research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[tetra­aqua­iron(II)]-trans-μ-1,2-bis­­(pyridin-4-yl)ethene-κ2N:N′] bis­­(p-toluene­sulfonate) methanol disolvate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, bFaculty of Natural Sciences, National University of Kyiv-Mohyla Academy, Skovorody St. 2, Kyiv 04070, Ukraine, cUkrOrgSyntez Ltd, Schorsa St. 29, Kyiv 01133, Ukraine, d"Petru Poni" Institute Of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania, and eL.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauky 31, Kyiv 03028, Ukraine
*Correspondence e-mail: volodymyr.hiiuk@univ.kiev.ua

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 November 2017; accepted 27 November 2017; online 30 November 2017)

In the title polymeric complex, {[Fe(C12H10N2)2(H2O)4](CH3C6H4SO3)2·2CH3OH}n, the FeII cation, located on an inversion centre, is coordinated by four water mol­ecules in the equatorial positions and two 1,2-bis­(pyridin-4-yl)ethene mol­ecules in the axial positions. This results in a distorted octa­hedral geometry for the [N2O4] coordination polyhedron. The 1,2-bis­(pyridin-4-yl)ethene mol­ecules bridge the FeII cations, forming polymeric chains running along the a-axis direction. Stabilization of the crystal structure is provided by O—H⋯O hydrogen bonds; these are formed by coordinated water mol­ecules as donors towards the O atoms of the methanol mol­ecules and tosyl­ate anions as acceptors of protons, leading to the formation of a three-dimensional supra­molecular network. Weak C—H⋯O hydrogen bonds are also observed in the crystal.

1. Chemical context

Transition metal complexes containing pyridine or substituted pyridines as ligands are of current inter­est due to their supra­molecular arrangements and the probability of being spin-crossover compounds. Spin crossover (SCO), sometimes referred to as a spin transition or a spin equilibrium behaviour, is a phenomenon that occurs in some metal complexes wherein the spin state of a compound changes due to the influence of external stimuli such as temperature, pressure, light irradiation, magnetic field or guest effects (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem., Vol. 234, pp. 233-235. Berlin, Heidelberg, New York: Springer.]). Bridging N-donor ligands are often used to produce Fe-based SCO complexes; for example, pyrazine is known to form inter­esting three-dimensional frameworks with remarkable transition characteristics (Muñoz & Real, 2011[Muñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068-2093.]; Gural'skiy, Golub et al., 2016[Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191-3195.]; Gural'skiy, Shylin et al., 2016[Gural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016). New J. Chem. 40, 9012-9016.]).

A variation of the aromatic N-donor ligand can lead to possible spin-state modulation in transition metal complexes (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem., Vol. 234, pp. 233-235. Berlin, Heidelberg, New York: Springer.]). In recent years, particular attention has been drawn to bridging ligands that are able to form analogues of Hoffman clathrates with a large pore size. These ligands include bridge-polydentate derivatives of pyridine and other azine ligands (Muñoz & Real, 2011[Muñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068-2093.]). Importantly, Fe-based SCO in analogues of Hoffman clathrates is known in complexes with 1,2-bis­(pyridin-4-yl)ethene as a bridging N-donor ligand. Its complex with cyano­argentate as a co-ligand shows one of the largest thermal hysteresis (ca 95K wide) observed for spin-crossover complexes (Niel et al., 2002[Niel, V., Muñoz, M. C., Gaspar, A. B., Galet, A., Levchenko, G. & Real, J. A. (2002). Chem. Eur. J. 8, 2446-2453.]).

Here we report on the title new polymeric compound based on 1,2-bis­(pyridin-4-yl)ethene in which FeII ions are stabilized in the high-spin state.

[Scheme 1]

2. Structural commentary

The FeII cation has a distorted octa­hedral coordination environment [FeN2O4], formed by two N atoms of 1,2-bis(pyridin-4-yl)ethene and by four O atoms of four water mol­ecules (Fig. 1[link]). Two 1,2-bis­(pyridin-4-yl)ethene mol­ecules are coordinated at the axial positions [with an Fe—N distance of 2.218 (2) Å]. The equatorial positions of the FeII cation are occupied by four O-coordinated water mol­ecules with bond lengths Fe1—O1 = 2.114 (2) and Fe1—O2 = 2.077 (2) Å. The small difference in the lengths of the Fe—O bonds of 0.037 Å could be associated with a different participation of the water hydrogen atoms in hydrogen bonding. The metal-to-ligand distances clearly indicate the high-spin nature of the complex described herein.

[Figure 1]
Figure 1
A fragment of the mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) −1 + x, y, z; (iii) 1 − x, 1 − y, 1 − z; (iv) x, −1 + y, z.]

The FeII octa­hedral distortion parameter (the sum of the moduli of the deviations from 90° for all cis bond angles) is Σ|90 − Θ| = 28.15 (8), where Θ is the cis-N—Fe—O and cis-O—Fe—O angles in the coordination environment of the FeII atom. This value indicates a significant polyhedral distortion, which can be explained by the Jahn–Teller effect and the presence of different types of ligands.

3. Supra­molecular features

The coordination structure is formed by binding 1,2-bis(pyridin-4-yl)ethene fragments with FeII cations into polymer chains that propagate along the a-axis direction. Stabilization in the crystal structure is ensured by O—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]): (i) H atoms of water mol­ecules and the oxygen atoms of tosyl­ate anions; (ii) H atoms of water mol­ecules and methanol mol­ecules; (iii) H atoms of the hydroxyl group of methanol with the tosyl­ate anion. The compound contains two solvate mol­ecules of methanol per FeII cation. In the crystal lattice, each tosyl­ate anion is connected with three water mol­ecules of the complex cation, leading to the formation of a three-dimensional supra­molecular network (Fig. 2[link]). In addition, weak C—H⋯O hydrogen bonds are also observed in the crystal. A view of the packing is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.83 (2) 1.93 (2) 2.753 (3) 172 (3)
O1—H1B⋯O3ii 0.84 (2) 1.90 (2) 2.726 (2) 168 (3)
O2—H2A⋯O6 0.84 (2) 1.82 (2) 2.654 (3) 172 (3)
O2—H2B⋯O5 0.84 (2) 1.92 (2) 2.752 (3) 170 (3)
O6—H6A⋯O4ii 0.91 (2) 1.95 (2) 2.823 (3) 161 (3)
C4—H4⋯O5iii 0.95 2.51 3.406 (3) 157
C13—H13B⋯O4iv 0.98 2.59 3.562 (4) 172
C13—H13C⋯O5v 0.98 2.51 3.465 (4) 165
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound, showing hydrogen bonds as dashed lines. Colour key: violet Fe, yellow S, blue N, grey C and red O.
[Figure 3]
Figure 3
The crystal packing. Colour key: violet Fe, yellow S, blue N, grey C and red O.

4. Database survey

A survey of the Cambridge Structural Database confirmed that the structure of the title complex has not been reported previously. 41 structures are known with an Fe cation coord­inated by four water O atoms and two N atoms from the pyridine fragment. The survey yielded the structure of one related compound, in which the FeII cation has a distorted octa­hedral coordination environment [FeN2O4], formed by two N atoms of 1,2-bis­(pyridin-4-yl)ethene and by four O atoms of four water mol­ecules; however, it contains 2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate as the anion and crystallizes in the ortho­rhom­bic Pbcn space group. In this analogue, Fe1—N1 = 2.2304 (2), Fe1—O2 = 2.1030 (2) and Fe1—O4 = 2.0908 (2) Å (Garcia et al., 2011[Garcia, H. C., Diniz, R. & de Oliveira, L. F. C. (2011). Open Crystallogr. J. 4, 30-39.]), contrary to what is observed in the title compound.

5. Synthesis and crystallization

Crystals of the title compound were prepared by the slow diffusion method between three layers in a 10 ml tube. The first layer was a solution of [Fe(OTs)2]·6H2O (OTs = p-toluene­sulfonate) (0.1012 g, 0.02 mmol) in water (2.5 ml), the second was a mixture of water/methanol (1:1, 5 ml) and the third layer was a solution of 1,2-bis­(pyridin-4-yl)ethene (0.0352 g, 0.02 mmol) in methanol (2.5 ml). After two weeks, red crystals grew in the second layer; these were collected and maintained under the mother solution until measured.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All aromatic hydrogens and hydrogen atoms of the CH groups were placed in their expected calculated positions (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Uiso(C). Methyl H atoms were placed in their expected calculated positions (C—H = 0.98 Å) and refined as rotating groups with Uiso(H) = 1.5Ueq(C). Hydrogen atoms of the water mol­ecules were assigned based on the difference-Fourier map, and the O—H distances and the H—O—H angles were constrained using DFIX (O—H = 0.84 Å) and DANG (H—H = 1.34 Å) instructions. The hydrogen H atom of the solvent methanol mol­ecule was assigned based on the difference-Fourier map, and the O—H distance was constrained using a DFIX (O—H = 0.96 Å) instruction.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C12H10N2)(H2O)4](C7H7O3S)2·2CH4O
Mr 716.59
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 13.8416 (9), 7.7686 (4), 16.4076 (13)
β (°) 111.845 (9)
V3) 1637.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.35 × 0.2 × 0.15
 
Data collection
Diffractometer Rigaku OD Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.920, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6379, 2857, 2363
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.06
No. of reflections 2857
No. of parameters 227
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[tetraaquairon(II)]-trans-µ-1,2-bis(pyridin-4-yl)ethene-κ2N:N'] bis(p-toluenesulfonate) methanol disolvate] top
Crystal data top
[Fe(C12H10N2)(H2O)4](C7H7O3S)2·2CH4OF(000) = 752
Mr = 716.59Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8416 (9) ÅCell parameters from 2979 reflections
b = 7.7686 (4) Åθ = 2.6–31.1°
c = 16.4076 (13) ŵ = 0.65 mm1
β = 111.845 (9)°T = 200 K
V = 1637.6 (2) Å3Prism, clear intense red
Z = 20.35 × 0.2 × 0.15 mm
Data collection top
Rigaku OD Xcalibur, Eos
diffractometer
2363 reflections with I > 2σ(I)
Detector resolution: 8.0797 pixels mm-1Rint = 0.030
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1616
Tmin = 0.920, Tmax = 1.000k = 89
6379 measured reflectionsl = 1911
2857 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.6283P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2857 reflectionsΔρmax = 0.24 e Å3
227 parametersΔρmin = 0.32 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.0000000.5000000.5000000.01832 (16)
O20.07337 (15)0.5517 (3)0.63317 (12)0.0295 (5)
O10.00268 (15)0.2362 (2)0.53062 (14)0.0279 (4)
O60.06975 (17)0.3317 (3)0.75578 (14)0.0403 (5)
N10.15498 (16)0.4896 (2)0.48932 (14)0.0218 (5)
C10.23952 (19)0.4220 (3)0.55153 (18)0.0243 (6)
H10.2312850.3688840.6007010.029*
C30.3528 (2)0.5005 (3)0.47719 (17)0.0235 (6)
C20.3375 (2)0.4249 (3)0.54841 (18)0.0269 (6)
H20.3945350.3754880.5947490.032*
C40.2643 (2)0.5672 (3)0.41120 (17)0.0256 (6)
H40.2697160.6178400.3603940.031*
C60.4539 (2)0.5179 (3)0.46934 (18)0.0251 (6)
H60.4538310.5589520.4147750.030*
C50.1695 (2)0.5594 (3)0.41982 (17)0.0246 (6)
H50.1107580.6061670.3740290.029*
C140.0849 (3)0.3932 (4)0.8412 (2)0.0470 (8)
H14A0.1590700.4151780.8736170.071*
H14B0.0602970.3067000.8724980.071*
H14C0.0456340.5002160.8364910.071*
S10.22227 (5)0.97890 (8)0.66335 (4)0.02490 (18)
O30.14978 (14)0.9925 (2)0.57179 (12)0.0310 (5)
O50.21658 (15)0.8109 (2)0.70032 (13)0.0336 (5)
O40.21348 (15)1.1211 (2)0.71723 (13)0.0362 (5)
C70.3476 (2)0.9925 (3)0.65937 (17)0.0225 (6)
C80.4272 (2)1.0780 (3)0.72377 (17)0.0283 (6)
H80.4139931.1369670.7692960.034*
C110.4661 (2)0.9110 (3)0.59080 (19)0.0312 (7)
H110.4788760.8541230.5445330.037*
C90.5267 (2)1.0775 (3)0.72171 (18)0.0309 (7)
H90.5812771.1366060.7661180.037*
C120.3668 (2)0.9108 (3)0.59167 (18)0.0298 (6)
H120.3117530.8551170.5461080.036*
C100.5476 (2)0.9924 (3)0.65615 (19)0.0292 (6)
C130.6567 (2)0.9835 (4)0.6563 (2)0.0413 (8)
H13A0.6536250.9839170.5956250.062*
H13B0.6904670.8775560.6855800.062*
H13C0.6966531.0833020.6876420.062*
H2A0.078 (3)0.485 (3)0.6748 (17)0.061 (12)*
H2B0.113 (2)0.633 (3)0.6576 (18)0.042 (9)*
H1A0.0508 (17)0.176 (3)0.4972 (17)0.043 (10)*
H1B0.0490 (17)0.171 (3)0.5494 (19)0.043 (9)*
H6A0.120 (2)0.256 (4)0.756 (2)0.061 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0129 (3)0.0212 (3)0.0211 (3)0.0002 (2)0.0065 (2)0.0006 (2)
O20.0277 (11)0.0355 (11)0.0217 (11)0.0106 (9)0.0052 (9)0.0011 (9)
O10.0181 (10)0.0212 (10)0.0383 (12)0.0007 (8)0.0035 (9)0.0010 (9)
O60.0434 (13)0.0432 (12)0.0396 (13)0.0106 (10)0.0215 (11)0.0085 (10)
N10.0183 (11)0.0229 (11)0.0252 (12)0.0008 (9)0.0092 (10)0.0004 (9)
C10.0196 (14)0.0281 (14)0.0271 (14)0.0022 (11)0.0108 (12)0.0068 (11)
C30.0218 (14)0.0230 (13)0.0281 (15)0.0009 (11)0.0119 (12)0.0046 (11)
C20.0170 (13)0.0324 (14)0.0296 (16)0.0036 (11)0.0068 (12)0.0071 (12)
C40.0247 (14)0.0309 (14)0.0246 (14)0.0020 (11)0.0130 (12)0.0002 (11)
C60.0231 (13)0.0281 (14)0.0296 (15)0.0007 (11)0.0161 (12)0.0003 (12)
C50.0176 (13)0.0307 (14)0.0248 (15)0.0017 (11)0.0071 (12)0.0025 (12)
C140.051 (2)0.052 (2)0.047 (2)0.0027 (17)0.0281 (18)0.0034 (16)
S10.0210 (4)0.0225 (3)0.0289 (4)0.0001 (3)0.0066 (3)0.0020 (3)
O30.0209 (10)0.0340 (10)0.0309 (11)0.0040 (8)0.0014 (9)0.0018 (9)
O50.0293 (11)0.0295 (10)0.0376 (12)0.0057 (9)0.0074 (9)0.0040 (9)
O40.0340 (11)0.0359 (11)0.0415 (12)0.0006 (9)0.0173 (10)0.0112 (9)
C70.0233 (14)0.0162 (12)0.0241 (14)0.0016 (10)0.0043 (11)0.0009 (10)
C80.0286 (15)0.0254 (14)0.0272 (15)0.0014 (11)0.0062 (13)0.0059 (12)
C110.0314 (16)0.0286 (14)0.0364 (17)0.0003 (12)0.0158 (14)0.0047 (12)
C90.0227 (15)0.0274 (14)0.0328 (16)0.0051 (11)0.0011 (13)0.0023 (12)
C120.0238 (15)0.0287 (14)0.0320 (16)0.0025 (12)0.0048 (13)0.0089 (12)
C100.0263 (15)0.0227 (13)0.0351 (16)0.0013 (11)0.0073 (13)0.0046 (12)
C130.0247 (16)0.0435 (18)0.053 (2)0.0018 (13)0.0116 (15)0.0061 (15)
Geometric parameters (Å, º) top
Fe1—O12.1135 (18)C6—H60.9500
Fe1—O1i2.1135 (18)C5—H50.9500
Fe1—O22.0773 (19)C14—H14A0.9800
Fe1—O2i2.0773 (19)C14—H14B0.9800
Fe1—N1i2.218 (2)C14—H14C0.9800
Fe1—N12.218 (2)S1—O31.4673 (19)
O2—H2A0.839 (17)S1—O51.4535 (19)
O2—H2B0.839 (17)S1—O41.4482 (19)
O1—H1A0.832 (17)S1—C71.764 (3)
O1—H1B0.837 (17)C7—C81.380 (4)
O6—C141.421 (4)C7—C121.387 (4)
O6—H6A0.910 (18)C8—H80.9500
N1—C11.341 (3)C8—C91.391 (4)
N1—C51.344 (3)C11—H110.9500
C1—H10.9500C11—C121.380 (4)
C1—C21.376 (3)C11—C101.386 (4)
C3—C21.393 (4)C9—H90.9500
C3—C41.398 (4)C9—C101.382 (4)
C3—C61.459 (4)C12—H120.9500
C2—H20.9500C10—C131.511 (4)
C4—H40.9500C13—H13A0.9800
C4—C51.372 (3)C13—H13B0.9800
C6—C6ii1.327 (5)C13—H13C0.9800
O2—Fe1—O2i180.00 (11)N1—C5—C4123.8 (2)
O2i—Fe1—O1i88.98 (8)N1—C5—H5118.1
O2i—Fe1—O191.02 (8)C4—C5—H5118.1
O2—Fe1—O1i91.01 (8)O6—C14—H14A109.5
O2—Fe1—O188.98 (8)O6—C14—H14B109.5
O2i—Fe1—N191.06 (8)O6—C14—H14C109.5
O2i—Fe1—N1i88.94 (8)H14A—C14—H14B109.5
O2—Fe1—N1i91.06 (8)H14A—C14—H14C109.5
O2—Fe1—N188.94 (8)H14B—C14—H14C109.5
O1i—Fe1—O1180.0O3—S1—C7105.38 (12)
O1—Fe1—N194.96 (7)O5—S1—O3111.68 (11)
O1—Fe1—N1i85.04 (7)O5—S1—C7106.02 (11)
O1i—Fe1—N1i94.96 (7)O4—S1—O3112.92 (11)
O1i—Fe1—N185.04 (7)O4—S1—O5113.58 (12)
N1—Fe1—N1i180.0O4—S1—C7106.52 (12)
Fe1—O2—H2A127 (2)C8—C7—S1121.1 (2)
Fe1—O2—H2B129 (2)C8—C7—C12119.8 (3)
H2A—O2—H2B104 (3)C12—C7—S1119.1 (2)
Fe1—O1—H1A118 (2)C7—C8—H8120.2
Fe1—O1—H1B126 (2)C7—C8—C9119.7 (3)
H1A—O1—H1B105 (3)C9—C8—H8120.2
C14—O6—H6A113 (2)C12—C11—H11119.4
C1—N1—Fe1123.36 (17)C12—C11—C10121.3 (3)
C1—N1—C5116.1 (2)C10—C11—H11119.4
C5—N1—Fe1120.44 (17)C8—C9—H9119.5
N1—C1—H1118.0C10—C9—C8121.1 (3)
N1—C1—C2123.9 (2)C10—C9—H9119.5
C2—C1—H1118.0C7—C12—H12120.1
C2—C3—C4116.3 (2)C11—C12—C7119.7 (3)
C2—C3—C6124.3 (2)C11—C12—H12120.1
C4—C3—C6119.4 (2)C11—C10—C13120.3 (3)
C1—C2—C3119.9 (2)C9—C10—C11118.3 (3)
C1—C2—H2120.1C9—C10—C13121.3 (3)
C3—C2—H2120.1C10—C13—H13A109.5
C3—C4—H4120.0C10—C13—H13B109.5
C5—C4—C3120.0 (2)C10—C13—H13C109.5
C5—C4—H4120.0H13A—C13—H13B109.5
C3—C6—H6116.7H13A—C13—H13C109.5
C6ii—C6—C3126.6 (3)H13B—C13—H13C109.5
C6ii—C6—H6116.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.83 (2)1.93 (2)2.753 (3)172 (3)
O1—H1B···O3iii0.84 (2)1.90 (2)2.726 (2)168 (3)
O2—H2A···O60.84 (2)1.82 (2)2.654 (3)172 (3)
O2—H2B···O50.84 (2)1.92 (2)2.752 (3)170 (3)
O6—H6A···O4iii0.91 (2)1.95 (2)2.823 (3)161 (3)
C4—H4···O5iv0.952.513.406 (3)157
C13—H13B···O4v0.982.593.562 (4)172
C13—H13C···O5vi0.982.513.465 (4)165
Symmetry codes: (i) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+3/2, z1/2; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2.
 

Funding information

The work was supported by H2020-MSCA-RISE-2016 Project 73422.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGarcia, H. C., Diniz, R. & de Oliveira, L. F. C. (2011). Open Crystallogr. J. 4, 30–39.  CAS
First citationGural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191–3195.
First citationGural'skiy, I. A., Shylin, S. I., Golub, B. O., Ksenofontov, V., Fritsky, I. O. & Tremel, W. (2016). New J. Chem. 40, 9012–9016.  CAS
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem., Vol. 234, pp. 233–235. Berlin, Heidelberg, New York: Springer.
First citationMuñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068–2093.
First citationNiel, V., Muñoz, M. C., Gaspar, A. B., Galet, A., Levchenko, G. & Real, J. A. (2002). Chem. Eur. J. 8, 2446–2453.  CrossRef PubMed CAS
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds