Download citation
Download citation
link to html
The title complex, {[Ag(C10H8N2)(H2O)][Ag(C10H8N2)(C12H6O4)(H2O)]·H2O}n, consists of cationic complex chains, anionic complex chains and solvent water mol­ecules. In the cationic chain, the Ag atom adopts a trigonal coordination geometry, while the Ag atom in the anionic chain assumes a square-planar coordination geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805026802/xu6029sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805026802/xu6029Isup2.hkl
Contains datablock I

CCDC reference: 287758

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.096
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C21 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.23 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.21 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The photoluminescent property of polynuclear d10 metal complexes has attracted extensive interest (Chen & Liu, 2002). Recently, a series of polynuclear d10 metal complexes with 1,4-benzenedicarboxylates have been investigated (Yaghi et al., 2003). We present here the structure of a similar AgI complex, (I), incorporating the naphthalenedicarboxylate (NDC) ligand (Vodak et al., 2001).

The structure of (I) consists of 4,4'-bipyridine-bridged cationic complex chains, anionic complex chains and solvent water molecules. A segment of the polymeric structure of (I) is shown in Fig. 1. Within the cationic chain, atom Ag1 adopts a distorted trigonal coordination geometry, defined by two N donors from two 4,4'-bipyridine ligands and one water molecule, while in the anionic chain, atom Ag2 has a distorted square-planar coordination geometry, formed by two N donors from two 4,4'-bipyridine, one water molecule and one O atom of the NDC ligand.

The Ag1—O2W, Ag2—O3 and Ag2—O3W distances (Table 1) are much shorter than the sum of the van der Waals radii (Reference for van der Waals data?) and imply a bonding interaction between the Ag and O atoms, but these bonding interactions are weak, because the bond distances are much longer than the sum of the covalent radii (Ma et al., 2005). The average Ag—N bond distance of 2.164 (2) Å agrees with that found in a reported AgI complex with 4,4'-bipyridine (Sun et al., 2003).

The nearest Ag1···Ag2 separation between neighbouring polymeric chains is 3.3978 (8) Å, which is identical to the sum of the van der Waals radii of Ag atoms, and implies a weak interaction between the Ag atoms of neighbouring chains. The centroid-to-centroid separations of 3.548 (2) Å between parallel N2-pyridine and N2(−x, 1 − y, 1 − z)-pyridine rings, and 3.559 (2) Å between nearly parallel N2-pyridine and N3-pyridine rings, suggest the existence of ππ stacking. Extensive hydrogen bonding occurs in the crystal structure of (I) (Table 2).

Experimental top

A mixture of AgNO3 (0.170 g, 1 mmol), H2NDC (0.108 g, 0.5 mmol) and NaOH (0.04 g, 1 mmol) in water (10 ml) was stirred for 10 min at room temperature. 4,4'-Bipyridine (0.090 g, 0.5 mmol) was then added to the mixture. After stirring for a further 10 min, a white precipitate was collected and dissolved in 14 M ammonia (10 ml). Single crystals of (I) were obtained by slow evaporation at room temperature (yield 55%, based on Ag). Analysis, calculated for C32H28Ag2N4O7: C 48.22, H 3.52, N 7.03%; found: C 48.35, H 3.44, N 7.18%.

Refinement top

H atoms on C atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined isotropically. The highest peak in the difference map is 0.89 Å away from atom Ag1.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A segment of the polymeric AgI complex chains, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (A) x, −1 + y, z]. The dashed line indicates the weak van der Waals interaction between Ag atoms of neighbouring chains.
catena-Poly[aquasilver(I)-µ-4,4'-bipyridine] catena-poly[[aqua(naphthalene-1,4-dicarboxylato)silver(I)]-µ-4,4'-bipyridine] polyhydrate top
Crystal data top
[Ag(C10H8N2)(H2O)][Ag(C10H8N2)(C12H6O4)(H2O)]·H2OZ = 2
Mr = 796.32F(000) = 796
Triclinic, P1Dx = 1.846 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5977 (19) ÅCell parameters from 10623 reflections
b = 11.444 (2) Åθ = 3.1–27.4°
c = 14.018 (3) ŵ = 1.43 mm1
α = 78.50 (3)°T = 294 K
β = 71.77 (3)°Block, colourless
γ = 86.82 (3)°0.50 × 0.33 × 0.24 mm
V = 1433.0 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6361 independent reflections
Radiation source: rotating anode4888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.506, Tmax = 0.710k = 1414
13653 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.6543P]
where P = (Fo2 + 2Fc2)/3
6361 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 1.19 e Å3
2 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Ag(C10H8N2)(H2O)][Ag(C10H8N2)(C12H6O4)(H2O)]·H2Oγ = 86.82 (3)°
Mr = 796.32V = 1433.0 (6) Å3
Triclinic, P1Z = 2
a = 9.5977 (19) ÅMo Kα radiation
b = 11.444 (2) ŵ = 1.43 mm1
c = 14.018 (3) ÅT = 294 K
α = 78.50 (3)°0.50 × 0.33 × 0.24 mm
β = 71.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6361 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4888 reflections with I > 2σ(I)
Tmin = 0.506, Tmax = 0.710Rint = 0.036
13653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.19 e Å3
6361 reflectionsΔρmin = 0.97 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1398 (4)0.9279 (3)0.6035 (3)0.0474 (9)
H10.22740.96760.59140.057*
C20.1445 (3)0.8071 (3)0.5985 (3)0.0458 (9)
H20.23440.76880.58130.055*
C30.0162 (3)0.7440 (2)0.6189 (2)0.0265 (6)
C40.0172 (3)0.6139 (2)0.6193 (2)0.0261 (6)
C50.1488 (3)0.5513 (3)0.5949 (3)0.0398 (8)
H50.23820.59120.57470.048*
C60.1447 (4)0.4286 (3)0.6010 (3)0.0424 (8)
H60.23310.38800.58540.051*
C70.1036 (4)0.4262 (3)0.6493 (3)0.0408 (8)
H70.19120.38430.66700.049*
C80.1109 (3)0.5480 (3)0.6470 (3)0.0373 (7)
H80.20150.58540.66400.045*
C90.1118 (4)0.8083 (3)0.6400 (3)0.0465 (9)
H90.20100.77080.65260.056*
C100.1088 (4)0.9289 (3)0.6427 (3)0.0447 (9)
H100.19720.96950.65760.054*
C110.0809 (4)0.9459 (3)0.8643 (3)0.0512 (10)
H110.16950.98590.84820.061*
C120.0828 (4)0.8243 (3)0.8657 (3)0.0492 (10)
H120.17230.78530.84980.059*
C130.0446 (3)0.7600 (2)0.8898 (2)0.0285 (6)
C140.1731 (4)0.8254 (3)0.9153 (4)0.0576 (11)
H140.26360.78750.93430.069*
C150.1665 (4)0.9470 (3)0.9123 (4)0.0591 (11)
H150.25420.98820.93050.071*
C160.0471 (3)0.6311 (2)0.8877 (2)0.0270 (6)
C170.1771 (3)0.5671 (3)0.9122 (3)0.0352 (7)
H170.26690.60520.93140.042*
C180.1730 (4)0.4465 (3)0.9081 (3)0.0381 (7)
H180.26140.40610.92480.046*
C190.0823 (3)0.5667 (3)0.8594 (3)0.0359 (7)
H0360.17210.60520.84230.043*
C200.0793 (4)0.4471 (3)0.8565 (3)0.0377 (7)
H200.16760.40700.83680.045*
N10.0145 (3)0.9890 (2)0.6251 (2)0.0322 (6)
N20.0202 (3)0.3661 (2)0.6280 (2)0.0312 (6)
N30.0489 (3)0.3859 (2)0.8816 (2)0.0325 (6)
N40.0430 (3)1.0072 (2)0.8853 (2)0.0362 (6)
O1W0.5048 (4)0.8595 (3)0.1276 (2)0.0622 (8)
O2W0.2573 (3)0.2058 (2)0.7862 (2)0.0468 (6)
O3W0.2916 (3)0.1788 (2)0.6767 (3)0.0516 (7)
Ag10.03558 (3)0.19760 (2)0.87674 (2)0.04809 (10)
Ag20.01754 (3)0.176703 (19)0.62945 (2)0.04427 (10)
O10.5124 (3)0.2715 (2)0.0258 (2)0.0572 (7)
O20.6040 (5)0.0954 (3)0.0659 (2)0.0891 (12)
O30.3257 (3)0.1651 (2)0.58441 (18)0.0451 (6)
O40.5394 (3)0.2597 (3)0.54520 (19)0.0514 (6)
C210.5497 (4)0.1911 (3)0.0880 (3)0.0376 (7)
C220.5208 (3)0.2063 (3)0.1980 (2)0.0305 (6)
C230.5048 (3)0.1035 (3)0.2722 (3)0.0342 (7)
H230.51470.02990.25230.041*
C240.4740 (3)0.1069 (3)0.3770 (2)0.0314 (6)
H240.45730.03580.42480.038*
C250.4684 (3)0.2129 (3)0.4095 (2)0.0286 (6)
C260.4417 (3)0.2131 (3)0.5223 (2)0.0297 (6)
C270.4912 (3)0.3228 (2)0.3338 (2)0.0266 (6)
C280.5114 (3)0.3202 (2)0.2292 (2)0.0285 (6)
C290.5239 (3)0.4317 (3)0.1592 (3)0.0369 (7)
H290.53510.43220.09080.044*
C300.5197 (4)0.5376 (3)0.1914 (3)0.0428 (8)
H300.52740.60900.14470.051*
C310.5039 (4)0.5401 (3)0.2944 (3)0.0412 (8)
H310.50380.61270.31470.049*
C320.4888 (3)0.4365 (3)0.3641 (3)0.0351 (7)
H320.47680.43890.43210.042*
HW110.474 (5)0.841 (4)0.081 (4)0.077 (16)*
HW120.520 (4)0.928 (3)0.103 (3)0.032 (10)*
HW210.287 (5)0.190 (4)0.729 (4)0.061 (14)*
HW220.318 (5)0.184 (4)0.817 (3)0.056 (14)*
HW310.342 (6)0.188 (5)0.636 (4)0.12 (2)*
HW320.342 (5)0.163 (4)0.737 (3)0.057 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (17)0.0240 (16)0.082 (3)0.0072 (14)0.0064 (17)0.0163 (16)
C20.0243 (16)0.0291 (16)0.082 (3)0.0004 (13)0.0067 (16)0.0229 (17)
C30.0310 (15)0.0178 (13)0.0313 (16)0.0013 (11)0.0097 (12)0.0064 (11)
C40.0327 (15)0.0176 (12)0.0297 (15)0.0031 (11)0.0112 (12)0.0068 (11)
C50.0289 (16)0.0217 (14)0.067 (2)0.0030 (12)0.0086 (15)0.0154 (14)
C60.0330 (17)0.0262 (16)0.062 (2)0.0052 (14)0.0043 (15)0.0141 (15)
C70.0366 (18)0.0233 (15)0.064 (2)0.0029 (13)0.0162 (16)0.0098 (15)
C80.0292 (16)0.0229 (14)0.062 (2)0.0045 (12)0.0148 (15)0.0117 (14)
C90.0316 (17)0.0240 (15)0.087 (3)0.0008 (13)0.0188 (17)0.0163 (16)
C100.0365 (18)0.0196 (14)0.080 (3)0.0076 (13)0.0189 (17)0.0152 (16)
C110.042 (2)0.0238 (16)0.090 (3)0.0050 (15)0.0209 (19)0.0138 (17)
C120.0335 (18)0.0196 (15)0.094 (3)0.0054 (13)0.0170 (18)0.0170 (17)
C130.0337 (16)0.0193 (13)0.0335 (16)0.0017 (12)0.0097 (12)0.0085 (11)
C140.0339 (18)0.0242 (16)0.105 (3)0.0004 (14)0.0017 (19)0.0225 (19)
C150.044 (2)0.0260 (17)0.099 (3)0.0039 (16)0.004 (2)0.0228 (19)
C160.0337 (15)0.0184 (13)0.0297 (15)0.0027 (11)0.0088 (12)0.0072 (11)
C170.0330 (16)0.0255 (15)0.0463 (19)0.0000 (12)0.0067 (14)0.0136 (13)
C180.0395 (18)0.0251 (15)0.050 (2)0.0058 (13)0.0100 (15)0.0124 (14)
C190.0327 (16)0.0240 (15)0.050 (2)0.0032 (12)0.0100 (14)0.0101 (13)
C200.0325 (16)0.0258 (15)0.053 (2)0.0059 (13)0.0098 (14)0.0116 (14)
N10.0363 (14)0.0177 (11)0.0425 (16)0.0014 (10)0.0109 (11)0.0078 (10)
N20.0403 (15)0.0150 (11)0.0394 (15)0.0011 (10)0.0117 (11)0.0084 (10)
N30.0441 (15)0.0172 (11)0.0362 (14)0.0007 (11)0.0107 (11)0.0080 (10)
N40.0486 (16)0.0195 (12)0.0393 (16)0.0005 (11)0.0090 (12)0.0102 (11)
O1W0.088 (2)0.059 (2)0.0488 (18)0.0077 (17)0.0305 (16)0.0190 (16)
O2W0.0450 (15)0.0451 (14)0.0469 (17)0.0050 (12)0.0074 (13)0.0127 (12)
O3W0.0456 (16)0.0458 (15)0.063 (2)0.0062 (12)0.0166 (15)0.0110 (14)
Ag10.0744 (2)0.01665 (13)0.05871 (19)0.00243 (12)0.02580 (15)0.01176 (11)
Ag20.0643 (2)0.01553 (12)0.05526 (18)0.00064 (11)0.01922 (14)0.01095 (10)
O10.0739 (18)0.0570 (17)0.0455 (16)0.0009 (14)0.0240 (14)0.0113 (13)
O20.155 (3)0.067 (2)0.0521 (19)0.040 (2)0.033 (2)0.0346 (16)
O30.0425 (13)0.0452 (13)0.0428 (14)0.0094 (11)0.0017 (11)0.0131 (11)
O40.0455 (14)0.0735 (18)0.0429 (15)0.0087 (13)0.0175 (11)0.0197 (13)
C210.0388 (18)0.0411 (18)0.0354 (18)0.0016 (14)0.0116 (14)0.0123 (14)
C220.0276 (15)0.0315 (15)0.0340 (17)0.0029 (12)0.0092 (12)0.0109 (12)
C230.0351 (16)0.0268 (14)0.0464 (19)0.0054 (13)0.0151 (14)0.0177 (13)
C240.0373 (16)0.0217 (13)0.0365 (17)0.0022 (12)0.0139 (13)0.0050 (12)
C250.0236 (14)0.0277 (14)0.0364 (17)0.0001 (11)0.0098 (12)0.0092 (12)
C260.0280 (15)0.0258 (14)0.0343 (17)0.0057 (12)0.0066 (12)0.0095 (12)
C270.0200 (13)0.0243 (13)0.0370 (17)0.0002 (11)0.0088 (11)0.0090 (12)
C280.0196 (13)0.0279 (14)0.0384 (18)0.0013 (11)0.0075 (12)0.0095 (12)
C290.0350 (16)0.0326 (16)0.0408 (19)0.0015 (13)0.0107 (14)0.0035 (13)
C300.0393 (18)0.0267 (15)0.058 (2)0.0009 (14)0.0128 (16)0.0005 (14)
C310.0382 (18)0.0228 (14)0.064 (2)0.0009 (13)0.0152 (16)0.0119 (15)
C320.0299 (16)0.0324 (16)0.048 (2)0.0021 (13)0.0133 (14)0.0180 (14)
Geometric parameters (Å, º) top
Ag1—N32.165 (2)C16—C171.394 (4)
Ag1—N4i2.163 (2)C16—C191.396 (4)
Ag1—O2W2.696 (3)C17—C181.391 (4)
Ag2—N1i2.163 (2)C17—H170.9300
Ag2—N22.166 (2)C18—N31.331 (4)
Ag2—O32.826 (3)C18—H180.9300
Ag2—O3W2.831 (3)C19—C201.380 (4)
C1—N11.338 (4)C19—H0360.9300
C1—C21.396 (4)C20—N31.362 (4)
C1—H10.9300C20—H200.9300
C2—C31.384 (4)O1W—HW110.86 (5)
C2—H20.9300O1W—HW120.79 (4)
C3—C91.378 (4)O2W—HW210.82 (4)
C3—C41.488 (4)O2W—HW220.82 (4)
C4—C81.385 (4)O3W—HW310.84 (6)
C4—C51.397 (4)O3W—HW320.82 (4)
C5—C61.392 (4)O1—C211.254 (4)
C5—H50.9300O2—C211.239 (4)
C6—N21.336 (4)O3—C261.253 (4)
C6—H60.9300O4—C261.256 (4)
C7—N21.320 (4)C21—C221.524 (4)
C7—C81.387 (4)C22—C231.386 (4)
C7—H70.9300C22—C281.445 (4)
C8—H80.9300C23—C241.413 (4)
C9—C101.390 (4)C23—H230.9300
C9—H90.9300C24—C251.372 (4)
C10—N11.332 (4)C24—H240.9300
C10—H100.9300C25—C271.452 (4)
C11—N41.328 (5)C25—C261.521 (4)
C11—C121.387 (4)C27—C281.424 (4)
C11—H110.9300C27—C321.444 (4)
C12—C131.375 (4)C28—C291.431 (4)
C12—H120.9300C29—C301.370 (5)
C13—C141.391 (4)C29—H290.9300
C13—C161.483 (4)C30—C311.409 (5)
C14—C151.389 (5)C30—H300.9300
C14—H140.9300C31—C321.361 (5)
C15—N41.314 (5)C31—H310.9300
C15—H150.9300C32—H320.9300
N1—C1—C2122.8 (3)C10—N1—C1116.8 (3)
N1—C1—H1118.6C10—N1—Ag2ii122.9 (2)
C2—C1—H1118.6C1—N1—Ag2ii120.3 (2)
C3—C2—C1120.4 (3)C7—N2—C6117.0 (3)
C3—C2—H2119.8C7—N2—Ag2120.4 (2)
C1—C2—H2119.8C6—N2—Ag2122.5 (2)
C9—C3—C2116.1 (3)C18—N3—C20117.3 (3)
C9—C3—C4122.2 (3)C18—N3—Ag1125.0 (2)
C2—C3—C4121.6 (3)C20—N3—Ag1117.7 (2)
C8—C4—C5116.7 (3)C15—N4—C11117.3 (3)
C8—C4—C3122.2 (3)C15—N4—Ag1ii122.8 (2)
C5—C4—C3121.1 (3)C11—N4—Ag1ii119.8 (2)
C6—C5—C4119.3 (3)HW11—O1W—HW1297 (4)
C6—C5—H5120.4HW21—O2W—HW22110 (4)
C4—C5—H5120.4HW31—O3W—HW32113 (5)
N2—C6—C5123.4 (3)N4i—Ag1—N3173.93 (10)
N2—C6—H6118.3N4i—Ag1—O2W92.09 (11)
C5—C6—H6118.3N3—Ag1—O2W93.44 (10)
N2—C7—C8123.9 (3)N1i—Ag2—N2177.87 (10)
N2—C7—H7118.0N1i—Ag2—O388.98 (10)
C8—C7—H7118.0N2—Ag2—O391.27 (9)
C4—C8—C7119.7 (3)N1i—Ag2—O3W88.93 (10)
C4—C8—H8120.1N2—Ag2—O3W90.84 (10)
C7—C8—H8120.1O3—Ag2—O3W177.79 (8)
C3—C9—C10120.6 (3)O2—C21—O1123.1 (3)
C3—C9—H9119.7O2—C21—C22117.1 (3)
C10—C9—H9119.7O1—C21—C22119.7 (3)
N1—C10—C9123.3 (3)C23—C22—C28118.4 (3)
N1—C10—H10118.4C23—C22—C21117.3 (3)
C9—C10—H10118.4C28—C22—C21124.3 (3)
N4—C11—C12122.2 (3)C22—C23—C24122.2 (3)
N4—C11—H11118.9C22—C23—H23118.9
C12—C11—H11118.9C24—C23—H23118.9
C13—C12—C11121.6 (3)C25—C24—C23121.2 (3)
C13—C12—H12119.2C25—C24—H24119.4
C11—C12—H12119.2C23—C24—H24119.4
C12—C13—C14115.0 (3)C24—C25—C27118.4 (3)
C12—C13—C16123.3 (3)C24—C25—C26119.9 (3)
C14—C13—C16121.7 (3)C27—C25—C26121.7 (2)
C15—C14—C13120.2 (3)O3—C26—O4125.7 (3)
C15—C14—H14119.9O3—C26—C25117.3 (3)
C13—C14—H14119.9O4—C26—C25117.0 (3)
N4—C15—C14123.5 (3)C28—C27—C32119.0 (3)
N4—C15—H15118.2C28—C27—C25120.5 (2)
C14—C15—H15118.2C32—C27—C25120.5 (3)
C17—C16—C19115.9 (3)C27—C28—C29118.0 (3)
C17—C16—C13122.6 (3)C27—C28—C22119.0 (3)
C19—C16—C13121.4 (3)C29—C28—C22123.0 (3)
C18—C17—C16120.2 (3)C30—C29—C28121.0 (3)
C18—C17—H17119.9C30—C29—H29119.5
C16—C17—H17119.9C28—C29—H29119.5
N3—C18—C17123.3 (3)C29—C30—C31121.0 (3)
N3—C18—H18118.3C29—C30—H30119.5
C17—C18—H18118.3C31—C30—H30119.5
C20—C19—C16121.2 (3)C32—C31—C30120.1 (3)
C20—C19—H036119.4C32—C31—H31119.9
C16—C19—H036119.4C30—C31—H31119.9
N3—C20—C19122.0 (3)C31—C32—C27120.8 (3)
N3—C20—H20119.0C31—C32—H32119.6
C19—C20—H20119.0C27—C32—H32119.6
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O1iii0.86 (5)2.14 (5)2.904 (4)148 (4)
O1W—HW12···O2ii0.79 (4)2.03 (4)2.790 (5)162 (4)
O2W—HW21···O30.82 (4)2.02 (5)2.825 (4)170 (4)
O2W—HW22···O1Wiv0.82 (4)2.09 (4)2.900 (5)171 (4)
O3W—HW31···O4v0.84 (6)1.99 (6)2.812 (4)163 (6)
O3W—HW32···O1Wvi0.82 (4)2.03 (4)2.831 (5)166 (4)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C10H8N2)(H2O)][Ag(C10H8N2)(C12H6O4)(H2O)]·H2O
Mr796.32
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.5977 (19), 11.444 (2), 14.018 (3)
α, β, γ (°)78.50 (3), 71.77 (3), 86.82 (3)
V3)1433.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.50 × 0.33 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.506, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
13653, 6361, 4888
Rint0.036
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.10
No. of reflections6361
No. of parameters430
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.19, 0.97

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected bond lengths (Å) top
Ag1—N32.165 (2)Ag2—N22.166 (2)
Ag1—N4i2.163 (2)Ag2—O32.826 (3)
Ag1—O2W2.696 (3)Ag2—O3W2.831 (3)
Ag2—N1i2.163 (2)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O1ii0.86 (5)2.14 (5)2.904 (4)148 (4)
O1W—HW12···O2iii0.79 (4)2.03 (4)2.790 (5)162 (4)
O2W—HW21···O30.82 (4)2.02 (5)2.825 (4)170 (4)
O2W—HW22···O1Wiv0.82 (4)2.09 (4)2.900 (5)171 (4)
O3W—HW31···O4v0.84 (6)1.99 (6)2.812 (4)163 (6)
O3W—HW32···O1Wvi0.82 (4)2.03 (4)2.831 (5)166 (4)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds