research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl 2-((2Z,5Z)-5-(2-meth­­oxy-2-oxo­ethyl­­idene)-2-{(E)-[2-methyl-5-(prop-1-en-2-yl)cyclo­hex-2-enyl­­idene]hydrazinyl­­idene}-4-oxo­thia­zolidin-3-yl)fumarate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, bInstitut de Chimie Moléculaire de Reims, CNRS UMR 7312 Bât., Europol'Agro - Moulin de la Housse UFR Sciences BP 1039-51687 Reims Cédex 2, France, and cLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ma

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 December 2016; accepted 23 January 2017; online 31 January 2017)

The crystal structure and the conformation of the title compound, C22H27N3O7S, were determined from the synthetic pathway and by X-ray analysis. This compound is a new 4-thia­zolidinone derivative prepared and isolated as pure product from thio­semicarbazone carvone. The mol­ecule is built up from an oxo­thia­zolidine ring tetra­substituted by a meth­oxy–oxo­ethyl­idene, a maleate, an oxygen and a cyclo­hexyl­idene–hydrazone. The cyclo­hexyl­idene ring is statistically disordered over two positions, resulting in an inversion of configuration for the substituted carbon.

1. Chemical context

In recent years, the synthesis of heterocyclic systems containing nitro­gen and sulfur has attracted great inter­est because of their broad spectrum of pharmacological activities. The thia­zol nucleus is found in a large number of natural products (Nielsen et al., 2012[Nielsen, D. S., Hoang, H. N., Lohman, R., Diness, F. & Fairlie, D. P. (2012). Org. Lett. 14, 5720-5723.]), as well as in diverse pharmaceutical products (Le Flohic et al., 2005[Le Flohic, A., Meyer, C. & Cossy, J. (2005). Org. Lett. 7, 339-342.]). Indeed, some 4-aryl­thia­zole derivatives exhibit a strong anti-inflammatory activity (Hirai & Sugimoto, 1977[Hirai, K. & Sugimoto, H. (1977). Chem. Pharm. Bull. 25, 2292-2299.]) while some tetra­hydro­thia­zolo-[4,5-b] pyridines show anti­oxidant properties (Uchikawa et al., 1996[Uchikawa, O., Fukatsu, K., Suno, M., Aono, T. & Doi, T. (1996). Chem. Pharm. Bull. 44, 2070-2077.]). The therapeutic usefulness of these heterocyclic systems prompted us to prepare a new substituted thia­zole which shows important medicinal properties. The title compound 2 was synthesized by the reaction of (R)-thio­semicarbazone carvone 1 easily obtained from naturally occurring (R)-carvone] with dimethyl acetyl­enedi­carboxyl­ate in basic medium, using ethanol as solvent. The resulting product 2[link] was obtained in 65% yield.

[Scheme 1]

The structure of 2[link] was established using spectroscopic (MS and NMR) data, while its stereochemistry was determined based mainly on the synthetic pathway and implied by the X-ray analysis. The thia­zolic compound 2 is finally identified as dimethyl 2-((2Z,5Z)-5-(2-meth­oxy-2-oxo­ethyl­idene)-2-{(E)-[2-methyl-5-(prop-1-en-2-yl)cyclo­hex-2-enyl­idene]hydrazinyl­idene}-4-oxo­thia­zolidin-3-yl)fumarate.

2. Structural commentary

The title mol­ecule is built up from an oxo­thia­zolidine ring tetra­substituted by a meth­oxy-oxo­ethyl­idene, a fumarate, an oxygen and a cyclo­hexyl­idene-hydrazone (Fig. 1[link]). As expected, the thia­zolidine ring and all the atoms attached to it (plane A = S1/C2/N3/C4/C5/N2/C7/O4/C10) are roughly coplanar with the largest deviation from the mean plane being 0.085 (2) Å for C10. The butadiene fragment (C1′/C2′/C3′/C4′A/C4′B) of the cyclo­hexyl­idene ring is twisted slightly with respect to this plane, making a dihedral angle of 8.3 (2)°. The meth­oxy­carbonyl group (C11/O11/O12/C12) is also twisted slightly with respect to plane A, with a dihedral angle of 8.2 (2)°. The meth­oxy­carbonyl groups (C6/O61/O62/C14 and C9/O91/O92/C13) of the fumarate group make dihedral angles of 70.06 (7) and 75.59 (9)°, respectively, with the thia­zolidine ring.

[Figure 1]
Figure 1
The mol­ecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small circle of arbitrary radii. The disordered part is shown with dashed lines.

The most striking feature of this structure is the conformational statistical disorder which affects the cyclo­hexyl­idene ring: atoms C6′ and C5′ are split over two positions, each of half occupancy, with respect to the mean plane of the butadiene (C1′–C4′) fragment (Fig.1). Such disorder inverts the configuration at C5 (R C5′A and S C5′B) and so the crystal might be considered as a racemate. Could the crystal be considered as a co-crystal built up from the combination of R and S configurations? It is difficult to answer this question.

3. Supra­molecular features

In the crystal, there are C—H⋯O weak hydrogen-bonding inter­actions (Table 1[link]) which link the mol­ecules, building a two-dimensional network parallel to the (001) plane, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6′A—H6′2⋯O12i 0.99 2.56 3.349 (8) 136
C3′—H3′⋯O4ii 0.95 2.57 3.510 (3) 170
C4′B—H4′4⋯O11iii 0.99 2.45 3.414 (4) 164
C10—H10⋯O62iv 0.95 2.47 3.244 (3) 138
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
A packing view showing the formation of layers parallel to the (001) plane.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update November 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a thia­zolidine ring substituted by a hydrazone linked to a cyclo­hexyl ring as the main skeleton, revealed the presence of six structures.

[Scheme 2]

A comparison of the main C—N, N—N, C—S distances in the title compound and the structures extracted from the CSD shows good correlation: within the C=N—N=C fragment, the double bonds are located on the CN, the N—N distance is that of a single bond corresponding to a hydrazono group. The C=N—N=C torsion angles (Table 2[link]) indicate that in each case the four atoms are nearly planar.

Table 2
Comparison of main bond lengths and C=N—N=C torsion angles (Å, °) in the title compound and related structures

For a definition of the distances D, see Scheme 2[link].

Refcode D1 D2 D3 D4 D5 Torsion  
MUDRIO 1.406 1.277 1.287 1.769 1.386 179.0  
FOTQEM 1.417 1.269 1.292 1.756 1.380 173.8  
MIZJUC 1.407 1.281 1.291 1.761 1.392 179.4  
ROMXUN 1.414 1.278 1.278 1.749 1.367 −177.3  
WISTAV 1.429 1.256 1.278 1.753 1.413 −177.6  
WISTAV 1.412 1.290 1.288 1.758 1.354 177.2  
WURVAI 1.410 1.279 1.279 1.768 1.364 174.9  
This study 1.405 (3) 1.274 (3) 1.286 (4) 1.756 (3) 1.398 (3) −168.9 (2)  
Reference: MUDRIO: Mohamed et al. (2015[Mohamed, S. K., Mague, J. T., Akkurt, M. & Albayati, M. R. (2015). Private communication (refcode MUDRIO). CCDC, Cambridge, England.]); FOTQEM: Gautam & Chaudhary (2015[Gautam, D. & Chaudhary, R. P. (2015). J. Mol. Struct. 1080, 137-144.]); MIZJUC: Mague et al. (2014[Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o436-o437.]); ROMXUN: Ramachandran et al. (2009[Ramachandran, R., Rani, M. & Kabilan, S. (2009). Acta Cryst. E65, o584.]); WISTAV: Gupta & Chaudhary (2013[Gupta, R. & Chaudhary, R. P. (2013). Phosphorus Sulfur Silicon, 188, 1296-1304.]); WURVAI: Gautam et al. (2013[Gautam, D., Gautam, P. & Chaudhary, R. P. (2013). Heterocycl. Commun. 19, 43-47.]).

5. Synthesis and crystallization

A solution of (1R)-thio­semicarbazone carvone 1 and dimethyl acetyl­enedi­carboxyl­ate (1.25 eq) in anhydrous MeCN (50 mL), was heated under reflux for 30 min. After the completion of the reaction (the progress of the reaction was monitored by TLC), the solvent was evaporated to dryness. The crude product was purified by silica gel chromatography (230–400 mesh) using hexa­ne/ethyl acetate (95:5) as eluent. The pure thia­zolic product 2 was obtained in 65% yield. Slow evaporation from an ethano­lic solution of the title compound gave crystals of 2 suitable for crystallographic analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The disorder was been refined using the tools available in SHELXL2014. All H atoms were initially located in a difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95–1.0 Å and O—H = 0.84 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,O) for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C22H25N3O7S
Mr 475.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.2468 (3), 9.8783 (4), 15.1039 (6)
α, β, γ (°) 96.144 (2), 105.172 (2), 95.750 (2)
V3) 1170.14 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.37 × 0.25 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.732, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 34166, 4778, 4085
Rint 0.041
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.123, 1.22
No. of reflections 4778
No. of parameters 315
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Dimethyl 2-((2Z,5Z)-5-(2-methoxy-2-oxoethylidene)-2-{(E)-[2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enylidene]hydrazinylidene}-4-oxothiazolidin-3-yl)fumarate top
Crystal data top
C22H25N3O7SZ = 2
Mr = 475.51F(000) = 500
Triclinic, P1Dx = 1.350 Mg m3
a = 8.2468 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8783 (4) ÅCell parameters from 8618 reflections
c = 15.1039 (6) Åθ = 2.4–26.8°
α = 96.144 (2)°µ = 0.19 mm1
β = 105.172 (2)°T = 173 K
γ = 95.750 (2)°Flattened, yellow
V = 1170.14 (8) Å30.37 × 0.25 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
4778 independent reflections
Radiation source: fine-focus sealed tube4085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.732, Tmax = 1.0k = 1212
34166 measured reflectionsl = 1818
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0088P)2 + 2.0702P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
4778 reflectionsΔρmax = 0.30 e Å3
315 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.62041 (8)0.86199 (7)0.53866 (5)0.02031 (15)
N10.3971 (3)0.6620 (2)0.40411 (16)0.0238 (5)
N20.4884 (3)0.7458 (2)0.35923 (16)0.0219 (5)
N30.6949 (3)0.9353 (2)0.38976 (15)0.0197 (5)
O40.8958 (2)1.1256 (2)0.45018 (13)0.0279 (5)
O110.7109 (3)0.9837 (2)0.72559 (14)0.0310 (5)
O120.8836 (3)1.1828 (2)0.78060 (13)0.0298 (5)
O610.5937 (3)0.7601 (2)0.16332 (14)0.0376 (5)
O620.7897 (2)0.7213 (2)0.28911 (14)0.0282 (4)
O910.7901 (4)1.0015 (3)0.12561 (17)0.0515 (7)
O920.6342 (3)1.1721 (3)0.13646 (17)0.0538 (7)
C20.5920 (3)0.8376 (3)0.41840 (18)0.0197 (5)
C40.7978 (3)1.0332 (3)0.46061 (18)0.0199 (5)
C50.7660 (3)1.0086 (3)0.55003 (18)0.0191 (5)
C1'0.3108 (3)0.5531 (3)0.3521 (2)0.0234 (6)
C6'A0.2869 (12)0.5260 (9)0.2500 (10)0.0287 (17)0.5
H6'10.39010.56600.23540.034*0.5
H6'20.19100.57150.21790.034*0.5
C5'A0.2517 (8)0.3731 (6)0.2149 (4)0.0268 (13)0.5
H5'A0.35380.33050.24440.032*0.5
C4'A0.1024 (4)0.3074 (3)0.2435 (3)0.0405 (8)0.5
H4'10.00370.33070.20330.049*0.5
H4'20.09860.20630.23350.049*0.5
C6'B0.3359 (11)0.4961 (9)0.2590 (10)0.0287 (17)0.5
H6'30.37070.57330.22830.034*0.5
H6'40.42800.43770.26980.034*0.5
C5'B0.1756 (9)0.4123 (7)0.1957 (5)0.0335 (15)0.5
H5'B0.09000.47590.17580.040*0.5
C4'B0.1024 (4)0.3074 (3)0.2435 (3)0.0405 (8)0.5
H4'30.01780.27820.20870.049*0.5
H4'40.16260.22590.24070.049*0.5
C3'0.1105 (4)0.3520 (3)0.3419 (2)0.0345 (7)
H3'0.04140.29750.36960.041*
C2'0.2076 (3)0.4630 (3)0.3939 (2)0.0268 (6)
C170.2189 (4)0.5009 (4)0.4944 (2)0.0407 (8)
H17A0.15420.42800.51510.061*
H17B0.17210.58720.50280.061*
H17C0.33780.51240.53100.061*
C60.6828 (3)0.7956 (3)0.24011 (19)0.0250 (6)
C70.6900 (3)0.9341 (3)0.29482 (18)0.0212 (5)
C80.6931 (3)1.0514 (3)0.26006 (19)0.0265 (6)
H80.68271.13160.29780.032*
C90.7115 (4)1.0664 (3)0.1666 (2)0.0322 (7)
C100.8410 (3)1.0963 (3)0.62646 (18)0.0228 (6)
H100.92031.17140.62380.027*
C110.8037 (3)1.0792 (3)0.71487 (19)0.0237 (6)
C120.8491 (5)1.1760 (3)0.8692 (2)0.0388 (8)
H12A0.72741.17540.86180.058*
H12B0.91201.25610.91310.058*
H12C0.88461.09180.89270.058*
C130.6425 (6)1.2005 (5)0.0456 (3)0.0715 (14)
H13A0.76131.22360.04630.107*
H13B0.58071.27790.02910.107*
H13C0.59131.11910.00000.107*
C140.7916 (4)0.5857 (3)0.2438 (3)0.0421 (8)
H14A0.67660.53540.22530.063*
H14B0.86720.53640.28660.063*
H14C0.83220.59300.18890.063*
C7'0.2228 (5)0.3479 (4)0.1088 (3)0.0488 (9)
C9'0.2088 (5)0.2048 (5)0.0776 (3)0.0663 (12)
H9'10.23730.19190.01850.100*
H9'20.09240.16190.06930.100*
H9'30.28710.16210.12370.100*
C8'0.2471 (7)0.4446 (5)0.0520 (3)0.0794 (16)
H8'10.25470.41590.00870.095*
H8'20.25620.53970.07370.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0217 (3)0.0199 (3)0.0195 (3)0.0015 (2)0.0057 (3)0.0047 (2)
N10.0222 (12)0.0232 (12)0.0266 (12)0.0003 (9)0.0081 (10)0.0056 (10)
N20.0214 (11)0.0193 (11)0.0244 (12)0.0011 (9)0.0067 (9)0.0033 (9)
N30.0215 (11)0.0198 (11)0.0166 (11)0.0013 (9)0.0049 (9)0.0016 (9)
O40.0274 (11)0.0287 (11)0.0256 (11)0.0073 (8)0.0094 (8)0.0002 (8)
O110.0389 (12)0.0293 (11)0.0240 (11)0.0007 (9)0.0086 (9)0.0054 (9)
O120.0362 (12)0.0320 (11)0.0185 (10)0.0004 (9)0.0066 (8)0.0025 (8)
O610.0493 (14)0.0339 (12)0.0207 (11)0.0022 (10)0.0007 (10)0.0019 (9)
O620.0235 (10)0.0307 (11)0.0292 (11)0.0061 (8)0.0064 (8)0.0015 (9)
O910.0797 (19)0.0446 (15)0.0402 (14)0.0044 (13)0.0363 (14)0.0033 (11)
O920.0513 (15)0.082 (2)0.0399 (14)0.0191 (14)0.0174 (12)0.0396 (14)
C20.0187 (13)0.0215 (13)0.0199 (13)0.0032 (10)0.0064 (10)0.0040 (11)
C40.0173 (12)0.0207 (13)0.0214 (13)0.0040 (10)0.0048 (10)0.0021 (11)
C50.0165 (12)0.0206 (13)0.0201 (13)0.0030 (10)0.0044 (10)0.0032 (10)
C1'0.0186 (13)0.0208 (13)0.0320 (15)0.0024 (10)0.0072 (11)0.0080 (12)
C6'A0.032 (5)0.020 (4)0.035 (3)0.001 (3)0.012 (4)0.003 (3)
C5'A0.023 (3)0.027 (3)0.028 (3)0.005 (3)0.001 (3)0.005 (3)
C4'A0.0361 (18)0.0239 (16)0.054 (2)0.0081 (13)0.0055 (16)0.0035 (15)
C6'B0.032 (5)0.020 (4)0.035 (3)0.001 (3)0.012 (4)0.003 (3)
C5'B0.026 (4)0.026 (3)0.042 (4)0.001 (3)0.003 (3)0.006 (3)
C4'B0.0361 (18)0.0239 (16)0.054 (2)0.0081 (13)0.0055 (16)0.0035 (15)
C3'0.0262 (15)0.0279 (16)0.050 (2)0.0018 (12)0.0095 (14)0.0179 (14)
C2'0.0201 (13)0.0237 (14)0.0392 (17)0.0035 (11)0.0089 (12)0.0135 (12)
C170.0356 (18)0.049 (2)0.0427 (19)0.0017 (15)0.0182 (15)0.0174 (16)
C60.0251 (14)0.0271 (15)0.0225 (14)0.0019 (11)0.0086 (11)0.0020 (11)
C70.0192 (13)0.0246 (14)0.0192 (13)0.0010 (10)0.0062 (10)0.0015 (11)
C80.0262 (14)0.0322 (16)0.0200 (14)0.0001 (12)0.0057 (11)0.0034 (12)
C90.0319 (16)0.0365 (17)0.0245 (15)0.0100 (13)0.0062 (13)0.0052 (13)
C100.0193 (13)0.0249 (14)0.0229 (14)0.0010 (11)0.0052 (11)0.0009 (11)
C110.0207 (13)0.0282 (15)0.0207 (14)0.0047 (11)0.0029 (11)0.0029 (11)
C120.056 (2)0.0400 (18)0.0198 (15)0.0021 (16)0.0129 (14)0.0015 (13)
C130.072 (3)0.106 (4)0.042 (2)0.003 (3)0.013 (2)0.047 (2)
C140.0433 (19)0.0330 (18)0.049 (2)0.0118 (15)0.0124 (16)0.0060 (15)
C7'0.055 (2)0.043 (2)0.039 (2)0.0142 (17)0.0121 (17)0.0122 (16)
C9'0.051 (2)0.088 (3)0.052 (3)0.021 (2)0.001 (2)0.006 (2)
C8'0.108 (4)0.073 (3)0.050 (3)0.021 (3)0.034 (3)0.027 (2)
Geometric parameters (Å, º) top
S1—C51.749 (3)C5'B—C4'B1.491 (7)
S1—C21.756 (3)C5'B—C7'1.555 (8)
N1—C1'1.286 (4)C5'B—H5'B1.0000
N1—N21.405 (3)C4'B—C3'1.486 (5)
N2—C21.274 (3)C4'B—H4'30.9900
N3—C41.393 (3)C4'B—H4'40.9900
N3—C21.398 (3)C3'—C2'1.330 (4)
N3—C71.423 (3)C3'—H3'0.9500
O4—C41.208 (3)C2'—C171.500 (4)
O11—C111.206 (3)C17—H17A0.9800
O12—C111.331 (3)C17—H17B0.9800
O12—C121.446 (3)C17—H17C0.9800
O61—C61.193 (3)C6—C71.508 (4)
O62—C61.329 (3)C7—C81.322 (4)
O62—C141.441 (4)C8—C91.480 (4)
O91—C91.193 (4)C8—H80.9500
O92—C91.337 (4)C10—C111.469 (4)
O92—C131.447 (4)C10—H100.9500
C4—C51.481 (4)C12—H12A0.9800
C5—C101.331 (4)C12—H12B0.9800
C1'—C2'1.472 (4)C12—H12C0.9800
C1'—C6'A1.492 (14)C13—H13A0.9800
C1'—C6'B1.531 (14)C13—H13B0.9800
C6'A—C5'A1.519 (9)C13—H13C0.9800
C6'A—H6'10.9900C14—H14A0.9800
C6'A—H6'20.9900C14—H14B0.9800
C5'A—C4'A1.517 (7)C14—H14C0.9800
C5'A—C7'1.547 (7)C7'—C8'1.383 (6)
C5'A—H5'A1.0000C7'—C9'1.425 (6)
C4'A—C3'1.486 (5)C9'—H9'10.9800
C4'A—H4'10.9900C9'—H9'20.9800
C4'A—H4'20.9900C9'—H9'30.9800
C6'B—C5'B1.516 (10)C8'—H8'10.9500
C6'B—H6'30.9900C8'—H8'20.9500
C6'B—H6'40.9900
C5—S1—C290.20 (12)C2'—C3'—H3'117.7
C1'—N1—N2113.9 (2)C4'A—C3'—H3'117.7
C2—N2—N1110.0 (2)C3'—C2'—C1'119.1 (3)
C4—N3—C2114.9 (2)C3'—C2'—C17123.1 (3)
C4—N3—C7123.6 (2)C1'—C2'—C17117.8 (3)
C2—N3—C7121.6 (2)C2'—C17—H17A109.5
C11—O12—C12114.8 (2)C2'—C17—H17B109.5
C6—O62—C14115.3 (2)H17A—C17—H17B109.5
C9—O92—C13115.4 (3)C2'—C17—H17C109.5
N2—C2—N3120.4 (2)H17A—C17—H17C109.5
N2—C2—S1126.7 (2)H17B—C17—H17C109.5
N3—C2—S1112.80 (18)O61—C6—O62125.7 (3)
O4—C4—N3125.0 (2)O61—C6—C7123.8 (3)
O4—C4—C5125.3 (2)O62—C6—C7110.5 (2)
N3—C4—C5109.7 (2)C8—C7—N3119.4 (2)
C10—C5—C4120.1 (2)C8—C7—C6124.1 (2)
C10—C5—S1127.5 (2)N3—C7—C6116.4 (2)
C4—C5—S1112.35 (19)C7—C8—C9124.6 (3)
N1—C1'—C2'116.8 (3)C7—C8—H8117.7
N1—C1'—C6'A123.9 (5)C9—C8—H8117.7
C2'—C1'—C6'A118.5 (5)O91—C9—O92124.3 (3)
N1—C1'—C6'B124.6 (4)O91—C9—C8126.6 (3)
C2'—C1'—C6'B117.4 (5)O92—C9—C8108.9 (3)
C1'—C6'A—C5'A111.6 (8)C5—C10—C11121.3 (2)
C1'—C6'A—H6'1109.3C5—C10—H10119.3
C5'A—C6'A—H6'1109.3C11—C10—H10119.3
C1'—C6'A—H6'2109.3O11—C11—O12124.7 (3)
C5'A—C6'A—H6'2109.3O11—C11—C10123.8 (3)
H6'1—C6'A—H6'2108.0O12—C11—C10111.4 (2)
C4'A—C5'A—C6'A110.3 (6)O12—C12—H12A109.5
C4'A—C5'A—C7'111.9 (4)O12—C12—H12B109.5
C6'A—C5'A—C7'110.5 (7)H12A—C12—H12B109.5
C4'A—C5'A—H5'A108.0O12—C12—H12C109.5
C6'A—C5'A—H5'A108.0H12A—C12—H12C109.5
C7'—C5'A—H5'A108.0H12B—C12—H12C109.5
C3'—C4'A—C5'A113.1 (3)O92—C13—H13A109.5
C3'—C4'A—H4'1109.0O92—C13—H13B109.5
C5'A—C4'A—H4'1109.0H13A—C13—H13B109.5
C3'—C4'A—H4'2109.0O92—C13—H13C109.5
C5'A—C4'A—H4'2109.0H13A—C13—H13C109.5
H4'1—C4'A—H4'2107.8H13B—C13—H13C109.5
C5'B—C6'B—C1'111.8 (8)O62—C14—H14A109.5
C5'B—C6'B—H6'3109.3O62—C14—H14B109.5
C1'—C6'B—H6'3109.3H14A—C14—H14B109.5
C5'B—C6'B—H6'4109.3O62—C14—H14C109.5
C1'—C6'B—H6'4109.3H14A—C14—H14C109.5
H6'3—C6'B—H6'4107.9H14B—C14—H14C109.5
C4'B—C5'B—C6'B111.7 (7)C8'—C7'—C9'120.9 (4)
C4'B—C5'B—C7'112.8 (5)C8'—C7'—C5'A127.0 (4)
C6'B—C5'B—C7'106.7 (7)C9'—C7'—C5'A110.3 (4)
C4'B—C5'B—H5'B108.5C8'—C7'—C5'B111.9 (4)
C6'B—C5'B—H5'B108.5C9'—C7'—C5'B125.9 (4)
C7'—C5'B—H5'B108.5C7'—C9'—H9'1109.5
C3'—C4'B—C5'B115.7 (4)C7'—C9'—H9'2109.5
C3'—C4'B—H4'3108.4H9'1—C9'—H9'2109.5
C5'B—C4'B—H4'3108.4C7'—C9'—H9'3109.5
C3'—C4'B—H4'4108.4H9'1—C9'—H9'3109.5
C5'B—C4'B—H4'4108.4H9'2—C9'—H9'3109.5
H4'3—C4'B—H4'4107.4C7'—C8'—H8'1120.0
C2'—C3'—C4'A124.7 (3)C7'—C8'—H8'2120.0
C2'—C3'—C4'B124.7 (3)H8'1—C8'—H8'2120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H62···O12i0.992.563.349 (8)136
C3—H3···O4ii0.952.573.510 (3)170
C4B—H44···O11iii0.992.453.414 (4)164
C10—H10···O62iv0.952.473.244 (3)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+2, z+1.
Comparison of main distances and CN—NC torsion angles (Å, °) in the title compound and related structures top
For the meaning of symbols D, see scheme 2.
RefcodeD1D2D3D4D5Torsion
MUDRIO1.4061.2771.2871.7691.386179.0
FOTQEM1.4171.2691.2921.7561.380173.8
MIZJUC1.4071.2811.2911.7611.392179.4
ROMXUN1.4141.2781.2781.7491.367-177.3
WISTAV1.4291.2561.2781.7531.413-177.6
WISTAV1.4121.2901.2881.7581.354177.2
WURVAI1.4101.2791.2791.7681.364174.9
This study1.405 (3)1.274 (3)1.286 (4)1.756 (3)1.398 (3)-168.9 (2)
Reference: MUDRIO: Mohamed et al. (2015); FOTQEM: Gautam & Chaudhary (2015); MIZJUC: Mague et al. (2014); ROMXUN: Ramachandran et al. (2009); WISTAV: Gupta & Chaudhary (2013); WURVAI: Gautam et al. (2013).
 

References

First citationBruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGautam, D. & Chaudhary, R. P. (2015). J. Mol. Struct. 1080, 137–144.  CrossRef CAS Google Scholar
First citationGautam, D., Gautam, P. & Chaudhary, R. P. (2013). Heterocycl. Commun. 19, 43–47.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, R. & Chaudhary, R. P. (2013). Phosphorus Sulfur Silicon, 188, 1296–1304.  CrossRef CAS Google Scholar
First citationHirai, K. & Sugimoto, H. (1977). Chem. Pharm. Bull. 25, 2292–2299.  CrossRef CAS Google Scholar
First citationLe Flohic, A., Meyer, C. & Cossy, J. (2005). Org. Lett. 7, 339–342.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o436–o437.  CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M. & Albayati, M. R. (2015). Private communication (refcode MUDRIO). CCDC, Cambridge, England.  Google Scholar
First citationNielsen, D. S., Hoang, H. N., Lohman, R., Diness, F. & Fairlie, D. P. (2012). Org. Lett. 14, 5720–5723.  CrossRef CAS Google Scholar
First citationRamachandran, R., Rani, M. & Kabilan, S. (2009). Acta Cryst. E65, o584.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchikawa, O., Fukatsu, K., Suno, M., Aono, T. & Doi, T. (1996). Chem. Pharm. Bull. 44, 2070–2077.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds