metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2-amino-7-methyl-4-oxidopteridine-6-carboxyl­ato-κ3O4,N5,O6)aqua­(1,10-phenanthroline-κ2N,N′)zinc trihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of North Bengal, Siliguri 734 013, India
*Correspondence e-mail: psrnbu@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 29 July 2015; accepted 3 August 2015; online 12 August 2015)

In the title compound, [Zn(C8H5N5O3)(C12H8N2)(H2O)]·3H2O, a tridentate 2-amino-7-methyl-4-oxidopteridine-6-carboxyl­ate ligand, a bidentate ancillary 1,10-phenanthroline (phen) ligand and a water mol­ecule complete a distorted octa­hedral coordination geometry around the ZnII atom. The pterin ligand forms two chelate rings. The phen and pterin ring systems are nearly perpendicular [dihedral angle = 85.16 (5)°]. Classical N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the complex mol­ecules and lattice water mol­ecules into a three-dimensional network. ππ stacking contacts are observed as well, with centroid-to-centroid distances of 3.5679 (14), 3.7004 (14), 3.6641 (15), 3.6974 (13) and 3.3412 (12) Å.

1. Related literature

For the importance of pterin in metalloenzymes, see: Basu & Burgmayer (2011[Basu, P. & Burgmayer, S. J. N. (2011). Coord. Chem. Rev. 255, 1016-1038.]); Burgmayer (1998[Burgmayer, S. J. N. (1998). Struct. Bonding, 92, 67-119.]); Fitzpatrick (2003[Fitzpatrick, P. F. (2003). Biochemistry, 42, 14083-14091.]); Fukuzumi & Kojima (2008[Fukuzumi, S. & Kojima, T. (2008). J. Biol. Inorg. Chem. 13, 321-333.]). For the biochemical importance of zinc–pterin inter­actions, see: Chreifi et al. (2014[Chreifi, G., Li, H., McInnes, C. R., Gibson, C. L., Suckling, C. J. & Poulos, T. L. (2014). Biochemistry, 53, 4216-4223.]). For the structure of a related zinc complex, see: Mitsumi et al. (1995[Mitsumi, M., Toyoda, J. & Nakasuji, K. (1995). Inorg. Chem. 34, 3367-3370.]). For the electron-shuffling ability of the pterin unit, as well as its donor groups, and the effect on the geometric parameters of related complexes, see: Baisya & Roy (2014[Baisya, S. S. & Roy, P. S. (2014). Acta Cryst. E70, 348-351.]); Beddoes et al. (1993[Beddoes, R. L., Russell, J. R., Garner, C. D. & Joule, J. A. (1993). Acta Cryst. C49, 1649-1652.]); Kohzuma et al. (1988[Kohzuma, T., Odani, A., Morita, Y., Takani, M. & Yamauchi, O. (1988). Inorg. Chem. 27, 3854-3858.]); Miyazaki et al. (2008[Miyazaki, S., Kojima, T., Sakamoto, T., Matsumoto, T., Ohkubo, K. & Fukuzumi, S. (2008). Inorg. Chem. 47, 333-343.]); Russell et al. (1992[Russell, J. R., Garner, C. D. & Joule, J. A. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1245-1249.]). For the synthesis of the pterin ligand, see: Wittle et al. (1947[Wittle, E. L., O'Dell, B. L., Vandenbelt, J. M. & Pfiffner, J. J. (1947). J. Am. Chem. Soc. 69, 1786-1792.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(C8H5N5O3)(C12H8N2)(H2O)]·3H2O

  • Mr = 536.81

  • Triclinic, [P \overline 1]

  • a = 8.4819 (7) Å

  • b = 9.9573 (9) Å

  • c = 13.7257 (12) Å

  • α = 97.667 (1)°

  • β = 95.243 (1)°

  • γ = 110.716 (1)°

  • V = 1062.51 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 293 K

  • 0.24 × 0.19 × 0.04 mm

2.2. Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.76, Tmax = 0.95

  • 9149 measured reflections

  • 4794 independent reflections

  • 4456 reflections with I > 2.0σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.089

  • S = 0.94

  • 4794 reflections

  • 346 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 2.1373 (15)
Zn1—O16 2.3727 (15)
Zn1—O18 2.1128 (16)
Zn1—N6 2.0303 (17)
Zn1—N19 2.0684 (17)
Zn1—N26 2.1627 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H171⋯O4i 0.85 (2) 2.15 (2) 2.942 (3) 156 (2)
N17—H172⋯O35ii 0.85 (3) 2.13 (3) 2.967 (3) 170 (2)
O18—H181⋯O35 0.81 (2) 1.92 (2) 2.700 (2) 163 (3)
O18—H182⋯N12ii 0.82 (2) 2.30 (3) 3.088 (2) 160 (3)
O33—H331⋯O16iii 0.81 (4) 2.13 (4) 2.929 (3) 169 (4)
O33—H332⋯O34iv 0.82 (3) 2.18 (4) 2.944 (3) 155 (5)
O34—H341⋯N14v 0.80 (3) 2.05 (3) 2.842 (3) 172 (3)
O34—H342⋯O2 0.79 (3) 2.28 (3) 3.010 (2) 154 (3)
O34—H342⋯O4 0.79 (3) 2.32 (3) 2.950 (2) 137 (3)
O35—H351⋯O34 0.81 (3) 1.94 (3) 2.735 (2) 167 (3)
O35—H352⋯N12vi 0.81 (3) 2.06 (3) 2.855 (3) 168 (3)
C20—H201⋯O4vii 0.93 2.49 3.186 (3) 132
C27—H271⋯O33 0.92 2.56 3.360 (4) 146
C29—H291⋯O16viii 0.91 2.55 3.394 (3) 156
Symmetry codes: (i) x+1, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) x-1, y, z; (iv) x, y+1, z; (v) x-1, y-1, z; (vi) x, y-1, z; (vii) x+1, y, z; (viii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Pterins (2- amino -4- oxidopteridines) are present in a wide range of biological functions including a large number of metalloenzymes (Basu & Burgmayer, 2011; Burgmayer, 1998; Fitzpatrick, 2003; Fukuzumi & Kojima, 2008). Even the biochemical importance of zinc–pterin inter­action has been established X-ray structurally (Chreifi et al., 2014). Literature survey revels the existence of only one x-ray structurally characterized zinc(II)–pterin complex (Mitsumi et al., 1995). The present effort is concerned with the title complex, possessing both a tridentate pterin ligand and a π-acceptor ancillary ligand like 1, 10—phenanthroline (phen). The six-coordinated ZnII atom exhibits departure from a regular o­cta­hedral geometry with respect to both bond lengths and angles (Fig. 1). The equatorial plane is formed by the two N atoms (N19, N26) of phen, the pyrazine ring N atom (N6) of the pterin ligand and the aqua O atom (O18). The axial positions are occupied by the two pterin O atoms (O2 and O16), with the latter one forming the longest axial bond [2.3724 (16) Å]. One important reason causing distortion from regular o­cta­hedral geometry is that this pterin ligand forms two five-membered chelate rings with small bite angles [76.28 (7) and 74.66 (6)°], instead of only one per pterin ligand for the earlier case (Mitsumi et al., 1995). A consideration of the charge balance of this complex indicates that this pterin ligand acts as a binegative tridentate ONO-donor. A near orthogonal disposition of the phen ligand and pterin chelate ring is observed, which affords minimum steric repulsion. Of the three axes, least deviation from linearity is observed in the O18—Zn1—N26 direction [173.36 (7)°].

The exocyclic bond length data of the pyrimidine ring, C15—O16 [1.257 (3) Å] and C13—N17 [1.335 (3) Å] merit attention. Participation by the pterin unit in the electron-shuffling process from the pyrazin ring N9 to the C15 carbonyl group is indicated, as suggested in the literature (Baisya & Roy, 2014; Beddoes et al., 1993; Kohzuma et al., 1988; Miyazaki et al., 2008; Russell et al., 1992). Formation of the Zn1—O16 bond assists this process.

In the crystal, the complex molecules and lattice water molecules are linked by inter­molecular N—H ··· O, O—H ··· N and O—H ··· O hydrogen bonds (Table 1) into a three-dimensional network. The lattice water molecules play a decisive role in the crystal packing process (Fig. 2). Fig. 3 indicates π-π stacking inter­actions involving two parallel, inversion-related pterin rings within the same unit cell and showing face-to-face distance of 3.6974 (13) and 3.3412 (12) Å. Besides this, the nearly parallel phen rings of adjacent molecules also display ππ stacking inter­actions with centroid–centroid distance of 3.5678 (14), 3.7004 (14) and 3.6641 (15) Å.

Experimental top

2-Amino-4-hy­droxy-7-methyl­pteridine-6-carb­oxy­lic acid sesquihydrate (C8H7N5O3.1.5H2O) was obtained by published procedure (Wittle et al. 1947). The title complex was prepared by the dropwise addition of a solution (15 ml) of ZnSO4. 7H2O (35.9 mg, 0.125 mmol) containing 1,10-phenanthroline monohydrate (25 mg, 0.125 mmol) to a warm (312 K) aqueous alkaline solution (NaOH: 11 mg, 0.275 mmol) of the pterin ligand (31 mg, 0.125 mmol). The pH value was maintained around 9.9–10.0 and the final volume was 60 ml. The reaction mixture was transferred to a 100 ml beaker and allowed to stand at room temperature. Light brown shining crystals suitable for single crystal X-ray diffraction appeared after 10 days (yield 30%).

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Related literature top

For the importance of pterin in metalloenzymes, see: Basu & Burgmayer (2011); Burgmayer (1998); Fitzpatrick (2003); Fukuzumi & Kojima (2008). For the biochemical importance of zinc–pterin interactions, see: Chreifi et al. (2014). For the structure of a related zinc complex, see: Mitsumi et al. (1995). For the electron-shuffling ability of the pterin unit, as well as its donor groups, and the effect on the geometric parameters of related complexes, see: Baisya & Roy (2014); Beddoes et al. (1993); Kohzuma et al. (1988); Miyazaki et al. (2008); Russell et al. (1992). For the synthesis of the pterin ligand, see: Wittle et al. (1947).

Structure description top

Pterins (2- amino -4- oxidopteridines) are present in a wide range of biological functions including a large number of metalloenzymes (Basu & Burgmayer, 2011; Burgmayer, 1998; Fitzpatrick, 2003; Fukuzumi & Kojima, 2008). Even the biochemical importance of zinc–pterin inter­action has been established X-ray structurally (Chreifi et al., 2014). Literature survey revels the existence of only one x-ray structurally characterized zinc(II)–pterin complex (Mitsumi et al., 1995). The present effort is concerned with the title complex, possessing both a tridentate pterin ligand and a π-acceptor ancillary ligand like 1, 10—phenanthroline (phen). The six-coordinated ZnII atom exhibits departure from a regular o­cta­hedral geometry with respect to both bond lengths and angles (Fig. 1). The equatorial plane is formed by the two N atoms (N19, N26) of phen, the pyrazine ring N atom (N6) of the pterin ligand and the aqua O atom (O18). The axial positions are occupied by the two pterin O atoms (O2 and O16), with the latter one forming the longest axial bond [2.3724 (16) Å]. One important reason causing distortion from regular o­cta­hedral geometry is that this pterin ligand forms two five-membered chelate rings with small bite angles [76.28 (7) and 74.66 (6)°], instead of only one per pterin ligand for the earlier case (Mitsumi et al., 1995). A consideration of the charge balance of this complex indicates that this pterin ligand acts as a binegative tridentate ONO-donor. A near orthogonal disposition of the phen ligand and pterin chelate ring is observed, which affords minimum steric repulsion. Of the three axes, least deviation from linearity is observed in the O18—Zn1—N26 direction [173.36 (7)°].

The exocyclic bond length data of the pyrimidine ring, C15—O16 [1.257 (3) Å] and C13—N17 [1.335 (3) Å] merit attention. Participation by the pterin unit in the electron-shuffling process from the pyrazin ring N9 to the C15 carbonyl group is indicated, as suggested in the literature (Baisya & Roy, 2014; Beddoes et al., 1993; Kohzuma et al., 1988; Miyazaki et al., 2008; Russell et al., 1992). Formation of the Zn1—O16 bond assists this process.

In the crystal, the complex molecules and lattice water molecules are linked by inter­molecular N—H ··· O, O—H ··· N and O—H ··· O hydrogen bonds (Table 1) into a three-dimensional network. The lattice water molecules play a decisive role in the crystal packing process (Fig. 2). Fig. 3 indicates π-π stacking inter­actions involving two parallel, inversion-related pterin rings within the same unit cell and showing face-to-face distance of 3.6974 (13) and 3.3412 (12) Å. Besides this, the nearly parallel phen rings of adjacent molecules also display ππ stacking inter­actions with centroid–centroid distance of 3.5678 (14), 3.7004 (14) and 3.6641 (15) Å.

2-Amino-4-hy­droxy-7-methyl­pteridine-6-carb­oxy­lic acid sesquihydrate (C8H7N5O3.1.5H2O) was obtained by published procedure (Wittle et al. 1947). The title complex was prepared by the dropwise addition of a solution (15 ml) of ZnSO4. 7H2O (35.9 mg, 0.125 mmol) containing 1,10-phenanthroline monohydrate (25 mg, 0.125 mmol) to a warm (312 K) aqueous alkaline solution (NaOH: 11 mg, 0.275 mmol) of the pterin ligand (31 mg, 0.125 mmol). The pH value was maintained around 9.9–10.0 and the final volume was 60 ml. The reaction mixture was transferred to a 100 ml beaker and allowed to stand at room temperature. Light brown shining crystals suitable for single crystal X-ray diffraction appeared after 10 days (yield 30%).

For the importance of pterin in metalloenzymes, see: Basu & Burgmayer (2011); Burgmayer (1998); Fitzpatrick (2003); Fukuzumi & Kojima (2008). For the biochemical importance of zinc–pterin interactions, see: Chreifi et al. (2014). For the structure of a related zinc complex, see: Mitsumi et al. (1995). For the electron-shuffling ability of the pterin unit, as well as its donor groups, and the effect on the geometric parameters of related complexes, see: Baisya & Roy (2014); Beddoes et al. (1993); Kohzuma et al. (1988); Miyazaki et al. (2008); Russell et al. (1992). For the synthesis of the pterin ligand, see: Wittle et al. (1947).

Refinement details top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98 Å, N—H in the range 0.86–0.89 Å and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, viewed along the b axis. Dotted lines indicate hydrogen bonds.
[Figure 3] Fig. 3. A molecular packing diagram highlighting ππ stacking interactions between two phen–phen and pterin–pterin rings, respectively.
(I) top
Crystal data top
[Zn(C8H5N5O3)(C12H8N2(H2O)]·3H2OZ = 2
Mr = 536.81F(000) = 552
Triclinic, P1Dx = 1.678 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4819 (7) ÅCell parameters from 0 reflections
b = 9.9573 (9) Åθ = 0–0°
c = 13.7257 (12) ŵ = 1.22 mm1
α = 97.667 (1)°T = 293 K
β = 95.243 (1)°Plate, orange brown
γ = 110.716 (1)°0.24 × 0.19 × 0.04 mm
V = 1062.51 (16) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
4456 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.018
φ & ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.76, Tmax = 0.95k = 1313
9149 measured reflectionsl = 1718
4794 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 57.7 96.4 59.4 25.6 6.16
S = 0.94(Δ/σ)max = 0.001
4794 reflectionsΔρmax = 0.64 e Å3
346 parametersΔρmin = 0.33 e Å3
12 restraints
Crystal data top
[Zn(C8H5N5O3)(C12H8N2(H2O)]·3H2Oγ = 110.716 (1)°
Mr = 536.81V = 1062.51 (16) Å3
Triclinic, P1Z = 2
a = 8.4819 (7) ÅMo Kα radiation
b = 9.9573 (9) ŵ = 1.22 mm1
c = 13.7257 (12) ÅT = 293 K
α = 97.667 (1)°0.24 × 0.19 × 0.04 mm
β = 95.243 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
4794 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4456 reflections with I > 2.0σ(I)
Tmin = 0.76, Tmax = 0.95Rint = 0.018
9149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.64 e Å3
4794 reflectionsΔρmin = 0.33 e Å3
346 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.95623 (3)0.21520 (3)0.228578 (17)0.0166
O20.70435 (19)0.06939 (16)0.23606 (11)0.0206
C30.6217 (3)0.1186 (2)0.29541 (15)0.0182
O40.47875 (19)0.04655 (17)0.31282 (12)0.0231
C50.7109 (3)0.2776 (2)0.34528 (15)0.0164
N60.8648 (2)0.33756 (18)0.32071 (12)0.0149
C70.9604 (3)0.4752 (2)0.35603 (14)0.0155
C80.9030 (3)0.5640 (2)0.41988 (15)0.0169
N90.7480 (2)0.5050 (2)0.44879 (14)0.0198
C100.6531 (3)0.3650 (2)0.41309 (16)0.0191
C110.4848 (3)0.3041 (3)0.4490 (2)0.0308
H1110.39270.27830.39820.0483*
H1130.47520.37210.49980.0481*
H1120.47680.21780.47560.0485*
N120.9998 (2)0.70678 (19)0.45260 (13)0.0182
C131.1515 (3)0.7547 (2)0.41752 (15)0.0180
N141.2199 (2)0.67528 (19)0.35785 (13)0.0175
C151.1294 (3)0.5323 (2)0.32689 (15)0.0168
O161.17955 (19)0.44769 (16)0.27321 (11)0.0198
N171.2464 (2)0.8967 (2)0.44431 (15)0.0227
H1721.213 (3)0.954 (2)0.481 (2)0.0276*
H1711.334 (3)0.933 (2)0.4174 (19)0.0277*
O181.0532 (2)0.14070 (18)0.34889 (12)0.0218
H1810.989 (4)0.061 (2)0.355 (2)0.0355*
H1821.063 (4)0.196 (3)0.4008 (17)0.0360*
N191.1061 (2)0.15973 (19)0.13227 (13)0.0168
C201.2233 (3)0.1030 (2)0.15288 (16)0.0204
C211.3255 (3)0.0777 (3)0.08353 (18)0.0250
C221.3061 (3)0.1119 (3)0.00880 (17)0.0250
C231.1848 (3)0.1743 (2)0.03259 (16)0.0200
C241.0876 (3)0.1965 (2)0.04125 (15)0.0171
C250.9617 (3)0.2597 (2)0.02089 (15)0.0165
N260.8729 (2)0.27983 (19)0.09497 (13)0.0174
C270.7551 (3)0.3368 (2)0.07879 (16)0.0211
C280.7189 (3)0.3760 (3)0.01264 (18)0.0260
C290.8072 (3)0.3552 (2)0.08843 (17)0.0247
C300.9340 (3)0.2960 (2)0.07305 (16)0.0210
C311.0338 (3)0.2694 (3)0.14734 (17)0.0280
C321.1539 (3)0.2124 (3)0.12796 (17)0.0266
H3211.21570.19680.17560.0332*
H3111.01380.29290.20930.0332*
H2910.78520.38130.14760.0296*
H2810.63600.41400.02130.0316*
H2710.69590.35190.12960.0262*
H2211.37080.09580.05490.0310*
H2111.40430.03800.10060.0321*
H2011.23670.07880.21530.0258*
O330.4935 (3)0.4716 (2)0.1913 (2)0.0499
H3310.407 (4)0.454 (5)0.216 (3)0.0756*
H3320.535 (6)0.560 (2)0.211 (4)0.0757*
O340.5353 (2)0.23088 (17)0.28297 (13)0.0244
H3410.452 (3)0.257 (4)0.309 (2)0.0388*
H3420.547 (4)0.156 (3)0.265 (2)0.0388*
O350.8383 (2)0.09668 (17)0.40775 (12)0.0225
H3510.747 (3)0.148 (3)0.375 (2)0.0346*
H3520.874 (4)0.156 (3)0.426 (2)0.0349*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01928 (13)0.01775 (13)0.01479 (12)0.00892 (9)0.00487 (8)0.00239 (8)
O20.0205 (7)0.0176 (7)0.0217 (7)0.0054 (6)0.0039 (6)0.0014 (6)
C30.0189 (10)0.0180 (10)0.0177 (9)0.0069 (8)0.0001 (7)0.0047 (8)
O40.0172 (7)0.0204 (8)0.0276 (8)0.0015 (6)0.0054 (6)0.0043 (6)
C50.0157 (9)0.0164 (9)0.0174 (9)0.0058 (7)0.0024 (7)0.0045 (7)
N60.0156 (8)0.0158 (8)0.0138 (7)0.0060 (6)0.0031 (6)0.0033 (6)
C70.0172 (9)0.0174 (9)0.0122 (8)0.0062 (7)0.0025 (7)0.0036 (7)
C80.0184 (9)0.0176 (9)0.0164 (9)0.0082 (8)0.0031 (7)0.0039 (7)
N90.0184 (8)0.0188 (8)0.0239 (9)0.0083 (7)0.0070 (7)0.0031 (7)
C100.0163 (9)0.0209 (10)0.0218 (10)0.0078 (8)0.0061 (8)0.0043 (8)
C110.0196 (11)0.0247 (11)0.0435 (14)0.0035 (9)0.0146 (10)0.0026 (10)
N120.0199 (8)0.0163 (8)0.0188 (8)0.0073 (7)0.0040 (7)0.0023 (7)
C130.0191 (9)0.0185 (10)0.0172 (9)0.0079 (8)0.0015 (7)0.0041 (8)
N140.0180 (8)0.0149 (8)0.0188 (8)0.0050 (7)0.0048 (6)0.0023 (6)
C150.0182 (9)0.0177 (9)0.0158 (9)0.0071 (7)0.0037 (7)0.0057 (7)
O160.0197 (7)0.0164 (7)0.0229 (7)0.0057 (6)0.0088 (6)0.0011 (6)
N170.0220 (9)0.0152 (8)0.0283 (10)0.0036 (7)0.0091 (8)0.0000 (7)
O180.0228 (8)0.0211 (8)0.0204 (7)0.0060 (6)0.0029 (6)0.0065 (6)
N190.0191 (8)0.0142 (8)0.0159 (8)0.0062 (6)0.0015 (6)0.0002 (6)
C200.0201 (10)0.0187 (10)0.0205 (10)0.0071 (8)0.0013 (8)0.0001 (8)
C210.0200 (10)0.0238 (11)0.0308 (12)0.0107 (9)0.0013 (9)0.0026 (9)
C220.0207 (10)0.0257 (11)0.0259 (11)0.0081 (9)0.0079 (8)0.0065 (9)
C230.0189 (10)0.0184 (9)0.0187 (9)0.0035 (8)0.0047 (8)0.0012 (8)
C240.0170 (9)0.0153 (9)0.0155 (9)0.0034 (7)0.0017 (7)0.0010 (7)
C250.0162 (9)0.0139 (9)0.0173 (9)0.0035 (7)0.0025 (7)0.0015 (7)
N260.0178 (8)0.0183 (8)0.0160 (8)0.0063 (7)0.0031 (6)0.0032 (6)
C270.0190 (10)0.0228 (10)0.0230 (10)0.0090 (8)0.0055 (8)0.0040 (8)
C280.0233 (11)0.0261 (11)0.0307 (12)0.0107 (9)0.0004 (9)0.0100 (9)
C290.0262 (11)0.0241 (11)0.0216 (10)0.0060 (9)0.0016 (9)0.0099 (9)
C300.0225 (10)0.0178 (10)0.0188 (10)0.0025 (8)0.0015 (8)0.0047 (8)
C310.0355 (13)0.0291 (12)0.0161 (10)0.0069 (10)0.0050 (9)0.0058 (9)
C320.0296 (12)0.0292 (12)0.0187 (10)0.0076 (9)0.0098 (9)0.0017 (9)
O330.0397 (12)0.0342 (11)0.0765 (16)0.0141 (9)0.0294 (11)0.0026 (11)
O340.0200 (8)0.0188 (8)0.0328 (9)0.0042 (6)0.0082 (6)0.0043 (7)
O350.0222 (8)0.0172 (7)0.0278 (8)0.0072 (6)0.0017 (6)0.0048 (6)
Geometric parameters (Å, º) top
Zn1—O22.1373 (15)N19—C201.332 (3)
Zn1—O162.3727 (15)N19—C241.359 (3)
Zn1—O182.1128 (16)C20—C211.401 (3)
Zn1—N62.0303 (17)C20—H2010.928
Zn1—N192.0684 (17)C21—C221.366 (4)
Zn1—N262.1627 (18)C21—H2110.917
O2—C31.279 (3)C22—C231.413 (3)
C3—O41.235 (3)C22—H2210.909
C3—C51.522 (3)C23—C241.406 (3)
C5—N61.325 (3)C23—C321.437 (3)
C5—C101.426 (3)C24—C251.442 (3)
N6—C71.317 (3)C25—N261.355 (3)
C7—C81.401 (3)C25—C301.406 (3)
C7—C151.459 (3)N26—C271.327 (3)
C8—N91.357 (3)C27—C281.402 (3)
C8—N121.354 (3)C27—H2710.923
N9—C101.335 (3)C28—C291.372 (3)
C10—C111.499 (3)C28—H2810.916
C11—H1110.934C29—C301.410 (3)
C11—H1130.936C29—H2910.909
C11—H1120.960C30—C311.439 (3)
N12—C131.362 (3)C31—C321.353 (4)
C13—N141.368 (3)C31—H3110.929
C13—N171.335 (3)C32—H3210.906
N14—C151.342 (3)O33—H3310.803 (19)
C15—O161.257 (3)O33—H3320.816 (19)
N17—H1720.851 (17)O34—H3410.800 (18)
N17—H1710.848 (17)O34—H3420.795 (18)
O18—H1810.809 (17)O35—H3510.813 (17)
O18—H1820.817 (17)O35—H3520.803 (17)
O2—Zn1—N676.37 (6)C13—N17—H171119.4 (14)
O2—Zn1—O16150.97 (6)H172—N17—H171119 (2)
N6—Zn1—O1674.60 (6)Zn1—O18—H181112 (2)
O2—Zn1—O1890.05 (6)Zn1—O18—H182110 (2)
N6—Zn1—O1891.77 (7)H181—O18—H182106 (3)
O16—Zn1—O1891.21 (6)Zn1—N19—C20127.00 (15)
O2—Zn1—N19121.85 (6)Zn1—N19—C24114.19 (14)
N6—Zn1—N19160.68 (7)C20—N19—C24118.63 (18)
O16—Zn1—N1986.96 (6)N19—C20—C21122.3 (2)
O18—Zn1—N1994.39 (7)N19—C20—H201118.6
O2—Zn1—N2692.53 (6)C21—C20—H201119.1
N6—Zn1—N2694.76 (7)C20—C21—C22119.6 (2)
O16—Zn1—N2689.49 (6)C20—C21—H211119.5
O18—Zn1—N26173.38 (6)C22—C21—H211120.8
N19—Zn1—N2679.07 (7)C21—C22—C23119.5 (2)
Zn1—O2—C3115.97 (13)C21—C22—H221120.8
O2—C3—O4124.45 (19)C23—C22—H221119.6
O2—C3—C5115.38 (18)C22—C23—C24117.3 (2)
O4—C3—C5120.17 (19)C22—C23—C32123.6 (2)
C3—C5—N6112.43 (17)C24—C23—C32119.1 (2)
C3—C5—C10129.33 (19)C23—C24—N19122.57 (19)
N6—C5—C10118.23 (18)C23—C24—C25119.65 (19)
C5—N6—Zn1119.65 (14)N19—C24—C25117.78 (18)
C5—N6—C7120.98 (18)C24—C25—N26117.17 (18)
Zn1—N6—C7119.37 (14)C24—C25—C30120.11 (19)
N6—C7—C8121.49 (19)N26—C25—C30122.71 (19)
N6—C7—C15117.67 (18)Zn1—N26—C25111.62 (13)
C8—C7—C15120.84 (18)Zn1—N26—C27129.44 (14)
C7—C8—N9119.03 (19)C25—N26—C27118.92 (18)
C7—C8—N12120.91 (19)N26—C27—C28122.2 (2)
N9—C8—N12120.06 (18)N26—C27—H271118.9
C8—N9—C10118.80 (18)C28—C27—H271118.9
C5—C10—N9121.40 (19)C27—C28—C29119.4 (2)
C5—C10—C11121.82 (19)C27—C28—H281119.8
N9—C10—C11116.77 (19)C29—C28—H281120.8
C10—C11—H111112.4C28—C29—C30119.6 (2)
C10—C11—H113110.0C28—C29—H291119.8
H111—C11—H113109.1C30—C29—H291120.6
C10—C11—H112109.7C29—C30—C25117.2 (2)
H111—C11—H112107.5C29—C30—C31124.2 (2)
H113—C11—H112107.9C25—C30—C31118.7 (2)
C8—N12—C13114.98 (17)C30—C31—C32121.4 (2)
N12—C13—N14128.05 (19)C30—C31—H311118.0
N12—C13—N17116.57 (19)C32—C31—H311120.6
N14—C13—N17115.38 (19)C23—C32—C31121.1 (2)
C13—N14—C15118.29 (18)C23—C32—H321118.9
C7—C15—N14116.72 (18)C31—C32—H321120.1
C7—C15—O16119.05 (18)H331—O33—H33299 (5)
N14—C15—O16124.20 (19)H341—O34—H342110 (3)
Zn1—O16—C15109.18 (13)H351—O35—H352102 (3)
C13—N17—H172121.5 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H171···O4i0.85 (2)2.15 (2)2.942 (3)156 (2)
N17—H172···O35ii0.85 (3)2.13 (3)2.967 (3)170 (2)
O18—H181···O350.81 (2)1.92 (2)2.700 (2)163 (3)
O18—H182···N12ii0.82 (2)2.30 (3)3.088 (2)160 (3)
O33—H331···O16iii0.81 (4)2.13 (4)2.929 (3)169 (4)
O33—H332···O34iv0.82 (3)2.18 (4)2.944 (3)155 (5)
O34—H341···N14v0.80 (3)2.05 (3)2.842 (3)172 (3)
O34—H342···O20.79 (3)2.28 (3)3.010 (2)154 (3)
O34—H342···O40.79 (3)2.32 (3)2.950 (2)137 (3)
O35—H351···O340.81 (3)1.94 (3)2.735 (2)167 (3)
O35—H352···N12vi0.81 (3)2.06 (3)2.855 (3)168 (3)
C20—H201···O4vii0.932.493.186 (3)132
C27—H271···O330.922.563.360 (4)146
C29—H291···O16viii0.912.553.394 (3)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x, y1, z; (vii) x+1, y, z; (viii) x+2, y+1, z.
Selected bond lengths (Å) top
Zn1—O22.1373 (15)Zn1—N62.0303 (17)
Zn1—O162.3727 (15)Zn1—N192.0684 (17)
Zn1—O182.1128 (16)Zn1—N262.1627 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H171···O4i0.85 (2)2.15 (2)2.942 (3)156 (2)
N17—H172···O35ii0.85 (3)2.13 (3)2.967 (3)170 (2)
O18—H181···O350.81 (2)1.92 (2)2.700 (2)163 (3)
O18—H182···N12ii0.82 (2)2.30 (3)3.088 (2)160 (3)
O33—H331···O16iii0.81 (4)2.13 (4)2.929 (3)169 (4)
O33—H332···O34iv0.82 (3)2.18 (4)2.944 (3)155 (5)
O34—H341···N14v0.80 (3)2.05 (3)2.842 (3)172 (3)
O34—H342···O20.79 (3)2.28 (3)3.010 (2)154 (3)
O34—H342···O40.79 (3)2.32 (3)2.950 (2)137 (3)
O35—H351···O340.81 (3)1.94 (3)2.735 (2)167 (3)
O35—H352···N12vi0.81 (3)2.06 (3)2.855 (3)168 (3)
C20—H201···O4vii0.932.493.186 (3)132
C27—H271···O330.922.563.360 (4)146
C29—H291···O16viii0.912.553.394 (3)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x1, y1, z; (vi) x, y1, z; (vii) x+1, y, z; (viii) x+2, y+1, z.
 

Acknowledgements

The authors express their gratitude to the UGC, New Delhi, for financial assistance (SAP–DRS program). Thanks are due to the CSMCRI, Bhavnagar, Gujrat, India, for the X-ray structural data and the University of North Bengal for infrastructure.

References

First citationBaisya, S. S. & Roy, P. S. (2014). Acta Cryst. E70, 348–351.  CSD CrossRef IUCr Journals Google Scholar
First citationBasu, P. & Burgmayer, S. J. N. (2011). Coord. Chem. Rev. 255, 1016–1038.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBeddoes, R. L., Russell, J. R., Garner, C. D. & Joule, J. A. (1993). Acta Cryst. C49, 1649–1652.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationBurgmayer, S. J. N. (1998). Struct. Bonding, 92, 67–119.  CAS Google Scholar
First citationChreifi, G., Li, H., McInnes, C. R., Gibson, C. L., Suckling, C. J. & Poulos, T. L. (2014). Biochemistry, 53, 4216–4223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFitzpatrick, P. F. (2003). Biochemistry, 42, 14083–14091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFukuzumi, S. & Kojima, T. (2008). J. Biol. Inorg. Chem. 13, 321–333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKohzuma, T., Odani, A., Morita, Y., Takani, M. & Yamauchi, O. (1988). Inorg. Chem. 27, 3854–3858.  CrossRef CAS Web of Science Google Scholar
First citationMitsumi, M., Toyoda, J. & Nakasuji, K. (1995). Inorg. Chem. 34, 3367–3370.  CSD CrossRef CAS Web of Science Google Scholar
First citationMiyazaki, S., Kojima, T., Sakamoto, T., Matsumoto, T., Ohkubo, K. & Fukuzumi, S. (2008). Inorg. Chem. 47, 333–343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRussell, J. R., Garner, C. D. & Joule, J. A. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1245–1249.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWittle, E. L., O'Dell, B. L., Vandenbelt, J. M. & Pfiffner, J. J. (1947). J. Am. Chem. Soc. 69, 1786–1792.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds