Download citation
Download citation
link to html
In the title compound, [Mn(H2O)6]Cl2·2C6H12N4·4H2O, each MnII atom, located on a centre of symmetry, is coordinated by six water mol­ecules in a distorted octa­hedral coordination geometry. The hexa­methyl­enetetra­mine (HMTA) mol­ecule does not coordinate to the Mn atom but links with the Mn complex via three O—H...N hydrogen bonds. The remaining N atom of the HMTA is hydrogen-bonded to the solvent water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027571/xu6047sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027571/xu6047Isup2.hkl
Contains datablock I

CCDC reference: 287761

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](n-O) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.111
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Mn PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 54.00 A   3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Hexamethylenetetramine (HMTA) has attracted attention because of the desire to construct new supramolecular architectures via hydrogen bonding (Carlucci et al., 1995; Ermer & Eling, 1994; Chopra et al., 2005). In order to investigate in detail the contribution of HMTA to the formation of hydrogen bonds, we report here the X-ray structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The crystal of (I) consists of the MnII complex cations, Cl anions, solvent water and free HMTA molecules. The MnII atom is located on an inversion centre and is coordinated by six water molecules in a distorted octahedral geometry (Table 1). The HMTA molecule is linked to the MnII complex cation via three O—H···N hydrogen bonds, while atom N4 of the HMTA is hydrogen-bonded to the solvent water molecule. The Cl anions link to the MnII complex cation via O—H···Cl hydrogen bonding (Table 2).

Experimental top

An acetonitrile solution (12 ml) of MnCl2·4H2O (0.020 g, 3 mmol) and HMTA (0.042 g, 3 mmol) was transferred into a 23 ml Teflon-lined autoclave and heated at 358 K for 72 h. The autoclave was then cooled over a period of 12 h and the solution was filtered. Pale-yellow single crystals of (I) were obtained from the filtrate after 2 d. Elemental analysis for C12H44Cl2MnN8O10, calculated: C 24.50, H 7.71, N 18.64%; found: C 24.78, H 7.51, N 18.72%.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to the O atoms, with Uiso(H) = 1.5Ueq(O). H atoms on C atoms were placed in calculated positions with C—H = 0.97 Å and refined in riding mode, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
Hexaaquamanganese(II) dichloride bis(hexamethylenetetraamine) tetrahydrate top
Crystal data top
[Mn(H2O)6]Cl2·2C6H12N4·4H2OZ = 1
Mr = 586.39F(000) = 311
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.337 (3) ÅCell parameters from 1215 reflections
b = 9.531 (2) Åθ = 2.3–24.6°
c = 9.538 (2) ŵ = 0.71 mm1
α = 119.477 (4)°T = 294 K
β = 101.018 (5)°Block, pale yellow
γ = 94.140 (5)°0.22 × 0.18 × 0.16 mm
V = 711.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2850 independent reflections
Radiation source: fine-focus sealed tube1975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1110
Tmin = 0.840, Tmax = 0.893k = 1011
4034 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Mn(H2O)6]Cl2·2C6H12N4·4H2Oγ = 94.140 (5)°
Mr = 586.39V = 711.5 (3) Å3
Triclinic, P1Z = 1
a = 9.337 (3) ÅMo Kα radiation
b = 9.531 (2) ŵ = 0.71 mm1
c = 9.538 (2) ÅT = 294 K
α = 119.477 (4)°0.22 × 0.18 × 0.16 mm
β = 101.018 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1975 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.893Rint = 0.025
4034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
2850 reflectionsΔρmin = 0.27 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.50000.50000.50000.03063 (18)
Cl0.81455 (9)0.06236 (10)0.32135 (10)0.0601 (3)
N10.6664 (3)0.0410 (3)0.8491 (3)0.0384 (6)
N20.6603 (3)0.3259 (3)1.0453 (3)0.0369 (5)
N30.6652 (2)0.2412 (3)0.7604 (3)0.0357 (5)
N40.8857 (2)0.2548 (3)0.9556 (3)0.0390 (6)
O10.6255 (2)0.5573 (2)0.3598 (2)0.0462 (5)
H1C0.71480.64050.40000.069*
H1D0.63410.48550.25750.069*
O20.6263 (2)0.7040 (2)0.7362 (2)0.0504 (6)
H2C0.62010.80570.75990.076*
H2D0.67950.70120.82040.076*
O30.6372 (2)0.3333 (3)0.5208 (2)0.0545 (6)
H3C0.69140.27760.46470.082*
H3D0.63930.29910.58660.082*
O40.8039 (2)0.7197 (2)1.0046 (2)0.0502 (5)
H4C0.78560.82071.08420.075*
H4D0.89790.72281.00160.075*
O50.8512 (3)0.8047 (3)0.4465 (3)0.0850 (9)
H5C0.84090.87540.40550.127*
H5D0.93630.84780.52010.127*
C10.6090 (3)0.1522 (3)0.9890 (3)0.0400 (7)
H1A0.64150.13491.08120.048*
H1B0.50120.12650.95510.048*
C20.6077 (3)0.3474 (3)0.9030 (3)0.0398 (7)
H2A0.63940.46130.93710.048*
H2B0.49980.32200.86900.048*
C30.6145 (3)0.0698 (3)0.7107 (3)0.0400 (7)
H3A0.65170.00220.61690.048*
H3B0.50670.04310.67500.048*
C40.8232 (3)0.3615 (4)1.0938 (3)0.0428 (7)
H4A0.85830.34641.18710.051*
H4B0.85840.47541.13030.051*
C50.8291 (3)0.0828 (3)0.9014 (4)0.0438 (7)
H5A0.86800.01070.80920.053*
H5B0.86470.06460.99240.053*
C60.8291 (3)0.2793 (4)0.8161 (3)0.0425 (7)
H6A0.86850.20970.72330.051*
H6B0.86410.39260.85020.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0398 (4)0.0265 (3)0.0278 (3)0.0094 (3)0.0106 (3)0.0147 (3)
Cl0.0645 (6)0.0589 (5)0.0519 (5)0.0294 (4)0.0167 (4)0.0222 (4)
N10.0468 (15)0.0290 (12)0.0361 (12)0.0069 (11)0.0053 (11)0.0164 (10)
N20.0429 (14)0.0332 (13)0.0342 (12)0.0074 (11)0.0156 (11)0.0151 (10)
N30.0404 (14)0.0400 (13)0.0363 (12)0.0145 (11)0.0154 (10)0.0239 (11)
N40.0351 (13)0.0395 (14)0.0387 (13)0.0084 (11)0.0091 (10)0.0175 (11)
O10.0568 (13)0.0406 (12)0.0372 (10)0.0003 (10)0.0224 (9)0.0148 (9)
O20.0725 (15)0.0274 (11)0.0357 (11)0.0040 (10)0.0072 (10)0.0130 (9)
O30.0804 (16)0.0651 (15)0.0563 (13)0.0499 (12)0.0410 (12)0.0466 (12)
O40.0405 (12)0.0491 (13)0.0502 (12)0.0088 (10)0.0041 (9)0.0205 (10)
O50.0710 (18)0.084 (2)0.100 (2)0.0210 (15)0.0019 (15)0.0605 (17)
C10.0472 (18)0.0367 (16)0.0407 (16)0.0042 (13)0.0107 (13)0.0240 (14)
C20.0462 (18)0.0337 (15)0.0491 (17)0.0161 (13)0.0212 (14)0.0243 (14)
C30.0469 (18)0.0373 (16)0.0318 (14)0.0123 (13)0.0078 (12)0.0152 (13)
C40.0451 (18)0.0371 (17)0.0361 (15)0.0023 (14)0.0100 (13)0.0126 (13)
C50.0502 (19)0.0420 (17)0.0429 (16)0.0206 (14)0.0099 (14)0.0239 (14)
C60.0494 (18)0.0432 (17)0.0458 (17)0.0163 (14)0.0264 (14)0.0253 (14)
Geometric parameters (Å, º) top
Mn—O12.1642 (17)O2—H2C0.8899
Mn—O1i2.1642 (17)O2—H2D0.8730
Mn—O2i2.1421 (18)O3—H3C0.8292
Mn—O22.1421 (18)O3—H3D0.8358
Mn—O32.1707 (19)O4—H4C0.9419
Mn—O3i2.1707 (19)O4—H4D0.8823
N1—C51.464 (4)O5—H5C0.9338
N1—C11.467 (3)O5—H5D0.8656
N1—C31.478 (3)C1—H1A0.9700
N2—C41.465 (4)C1—H1B0.9700
N2—C21.470 (3)C2—H2A0.9700
N2—C11.473 (3)C2—H2B0.9700
N3—C31.469 (3)C3—H3A0.9700
N3—C21.471 (3)C3—H3B0.9700
N3—C61.475 (3)C4—H4A0.9700
N4—C61.470 (3)C4—H4B0.9700
N4—C51.473 (4)C5—H5A0.9700
N4—C41.475 (3)C5—H5B0.9700
O1—H1C0.9771C6—H6A0.9700
O1—H1D0.8988C6—H6B0.9700
O2i—Mn—O2180.0H5C—O5—H5D103.6
O2i—Mn—O186.17 (8)N1—C1—N2111.9 (2)
O2—Mn—O193.83 (8)N1—C1—H1A109.2
O2i—Mn—O1i93.83 (8)N2—C1—H1A109.2
O2—Mn—O1i86.17 (8)N1—C1—H1B109.2
O1—Mn—O1i180.000 (1)N2—C1—H1B109.2
O2i—Mn—O387.53 (8)H1A—C1—H1B107.9
O2—Mn—O392.47 (8)N2—C2—N3111.8 (2)
O1—Mn—O394.45 (8)N2—C2—H2A109.2
O1i—Mn—O385.55 (8)N3—C2—H2A109.2
O2i—Mn—O3i92.47 (8)N2—C2—H2B109.2
O2—Mn—O3i87.53 (8)N3—C2—H2B109.2
O1—Mn—O3i85.55 (8)H2A—C2—H2B107.9
O1i—Mn—O3i94.45 (8)N3—C3—N1111.7 (2)
O3—Mn—O3i180.000 (1)N3—C3—H3A109.3
C5—N1—C1108.6 (2)N1—C3—H3A109.3
C5—N1—C3108.3 (2)N3—C3—H3B109.3
C1—N1—C3107.9 (2)N1—C3—H3B109.3
C4—N2—C2108.9 (2)H3A—C3—H3B107.9
C4—N2—C1108.3 (2)N2—C4—N4112.2 (2)
C2—N2—C1107.6 (2)N2—C4—H4A109.2
C3—N3—C2108.1 (2)N4—C4—H4A109.2
C3—N3—C6108.2 (2)N2—C4—H4B109.2
C2—N3—C6108.3 (2)N4—C4—H4B109.2
C6—N4—C5108.0 (2)H4A—C4—H4B107.9
C6—N4—C4107.7 (2)N1—C5—N4112.2 (2)
C5—N4—C4108.0 (2)N1—C5—H5A109.2
Mn—O1—H1C129.5N4—C5—H5A109.2
Mn—O1—H1D125.6N1—C5—H5B109.2
H1C—O1—H1D100.1N4—C5—H5B109.2
Mn—O2—H2C119.3H5A—C5—H5B107.9
Mn—O2—H2D127.6N4—C6—N3112.3 (2)
H2C—O2—H2D112.8N4—C6—H6A109.1
Mn—O3—H3C133.5N3—C6—H6A109.1
Mn—O3—H3D126.1N4—C6—H6B109.1
H3C—O3—H3D100.0N3—C6—H6B109.1
H4C—O4—H4D113.3H6A—C6—H6B107.9
C5—N1—C1—N258.1 (3)C2—N2—C4—N458.3 (3)
C3—N1—C1—N259.1 (3)C1—N2—C4—N458.4 (3)
C4—N2—C1—N158.1 (3)C6—N4—C4—N258.3 (3)
C2—N2—C1—N159.4 (3)C5—N4—C4—N258.2 (3)
C4—N2—C2—N357.9 (3)C1—N1—C5—N458.2 (3)
C1—N2—C2—N359.4 (3)C3—N1—C5—N458.8 (3)
C3—N3—C2—N259.4 (3)C6—N4—C5—N158.3 (3)
C6—N3—C2—N257.6 (3)C4—N4—C5—N158.0 (3)
C2—N3—C3—N158.8 (3)C5—N4—C6—N357.9 (3)
C6—N3—C3—N158.3 (3)C4—N4—C6—N358.5 (3)
C5—N1—C3—N358.7 (3)C3—N3—C6—N458.3 (3)
C1—N1—C3—N358.7 (3)C2—N3—C6—N458.6 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O50.981.752.717 (4)167
O1—H1D···N2ii0.901.922.817 (3)176
O2—H2C···N1iii0.891.942.808 (4)163
O2—H2D···O40.871.832.700 (3)173
O3—H3C···Cl0.832.363.165 (3)163
O3—H3D···N30.841.972.800 (4)173
O4—H4C···Cliv0.942.253.151 (2)161
O4—H4D···N4v0.881.962.827 (3)168
O5—H5C···Cliii0.932.303.228 (3)176
O5—H5D···Clvi0.872.353.205 (3)170
Symmetry codes: (ii) x, y, z1; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+2, y+1, z+2; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(H2O)6]Cl2·2C6H12N4·4H2O
Mr586.39
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.337 (3), 9.531 (2), 9.538 (2)
α, β, γ (°)119.477 (4), 101.018 (5), 94.140 (5)
V3)711.5 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.840, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
4034, 2850, 1975
Rint0.025
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.04
No. of reflections2850
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected bond lengths (Å) top
Mn—O12.1642 (17)Mn—O32.1707 (19)
Mn—O22.1421 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O50.981.752.717 (4)167
O1—H1D···N2i0.901.922.817 (3)176
O2—H2C···N1ii0.891.942.808 (4)163
O2—H2D···O40.871.832.700 (3)173
O3—H3C···Cl0.832.363.165 (3)163
O3—H3D···N30.841.972.800 (4)173
O4—H4C···Cliii0.942.253.151 (2)161
O4—H4D···N4iv0.881.962.827 (3)168
O5—H5C···Clii0.932.303.228 (3)176
O5—H5D···Clv0.872.353.205 (3)170
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+2, y+1, z+2; (v) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds