
Cu1—O1i1.935 (3)C3—H3A0.9500
Cu1—O11.935 (3)C4—C51.3900
Cu1—O3ii1.951 (3)C4—C111.512 (3)
Cu1—O3iii1.951 (3)C5—C61.3900
Cu1—O1S2.144 (4)C5—H5A0.9500
Cu1—Cu22.6582 (9)C6—C81.4837
Cu2—O4ii1.956 (3)C11—C121.3900
Cu2—O4iii1.956 (3)C11—C161.3900
Cu2—O2i1.974 (3)C12—C131.3900
Cu2—O21.974 (3)C12—C171.5874
Cu2—O2S2.133 (4)C13—C141.3900
O1—C71.254 (4)C13—H13A0.9500
O2—C71.278 (4)C14—C151.3900
O3—C81.282 (4)C14—C14v1.539 (4)
O3—Cu1iv1.951 (3)C15—C161.3900
O4—C81.257 (3)C15—H15A0.9500
O4—Cu2iv1.956 (3)C16—C181.523 (7)
C1—C21.3900C17—H17A0.9800
C1—C61.3900C17—H17B0.9800
C1—H1A0.9500C17—H17C0.9800
C2—C31.3900C18—H18A0.9800
C2—C71.4858C18—H18B0.9800
C3—C41.3900C18—H18C0.9800
O1i—Cu1—O185.7 (2)C5—C4—C11119.32 (19)
O1i—Cu1—O3ii167.70 (13)C3—C4—C11120.12 (19)
O1—Cu1—O3ii90.61 (14)C4—C5—C6120.0
O1i—Cu1—O3iii90.61 (14)C4—C5—H5A120.0
O1—Cu1—O3iii167.70 (13)C6—C5—H5A120.0
O3ii—Cu1—O3iii90.58 (19)C5—C6—C1120.0
O1i—Cu1—O1S95.87 (13)C5—C6—C8119.3
O1—Cu1—O1S95.88 (13)C1—C6—C8120.6
O3ii—Cu1—O1S96.16 (12)O1—C7—O2126.8 (2)
O3iii—Cu1—O1S96.16 (12)O1—C7—C2117.13 (18)
O1i—Cu1—Cu284.42 (9)O2—C7—C2115.85 (17)
O1—Cu1—Cu284.42 (9)O4—C8—O3125.3 (2)
O3ii—Cu1—Cu283.55 (8)O4—C8—C6118.08 (18)
O3iii—Cu1—Cu283.55 (8)O3—C8—C6116.55 (18)
O1S—Cu1—Cu2179.59 (14)C12—C11—C16120.0
O4ii—Cu2—O4iii88.35 (18)C12—C11—C4119.0 (2)
O4ii—Cu2—O2i168.59 (12)C16—C11—C4121.0 (2)
O4iii—Cu2—O2i90.70 (12)C11—C12—C13120.0
O4ii—Cu2—O290.70 (12)C11—C12—C17122.0
O4iii—Cu2—O2168.59 (12)C13—C12—C17117.2
O2i—Cu2—O287.97 (17)C14—C13—C12120.0
O4ii—Cu2—O2S95.25 (12)C14—C13—H13A120.0
O4iii—Cu2—O2S95.25 (12)C12—C13—H13A120.0
O2i—Cu2—O2S96.16 (12)C13—C14—C15120.0
O2—Cu2—O2S96.16 (12)C13—C14—C14v120.9
O4ii—Cu2—Cu184.58 (8)C15—C14—C14v119.1
O4iii—Cu2—Cu184.58 (8)C16—C15—C14120.0
O2i—Cu2—Cu184.01 (8)C16—C15—H15A120.0
O2—Cu2—Cu184.01 (8)C14—C15—H15A120.0
O2S—Cu2—Cu1179.77 (15)C15—C16—C11120.0
C7—O1—Cu1123.3 (2)C15—C16—C18120.0 (3)
C7—O2—Cu2121.3 (2)C11—C16—C18119.0 (3)
C8—O3—Cu1iv123.7 (2)C12—C17—H17A109.5
C8—O4—Cu2iv122.7 (2)C12—C17—H17B109.5
C2—C1—C6120.0H17A—C17—H17B109.5
C2—C1—H1A120.0C12—C17—H17C109.5
C6—C1—H1A120.0H17A—C17—H17C109.5
C1—C2—C3120.0H17B—C17—H17C109.5
C1—C2—C7121.0C16—C18—H18A109.5
C3—C2—C7119.0C16—C18—H18B109.5
C2—C3—C4120.0H18A—C18—H18B109.5
C2—C3—H3A120.0C16—C18—H18C109.5
C4—C3—H3A120.0H18A—C18—H18C109.5
C5—C4—C3120.0H18B—C18—H18C109.5
O1i—Cu1—Cu2—O4ii178.66 (14)C11—C4—C5—C6171.4 (3)
O1—Cu1—Cu2—O4ii92.48 (13)C4—C5—C6—C10.0
O3ii—Cu1—Cu2—O4ii1.23 (13)C4—C5—C6—C8177.7
O3iii—Cu1—Cu2—O4ii90.09 (13)C2—C1—C6—C50.0
O1S—Cu1—Cu2—O4ii44.43 (10)C2—C1—C6—C8177.7
O1i—Cu1—Cu2—O4iii92.48 (13)Cu1—O1—C7—O23.3 (5)
O1—Cu1—Cu2—O4iii178.67 (14)Cu1—O1—C7—C2171.00 (15)
O3ii—Cu1—Cu2—O4iii90.09 (13)Cu2—O2—C7—O14.9 (5)
O3iii—Cu1—Cu2—O4iii1.23 (13)Cu2—O2—C7—C2169.49 (13)
O1S—Cu1—Cu2—O4iii44.42 (10)C1—C2—C7—O1166.0 (3)
O1i—Cu1—Cu2—O2i1.20 (13)C3—C2—C7—O114.2 (3)
O1—Cu1—Cu2—O2i87.39 (14)C1—C2—C7—O219.0 (3)
O3ii—Cu1—Cu2—O2i178.63 (13)C3—C2—C7—O2160.8 (3)
O3iii—Cu1—Cu2—O2i90.05 (13)Cu2iv—O4—C8—O35.9 (5)
O1S—Cu1—Cu2—O2i135.71 (10)Cu2iv—O4—C8—C6178.23 (13)
O1i—Cu1—Cu2—O287.38 (14)Cu1iv—O3—C8—O44.2 (5)
O1—Cu1—Cu2—O21.20 (13)Cu1iv—O3—C8—C6179.86 (15)
O3ii—Cu1—Cu2—O290.05 (13)C5—C6—C8—O420.2 (3)
O3iii—Cu1—Cu2—O2178.63 (13)C1—C6—C8—O4157.5 (3)
O1S—Cu1—Cu2—O2135.71 (10)C5—C6—C8—O3156.1 (3)
O1i—Cu1—Cu2—O2S14E1 (4)C1—C6—C8—O326.2 (3)
O1—Cu1—Cu2—O2S14E1 (4)C5—C4—C11—C12105.6 (3)
O3ii—Cu1—Cu2—O2S46 (13)C3—C4—C11—C1283.0 (3)
O3iii—Cu1—Cu2—O2S46 (12)C5—C4—C11—C1673.1 (3)
O1S—Cu1—Cu2—O2S0 (12)C3—C4—C11—C1698.3 (2)
O1i—Cu1—O1—C784.3 (3)C16—C11—C12—C130.0
O3ii—Cu1—O1—C783.9 (3)C4—C11—C12—C13178.7 (3)
O3iii—Cu1—O1—C711.6 (9)C16—C11—C12—C17169.4
O1S—Cu1—O1—C7179.8 (3)C4—C11—C12—C1711.9 (3)
Cu2—Cu1—O1—C70.5 (3)C11—C12—C13—C140.0
O4ii—Cu2—O2—C787.7 (3)C17—C12—C13—C14169.9
O4iii—Cu2—O2—C72.5 (8)C12—C13—C14—C150.0
O2i—Cu2—O2—C781.0 (3)C12—C13—C14—C14v177.9
O2S—Cu2—O2—C7177.0 (3)C13—C14—C15—C160.0
Cu1—Cu2—O2—C73.2 (3)C14v—C14—C15—C16177.9
C6—C1—C2—C30.0C14—C15—C16—C110.0
C6—C1—C2—C7179.8C14—C15—C16—C18168.8 (6)
C1—C2—C3—C40.0C12—C11—C16—C150.0
C7—C2—C3—C4179.8C4—C11—C16—C15178.7 (3)
C2—C3—C4—C50.0C12—C11—C16—C18168.9 (6)
C2—C3—C4—C11171.4 (3)C4—C11—C16—C189.8 (6)
C3—C4—C5—C60.0
Symmetry codes: (i) y+1, x+1, z; (ii) y1/2, x+3/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) y+3/2, x+1/2, z+1/2; (v) x, y, z.
(Ni3344_sq) top
Crystal data top
(Ni3O8)(C32H22O8)Ni0.17Mo Kα radiation, λ = 0.71073 Å
Mr = 848.41Cell parameters from 9951 reflections
Cubic, Fm3mθ = 2.2–20.3°
a = 40.9779 (8) ŵ = 0.54 mm1
V = 68810 (2) Å3T = 110 K
Z = 24Block, green
F(000) = 103360.10 × 0.10 × 0.10 mm
Dx = 0.491 Mg m3
Data collection top
Bruker SMART APEX II CCD area detector
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube1863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 2008)
h = 4848
Tmin = 0.948, Tmax = 0.948k = 4848
168914 measured reflectionsl = 4848
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.065P)2 + 570.P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
78 parametersΔρmax = 0.71 e Å3
17 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.13785 (3)0.50000.00000.0505 (4)
O30.18840 (16)0.50000.00000.074 (2)
O20.18638 (13)0.43533 (15)0.0103 (3)0.116 (6)0.50
O10.13550 (9)0.44979 (9)0.00000.0722 (11)
O50.08623 (18)0.50000.00000.078 (2)
C30.17144 (6)0.37011 (6)0.00000.103 (3)
H3A0.19380.37610.00000.123*
C20.14746 (6)0.39410 (6)0.00000.0759 (18)
C10.15693 (15)0.42959 (16)0.00000.082 (2)
C40.16267 (6)0.33733 (6)0.00000.099 (3)
C50.11468 (6)0.38532 (6)0.00000.067 (2)
H5A0.09830.40170.00000.080*
C60.18881 (9)0.31119 (9)0.00000.169 (2)
C90.23679 (9)0.26321 (9)0.00000.169 (2)
C70.20081 (9)0.29919 (9)0.029380 (12)0.169 (2)
C80.22480 (9)0.27520 (9)0.029379 (11)0.169 (2)
H8A0.23300.26700.04950.203*
C110.18689 (13)0.31311 (13)0.0618 (2)0.169 (2)
H11A0.17040.32970.05690.253*
H11B0.20460.32300.07440.253*0.50
H11C0.17700.29540.07440.253*0.50
Ni20.21488 (7)0.47337 (6)0.02663 (6)0.1616 (13)0.50
Ni3S0.00000.50000.00000.188 (4)
O110.2384 (4)0.4405 (2)0.0595 (2)0.258 (7)0.50
O120.2468 (2)0.4893 (4)0.0394 (3)0.258 (7)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0286 (7)0.0615 (6)0.0615 (6)0.0000.0000.000
O30.022 (4)0.100 (4)0.100 (4)0.0000.0000.000
O20.057 (3)0.085 (4)0.205 (19)0.007 (3)0.018 (5)0.013 (5)
O10.059 (3)0.057 (2)0.100 (3)0.004 (2)0.0000.000
O50.050 (5)0.092 (4)0.092 (4)0.0000.0000.000
C30.056 (4)0.071 (4)0.182 (8)0.016 (3)0.0000.000
C20.056 (4)0.067 (4)0.105 (5)0.014 (3)0.0000.000
C10.048 (4)0.070 (4)0.128 (6)0.004 (3)0.0000.000
C40.073 (4)0.073 (4)0.151 (11)0.028 (5)0.0000.000
C50.057 (3)0.057 (3)0.087 (6)0.020 (4)0.0000.000
C60.160 (3)0.160 (3)0.186 (6)0.102 (4)0.0000.000
C90.160 (3)0.160 (3)0.186 (6)0.102 (4)0.0000.000
C70.160 (3)0.160 (3)0.186 (6)0.102 (4)0.0000.000
C80.160 (3)0.160 (3)0.186 (6)0.102 (4)0.0000.000
C110.160 (3)0.160 (3)0.186 (6)0.102 (4)0.0000.000
Ni20.0916 (17)0.1966 (19)0.1966 (19)0.0159 (13)0.0159 (13)0.002 (2)
Ni3S0.188 (4)0.188 (4)0.188 (4)0.0000.0000.000
O110.127 (6)0.323 (10)0.323 (10)0.041 (7)0.041 (7)0.063 (14)
O120.127 (6)0.323 (10)0.323 (10)0.041 (7)0.041 (7)0.063 (14)
Geometric parameters (Å, º) top
Ni1—O12.060 (4)C5—H5A0.9500
Ni1—O1i2.060 (4)C6—C7v1.3901 (7)
Ni1—O1ii2.060 (4)C6—C71.3901 (7)
Ni1—O1iii2.060 (4)C9—C8v1.3901 (6)
Ni1—O32.071 (7)C9—C81.3901 (6)
Ni1—O52.115 (8)C9—C9vi1.531 (10)
O3—Ni21.887 (5)C7—C81.3903 (9)
O3—Ni2iii1.887 (5)C7—C111.553 (9)
O3—Ni2iv1.887 (5)C8—H8A0.9500
O3—Ni2ii1.887 (5)C11—H11A0.9800
O2—O2iv0.85 (3)C11—H11B0.9800
O2—C11.301 (9)C11—H11C0.9800
O2—Ni22.059 (8)Ni2—O121.554 (12)
O1—C11.207 (7)Ni2—O12vii1.554 (12)
C3—C41.3903 (6)Ni2—O2vii2.059 (8)
C3—C21.3900 (9)Ni2—O12viii2.081 (14)
C3—H3A0.9500Ni2—O12i2.081 (14)
C2—C51.3904 (7)Ni2—O112.133 (9)
C2—C11.505 (7)Ni2—Ni2iii2.183 (5)
C1—O2iv1.301 (9)Ni2—Ni2iv2.183 (5)
C4—C3v1.3903 (6)O12—O12viii0.88 (4)
C4—C61.515 (6)O12—O12vii1.66 (3)
C5—C2v1.3904 (7)O12—Ni2iii2.081 (14)
O1—Ni1—O1i89.875 (11)C7—C8—H8A120.0
O1—Ni1—O1ii174.6 (2)C7—C11—H11A109.5
O1i—Ni1—O1ii89.875 (11)C7—C11—H11B109.5
O1—Ni1—O1iii89.875 (11)H11A—C11—H11B109.5
O1i—Ni1—O1iii174.6 (2)C7—C11—H11C109.5
O1ii—Ni1—O1iii89.875 (11)H11A—C11—H11C109.5
O1—Ni1—O392.68 (11)H11B—C11—H11C109.5
O1i—Ni1—O392.68 (11)O12—Ni2—O12vii64.8 (10)
O1ii—Ni1—O392.68 (11)O12—Ni2—O3115.9 (6)
O1iii—Ni1—O392.68 (11)O12vii—Ni2—O3115.9 (6)
O1—Ni1—O587.32 (11)O12—Ni2—O2154.9 (6)
O1i—Ni1—O587.32 (11)O12vii—Ni2—O294.9 (5)
O1ii—Ni1—O587.32 (11)O3—Ni2—O285.7 (3)
O1iii—Ni1—O587.32 (11)O12—Ni2—O2vii95.0 (5)
O3—Ni1—O5180.0O12vii—Ni2—O2vii154.9 (6)
Ni2—O3—Ni2iii70.69 (19)O3—Ni2—O2vii85.7 (3)
Ni2—O3—Ni2iv70.69 (19)O2—Ni2—O2vii99.7 (6)
Ni2iii—O3—Ni2iv109.8 (4)O12—Ni2—O12viii22.5 (9)
Ni2—O3—Ni2ii109.8 (4)O12vii—Ni2—O12viii79.8 (7)
Ni2iii—O3—Ni2ii70.69 (19)O3—Ni2—O12viii94.7 (4)
Ni2iv—O3—Ni2ii70.69 (19)O2—Ni2—O12viii174.4 (5)
Ni2—O3—Ni1125.11 (19)O2vii—Ni2—O12viii85.9 (5)
Ni2iii—O3—Ni1125.10 (19)O12—Ni2—O12i79.8 (7)
Ni2iv—O3—Ni1125.10 (19)O12vii—Ni2—O12i22.5 (9)
Ni2ii—O3—Ni1125.10 (19)O3—Ni2—O12i94.7 (4)
O2iv—O2—C171.0 (6)O2—Ni2—O12i85.9 (5)
O2iv—O2—Ni2108.9 (4)O2vii—Ni2—O12i174.4 (5)
C1—O2—Ni2140.2 (5)O12viii—Ni2—O12i88.5 (7)
C1—O1—Ni1130.6 (4)O12—Ni2—O1170.8 (7)
C4—C3—C2120.01 (5)O12vii—Ni2—O1170.8 (7)
C4—C3—H3A120.0O3—Ni2—O11171.8 (5)
C2—C3—H3A120.0O2—Ni2—O1189.1 (4)
C5—C2—C3120.01 (6)O2vii—Ni2—O1189.1 (4)
C5—C2—C1119.9 (3)O12viii—Ni2—O1191.2 (5)
C3—C2—C1120.1 (3)O12i—Ni2—O1191.2 (5)
O1—C1—O2iv123.5 (6)O12—Ni2—Ni2iii65.2 (6)
O1—C1—O2123.5 (6)O12vii—Ni2—Ni2iii109.7 (5)
O2iv—C1—O238.0 (12)O3—Ni2—Ni2iii54.66 (9)
O1—C1—C2118.4 (5)O2—Ni2—Ni2iii139.2 (2)
O2iv—C1—C2114.4 (5)O2vii—Ni2—Ni2iii71.1 (4)
O2—C1—C2114.5 (5)O12viii—Ni2—Ni2iii42.7 (4)
C3v—C4—C3119.98 (9)O12i—Ni2—Ni2iii104.6 (4)
C3v—C4—C6120.01 (4)O11—Ni2—Ni2iii129.1 (2)
C3—C4—C6120.01 (4)O12—Ni2—Ni2iv109.7 (5)
C2v—C5—C2119.98 (10)O12vii—Ni2—Ni2iv65.2 (6)
C2v—C5—H5A120.0O3—Ni2—Ni2iv54.66 (9)
C2—C5—H5A120.0O2—Ni2—Ni2iv71.1 (4)
C7v—C6—C7120.01 (10)O2vii—Ni2—Ni2iv139.2 (2)
C7v—C6—C4120.00 (5)O12viii—Ni2—Ni2iv104.6 (4)
C7—C6—C4120.00 (5)O12i—Ni2—Ni2iv42.7 (4)
C8v—C9—C8120.00 (9)O11—Ni2—Ni2iv129.1 (2)
C8v—C9—C9vi120.00 (4)Ni2iii—Ni2—Ni2iv90.0
C8—C9—C9vi120.00 (4)O12viii—O12—Ni2114.8 (6)
C6—C7—C8119.99 (6)O12viii—O12—O12vii135.012 (15)
C6—C7—C11118.7 (4)Ni2—O12—O12vii57.6 (5)
C8—C7—C11121.3 (4)O12viii—O12—Ni2iii42.7 (4)
C9—C8—C7120.00 (5)Ni2—O12—Ni2iii72.2 (4)
C9—C8—H8A120.0O12vii—O12—Ni2iii110.0 (4)
O1—Ni1—O3—Ni245.0Ni2ii—O3—Ni2—O2129.9 (3)
O1i—Ni1—O3—Ni2135.0Ni1—O3—Ni2—O250.1 (3)
O1ii—Ni1—O3—Ni2135.0Ni2iii—O3—Ni2—O2vii69.8 (3)
O1iii—Ni1—O3—Ni245.0Ni2iv—O3—Ni2—O2vii170.0 (3)
O5—Ni1—O3—Ni20.0Ni2ii—O3—Ni2—O2vii129.9 (3)
O1—Ni1—O3—Ni2iii135.0Ni1—O3—Ni2—O2vii50.1 (3)
O1i—Ni1—O3—Ni2iii135.0Ni2iii—O3—Ni2—O12viii15.6 (4)
O1ii—Ni1—O3—Ni2iii45.0Ni2iv—O3—Ni2—O12viii104.6 (4)
O1iii—Ni1—O3—Ni2iii45.0Ni2ii—O3—Ni2—O12viii44.5 (4)
O5—Ni1—O3—Ni2iii0.0Ni1—O3—Ni2—O12viii135.5 (4)
O1—Ni1—O3—Ni2iv45.0Ni2iii—O3—Ni2—O12i104.6 (4)
O1i—Ni1—O3—Ni2iv45.0Ni2iv—O3—Ni2—O12i15.6 (4)
O1ii—Ni1—O3—Ni2iv135.0Ni2ii—O3—Ni2—O12i44.5 (4)
O1iii—Ni1—O3—Ni2iv135.0Ni1—O3—Ni2—O12i135.5 (4)
O5—Ni1—O3—Ni2iv0.0Ni2iii—O3—Ni2—O11119.90 (12)
O1—Ni1—O3—Ni2ii135.0Ni2iv—O3—Ni2—O11119.90 (12)
O1i—Ni1—O3—Ni2ii45.0Ni2ii—O3—Ni2—O11180.00 (4)
O1ii—Ni1—O3—Ni2ii45.0Ni1—O3—Ni2—O110.0000 (10)
O1iii—Ni1—O3—Ni2ii135.0Ni2iv—O3—Ni2—Ni2iii120.2 (2)
O5—Ni1—O3—Ni2ii0.0Ni2ii—O3—Ni2—Ni2iii60.10 (12)
O1i—Ni1—O1—C192.68 (11)Ni1—O3—Ni2—Ni2iii119.90 (12)
O1ii—Ni1—O1—C1180.0Ni2iii—O3—Ni2—Ni2iv120.2 (2)
O1iii—Ni1—O1—C192.68 (11)Ni2ii—O3—Ni2—Ni2iv60.10 (12)
O3—Ni1—O1—C10.0Ni1—O3—Ni2—Ni2iv119.90 (12)
O5—Ni1—O1—C1180.0O2iv—O2—Ni2—O1296.2 (15)
C4—C3—C2—C50.0C1—O2—Ni2—O1218E1 (9)
C4—C3—C2—C1180.0O2iv—O2—Ni2—O12vii61.6 (6)
Ni1—O1—C1—O2iv23.0 (7)C1—O2—Ni2—O12vii144.3 (14)
Ni1—O1—C1—O223.0 (7)O2iv—O2—Ni2—O354.04 (15)
Ni1—O1—C1—C2180.0C1—O2—Ni2—O328.7 (13)
O2iv—O2—C1—O1103.2 (5)O2iv—O2—Ni2—O2vii138.9 (3)
Ni2—O2—C1—O16.2 (17)C1—O2—Ni2—O2vii56.2 (16)
Ni2—O2—C1—O2iv97.0 (13)O2iv—O2—Ni2—O12viii40 (5)
O2iv—O2—C1—C299.0 (4)C1—O2—Ni2—O12viii123 (5)
Ni2—O2—C1—C2164.0 (10)O2iv—O2—Ni2—O12i41.0 (4)
C5—C2—C1—O10.0C1—O2—Ni2—O12i123.7 (14)
C3—C2—C1—O1180.0O2iv—O2—Ni2—O11132.2 (4)
C5—C2—C1—O2iv159.0 (6)C1—O2—Ni2—O11145.0 (14)
C3—C2—C1—O2iv21.0 (6)O2iv—O2—Ni2—Ni2iii66.6 (4)
C5—C2—C1—O2159.0 (6)C1—O2—Ni2—Ni2iii16.1 (17)
C3—C2—C1—O221.0 (6)O2iv—O2—Ni2—Ni2iv0.004 (2)
C2—C3—C4—C3v0.0C1—O2—Ni2—Ni2iv82.7 (13)
C2—C3—C4—C6180.0O12vii—Ni2—O12—O12viii129.0 (3)
C3—C2—C5—C2v0.0O3—Ni2—O12—O12viii21.1 (5)
C1—C2—C5—C2v180.0O2—Ni2—O12—O12viii167.7 (13)
C3v—C4—C6—C7v90.0O2vii—Ni2—O12—O12viii66.5 (4)
C3—C4—C6—C7v90.0O12i—Ni2—O12—O12viii111.4 (4)
C3v—C4—C6—C790.0O11—Ni2—O12—O12viii153.8 (5)
C3—C4—C6—C790.0Ni2iii—Ni2—O12—O12viii0.003 (4)
C7v—C6—C7—C80.0Ni2iv—Ni2—O12—O12viii80.5 (3)
C4—C6—C7—C8180.0O3—Ni2—O12—O12vii107.9 (5)
C7v—C6—C7—C11180.0000 (10)O2—Ni2—O12—O12vii38.7 (12)
C4—C6—C7—C110.0O2vii—Ni2—O12—O12vii164.5 (6)
C8v—C9—C8—C70.0000 (10)O12viii—Ni2—O12—O12vii129.0 (3)
C9vi—C9—C8—C7180.0O12i—Ni2—O12—O12vii17.6 (6)
C6—C7—C8—C90.0000 (10)O11—Ni2—O12—O12vii77.2 (5)
C11—C7—C8—C9180.000 (2)Ni2iii—Ni2—O12—O12vii129.0 (3)
Ni2iii—O3—Ni2—O1223.6 (6)Ni2iv—Ni2—O12—O12vii48.5 (2)
Ni2iv—O3—Ni2—O1296.6 (5)O12vii—Ni2—O12—Ni2iii129.0 (3)
Ni2ii—O3—Ni2—O1236.5 (5)O3—Ni2—O12—Ni2iii21.1 (5)
Ni1—O3—Ni2—O12143.5 (5)O2—Ni2—O12—Ni2iii167.7 (13)
Ni2iii—O3—Ni2—O12vii96.6 (5)O2vii—Ni2—O12—Ni2iii66.5 (4)
Ni2iv—O3—Ni2—O12vii23.6 (6)O12viii—Ni2—O12—Ni2iii0.003 (4)
Ni2ii—O3—Ni2—O12vii36.5 (5)O12i—Ni2—O12—Ni2iii111.4 (4)
Ni1—O3—Ni2—O12vii143.5 (5)O11—Ni2—O12—Ni2iii153.8 (5)
Ni2iii—O3—Ni2—O2170.0 (3)Ni2iv—Ni2—O12—Ni2iii80.5 (3)
Ni2iv—O3—Ni2—O269.8 (3)
Symmetry codes: (i) x, z+1/2, y1/2; (ii) x, y+1, z; (iii) x, z+1/2, y+1/2; (iv) x, y, z; (v) y+1/2, x+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x, z+1/2, y+1/2; (viii) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds