organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o735-o736

Crystal structure of 5-chloro-1,3-bis­­[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-1H-benz­imidazol-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie de la Matière condensée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fès, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: k_bouayad@yahoo.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 28 July 2015; accepted 28 August 2015; online 12 September 2015)

In the title compound, C17H19ClN4O5, the benzimidazole fused-ring system is essentially planar, the maximum deviation from the mean plane being 0.06 (1) Å. Both oxazolidine rings are nearly planar, the maximum deviations from the mean planes are 0.071 (13) and 0.070 (10) Å. The dihedral angle between the mean planes of the oxazolidine rings is 69.9 (7)°. The benzimidazole mean plane makes the dihedral angles of 43.9 (6) and 45.6 (6)° with the two oxazolidine rings. In the crystal, the mol­ecules are linked together by weak C—H⋯O hydrogen bonds building zigzag tapes running along the c axis. The Cl atom is split over two positions with an occupancy ratio of 0.567 (7):0.433 (7). This means that the reaction yields two isomers, A and B; the A component has the Cl-atom substituent in the 5-position of the benzimidazolone ring and the B component has the Cl atom in the 6-position. The two isomers form the disordered co-crystal, with a nearly half Cl atom in each of them, as indicated by the occupancy ratio. The crystal structure was refined as an inversion twin.

1. Related literature

For biological properties of benzimidazol-2-one derivatives, see: Gribkoff et al. (1994[Gribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983-10986.]); Olesen et al. (1994[Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53-59.]); Soderlind et al. (1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19-36.]). For anti­bacterial activity oxazolidin-2-ones, see: Diekema & Jones (2000[Diekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7-16.]); Mukhtar & Wright (2005[Mukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529-542.]). For asymmetric reactions of oxazolidin-2-ones, see: Evans et al. (1993[Evans, D. A., Ng, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446-11459.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073-8094.]). For oxazolidin-2-one derivatives, see: Ouzidan et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362-o363.]); Dardouri et al. (2011[Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H19ClN4O5

  • Mr = 394.81

  • Orthorhombic, P c a 21

  • a = 14.053 (8) Å

  • b = 13.438 (6) Å

  • c = 9.733 (4) Å

  • V = 1838.1 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.35 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.504, Tmax = 0.748

  • 9588 measured reflections

  • 3701 independent reflections

  • 1697 reflections with I > 2σ(I)

  • Rint = 0.052

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.150

  • S = 1.01

  • 3701 reflections

  • 255 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Refined as an inversion twin

  • Absolute structure parameter: 0.5 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2i 0.97 2.42 3.247 (13) 143
C14—H14A⋯O4ii 0.97 2.48 3.315 (13) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazol-2-one derivatives are useful heterocyclic building blocks and are prominent structural elements of compounds demonstrating a wide variety of pharmacological and biochemical properties(Gribkoff et al., 1994; Olesen et al., 1994; Soderlind et al., 1999).

Also, oxazolidin-2-ones are a very important class of heterocyclic compounds and their derivatives have attracted attention in various areas of drug development for antibacterial activity (Diekema & Jones, 2000; Mukhtar & Wright, 2005). Some oxazolidin-2-ones have been used as chiral auxiliaries in a wide range of asymmetric reactions (Evans et al., 1993; Matsunaga et al., 2005). In a previous study, we reacted 1H-benzo[d]imidazol-2(3H)-one with bis(2-chloroethyl)amine hydrochloride in the presence of a catalytic quantity of tetra-n-butylammonium bromide to form 1,3-bis(2-(2-oxooxazolidin-3-yl)ethyl)-1H-benzo[d]imidazol-2(3H)-one (Ouzidan et al., 2011). The study is extended to the synthesis of the 5-chloro analog to furnish the title compound (Scheme 1).

The molecule of title compound is build up from a fused five- and six-membered rings linked through ethyl groups, on opposite side, to two 2-oxo-oxazolidin- 3-yl rings as shown in Fig. 1. The chlorine in 5-chloro-benzo[d]imidazol-2(3H) -one is splited in two positions with an occupancy ratio of Cl1B = 0.567 (7) and Cl1A = 0.433 (7). As a matter of fact, we have two isomers that form a disordered co-crystal, like in the 5-Chloro-1-[(E)-3-(dimethylamino)acryloyl]- 3-methyl-1H-benzimidazol-2(3H)-one-6-chloro-1-[(E)-3-(dimethylamino)acryloyl]- 3-methyl-1H-benzimidazol-2(3H)-one(4/1) (Dardouri et al., 2011), but with a nearly half chlorine atom in each of them as shown in the occupancy ratio of Cl1A and Cl1B. The fused rings system (N2N3C6 – C12) is essentially planar with the largest deviation from the mean plane being 0.06 (1) Å at C8 atom. The benzimidazole plane makes dihedral angles of 43.9 (6)° and 45.6 (6)° with the two 2-oxo-oxazolidin-3-yl rings, (O1N1C1-C3) and (O5N4C15-C17), respectively. The dihedral angle between the two 2-oxo-oxazolidin-3-yl rings is of 69.9 (7)°. In the crystal, the molecules are linked together by C4–H4A···O2 and C14–H14A···O4 hydrogen bonds in the way to build a zigzag tape along c axis as shown in Fig. 2 and Table 2.

Related literature top

For biological properties of benzimidazol-2-one derivatives, see: Gribkoff et al. (1994); Olesen et al. (1994); Soderlind et al. (1999). For antibacterial activity oxazolidin-2-ones, see: Diekema & Jones (2000); Mukhtar & Wright (2005). For asymmetric reactions of oxazolidin-2-ones, see: Evans et al. (1993); Matsunaga et al. (2005). For oxazolidin-2-one derivatives, see: Ouzidan et al. (2011); Dardouri et al. (2011).

Experimental top

To 5-chloro-1H-benzo[d]imidazol-2(3H)-one (0,2 g, 1.18 mmol), potassium carbonate (0.65 g, 4.74 mmol), and tetra-n-butylammonium bromide (0.05 g, 0,1 mmol) in DMF (15 ml) was added bis(2-chloroethyl)amine hydrochloride (0.52 g, 3 mmol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using (ethanol/ethylacetate: 1/4) as eluent to furnish colourless crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. In the molecule there is a pseudo center of symmetry but the results of the structure refinement in the centro symmetric Pbcn space group are not satisfactory. The absolute structure cannot be determined reliably and the structure is refined as a 2-component inversion twin.

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C).

The chlorine atom is disordered over two positions so that leads to two isomers: 5-chloro-3-methylbenzimidazol-2-one component and a 6-chloro-3-methylbenzimidazol-2-one. The occupancy refined to an 0.567 (7): 0.433 (7) ratio. The C7–C8, C8–C9 and C9–C10 distances were restrained to 1.38 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Intermolecular interactions in the title compound building a zigzag tape along c axis. Hydrogen bonds are shown as dashed lines.
5-Chloro-1,3-bis[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-1H-benzimidazol-2(3H)-one top
Crystal data top
C17H19ClN4O5Dx = 1.423 Mg m3
Mr = 394.81Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 3701 reflections
a = 14.053 (8) Åθ = 1.5–26.4°
b = 13.438 (6) ŵ = 0.25 mm1
c = 9.733 (4) ÅT = 296 K
V = 1838.1 (15) Å3Block, colourless
Z = 40.35 × 0.31 × 0.26 mm
F(000) = 820
Data collection top
Bruker X8 APEX
diffractometer
3701 independent reflections
Radiation source: fine-focus sealed tube1697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1317
Tmin = 0.504, Tmax = 0.748k = 1616
9588 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3226P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.21 e Å3
3701 reflectionsΔρmin = 0.16 e Å3
255 parametersAbsolute structure: Refined as an inversion twin.
4 restraintsAbsolute structure parameter: 0.5 (5)
Crystal data top
C17H19ClN4O5V = 1838.1 (15) Å3
Mr = 394.81Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.053 (8) ŵ = 0.25 mm1
b = 13.438 (6) ÅT = 296 K
c = 9.733 (4) Å0.35 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
3701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1697 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.748Rint = 0.052
9588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150Δρmax = 0.21 e Å3
S = 1.01Δρmin = 0.16 e Å3
3701 reflectionsAbsolute structure: Refined as an inversion twin.
255 parametersAbsolute structure parameter: 0.5 (5)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5061 (11)0.6238 (11)0.3946 (17)0.141 (6)
H1A0.56600.59430.36600.169*
H1B0.51190.69550.38790.169*
C20.4284 (10)0.5885 (9)0.3051 (13)0.094 (4)
H2A0.38880.64310.27370.113*
H2B0.45270.55230.22640.113*
C30.4066 (8)0.5371 (8)0.5275 (13)0.060 (3)
C40.2918 (6)0.4698 (6)0.3603 (12)0.068 (3)
H4A0.25850.50660.28940.082*
H4B0.25010.46500.43950.082*
C50.3133 (7)0.3677 (7)0.3089 (10)0.074 (3)
H5A0.25520.33940.27210.089*
H5B0.35820.37330.23360.089*
C60.4456 (8)0.2814 (7)0.4386 (11)0.058 (3)
C70.5213 (9)0.3189 (9)0.3704 (15)0.093 (4)
H70.51000.35700.29230.111*
C80.6121 (8)0.3041 (8)0.4091 (11)0.093 (3)
H80.66480.33510.37040.112*0.567 (7)
C90.6151 (7)0.2357 (7)0.5151 (15)0.085 (4)
H90.67620.21610.53950.102*0.433 (7)
C100.5401 (8)0.1888 (8)0.5959 (13)0.087 (4)
H100.55210.14620.66920.104*
C110.4446 (10)0.2151 (7)0.5506 (11)0.067 (3)
C120.2912 (5)0.2497 (9)0.5031 (13)0.0513 (14)
C130.3124 (7)0.1304 (6)0.6914 (9)0.071 (3)
H13A0.25380.15700.72930.085*
H13B0.35820.12400.76540.085*
C140.2935 (7)0.0280 (6)0.6264 (11)0.067 (3)
H14A0.25580.01130.68980.080*
H14B0.25600.03730.54370.080*
C150.4330 (8)0.0839 (8)0.6883 (11)0.068 (3)
H15A0.39590.13850.72560.081*
H15B0.45520.04230.76320.081*
C160.5157 (7)0.1221 (8)0.6022 (10)0.075 (3)
H16A0.57430.08760.62470.090*
H16B0.52480.19310.61460.090*
C170.4082 (9)0.0368 (8)0.4637 (11)0.066 (3)
N10.3770 (6)0.5234 (5)0.3986 (8)0.052 (2)
N20.3510 (7)0.3007 (6)0.4064 (9)0.064 (2)
N30.3503 (6)0.1993 (5)0.5834 (8)0.0473 (19)
N40.3790 (6)0.0276 (6)0.5914 (9)0.059 (2)
O10.4858 (6)0.5965 (7)0.5304 (9)0.094 (3)
O20.3747 (6)0.4989 (7)0.6326 (8)0.094 (3)
O30.2045 (3)0.2489 (6)0.4997 (11)0.0705 (11)
O40.3742 (6)0.0045 (6)0.3617 (8)0.096 (3)
O50.4846 (6)0.0991 (6)0.4629 (8)0.087 (3)
Cl1A0.7305 (5)0.2867 (5)0.4090 (11)0.103 (4)0.433 (7)
Cl1B0.7313 (5)0.2114 (5)0.5813 (11)0.140 (4)0.567 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.139 (13)0.160 (14)0.123 (13)0.094 (11)0.019 (12)0.004 (12)
C20.131 (13)0.087 (10)0.064 (8)0.026 (9)0.012 (9)0.007 (7)
C30.053 (8)0.066 (7)0.060 (7)0.007 (5)0.007 (6)0.006 (6)
C40.067 (9)0.056 (7)0.082 (8)0.004 (5)0.033 (6)0.012 (6)
C50.104 (10)0.066 (8)0.053 (6)0.031 (6)0.025 (7)0.003 (6)
C60.040 (7)0.060 (6)0.074 (8)0.013 (6)0.008 (6)0.028 (6)
C70.070 (8)0.105 (9)0.103 (8)0.019 (7)0.012 (7)0.040 (7)
C80.076 (8)0.106 (9)0.097 (7)0.015 (6)0.012 (6)0.010 (6)
C90.047 (5)0.071 (8)0.137 (11)0.024 (5)0.028 (8)0.047 (7)
C100.099 (10)0.077 (7)0.084 (7)0.048 (8)0.036 (7)0.051 (6)
C110.099 (11)0.044 (5)0.058 (7)0.009 (6)0.012 (7)0.020 (6)
C120.070 (4)0.041 (3)0.043 (3)0.013 (7)0.002 (7)0.003 (2)
C130.120 (11)0.045 (6)0.047 (5)0.003 (6)0.021 (6)0.008 (5)
C140.102 (10)0.046 (6)0.052 (6)0.018 (6)0.018 (6)0.007 (5)
C150.083 (9)0.063 (8)0.056 (6)0.014 (6)0.006 (6)0.013 (6)
C160.089 (8)0.082 (7)0.055 (6)0.023 (6)0.013 (6)0.007 (6)
C170.079 (10)0.080 (8)0.038 (6)0.000 (7)0.006 (7)0.003 (6)
N10.075 (6)0.037 (5)0.042 (4)0.019 (4)0.000 (5)0.004 (4)
N20.090 (7)0.048 (5)0.055 (5)0.005 (5)0.005 (6)0.007 (4)
N30.054 (5)0.041 (5)0.047 (4)0.003 (4)0.001 (4)0.010 (4)
N40.079 (7)0.059 (6)0.040 (4)0.004 (5)0.015 (5)0.013 (4)
O10.096 (7)0.120 (7)0.064 (5)0.036 (6)0.001 (5)0.019 (5)
O20.097 (7)0.135 (7)0.051 (5)0.013 (5)0.005 (4)0.012 (5)
O30.055 (3)0.068 (2)0.090 (3)0.008 (5)0.002 (7)0.0005 (19)
O40.098 (7)0.151 (8)0.038 (4)0.031 (5)0.003 (4)0.019 (5)
O50.082 (6)0.113 (7)0.066 (5)0.037 (5)0.015 (5)0.008 (5)
Cl1A0.067 (6)0.075 (5)0.166 (8)0.006 (4)0.006 (5)0.010 (5)
Cl1B0.071 (5)0.123 (5)0.226 (9)0.038 (4)0.040 (5)0.020 (6)
Geometric parameters (Å, º) top
C1—O11.401 (15)C9—Cl1A2.042 (15)
C1—C21.475 (17)C9—H90.9300
C1—H1A0.9700C10—C111.456 (15)
C1—H1B0.9700C10—H100.9300
C2—N11.454 (13)C11—N31.379 (14)
C2—H2A0.9700C12—O31.219 (6)
C2—H2B0.9700C12—N31.326 (12)
C3—O21.230 (14)C12—N21.436 (13)
C3—N11.334 (14)C13—N31.499 (11)
C3—O11.369 (12)C13—C141.538 (12)
C4—N11.447 (11)C13—H13A0.9700
C4—C51.491 (12)C13—H13B0.9700
C4—H4A0.9700C14—N41.455 (11)
C4—H4B0.9700C14—H14A0.9700
C5—N21.411 (12)C14—H14B0.9700
C5—H5A0.9700C15—N41.428 (12)
C5—H5B0.9700C15—C161.522 (13)
C6—C71.352 (16)C15—H15A0.9700
C6—N21.391 (13)C15—H15B0.9700
C6—C111.408 (8)C16—O51.458 (11)
C7—C81.345 (10)C16—H16A0.9700
C7—H70.9300C16—H16B0.9700
C8—C91.383 (11)C17—O41.183 (14)
C8—Cl1A1.680 (13)C17—N41.315 (14)
C8—H80.9300C17—O51.362 (13)
C9—C101.458 (10)Cl1A—Cl1B1.959 (6)
C9—Cl1B1.786 (10)
O1—C1—C2108.8 (11)N3—C11—C6106.6 (12)
O1—C1—H1A109.9N3—C11—C10141.1 (11)
C2—C1—H1A109.9C6—C11—C10112.2 (14)
O1—C1—H1B109.9O3—C12—N3129.7 (12)
C2—C1—H1B109.9O3—C12—N2124.8 (12)
H1A—C1—H1B108.3N3—C12—N2105.3 (5)
N1—C2—C1101.1 (10)N3—C13—C14109.0 (7)
N1—C2—H2A111.6N3—C13—H13A109.9
C1—C2—H2A111.6C14—C13—H13A109.9
N1—C2—H2B111.6N3—C13—H13B109.9
C1—C2—H2B111.6C14—C13—H13B109.9
H2A—C2—H2B109.4H13A—C13—H13B108.3
O2—C3—N1127.6 (10)N4—C14—C13114.4 (8)
O2—C3—O1121.5 (11)N4—C14—H14A108.7
N1—C3—O1110.7 (11)C13—C14—H14A108.7
N1—C4—C5112.2 (8)N4—C14—H14B108.7
N1—C4—H4A109.2C13—C14—H14B108.7
C5—C4—H4A109.2H14A—C14—H14B107.6
N1—C4—H4B109.2N4—C15—C16102.8 (8)
C5—C4—H4B109.2N4—C15—H15A111.2
H4A—C4—H4B107.9C16—C15—H15A111.2
N2—C5—C4115.9 (8)N4—C15—H15B111.2
N2—C5—H5A108.3C16—C15—H15B111.2
C4—C5—H5A108.3H15A—C15—H15B109.1
N2—C5—H5B108.3O5—C16—C15102.2 (8)
C4—C5—H5B108.3O5—C16—H16A111.3
H5A—C5—H5B107.4C15—C16—H16A111.3
C7—C6—N2124.9 (12)O5—C16—H16B111.3
C7—C6—C11128.7 (15)C15—C16—H16B111.3
N2—C6—C11106.4 (12)H16A—C16—H16B109.2
C8—C7—C6123.6 (14)O4—C17—N4129.3 (12)
C8—C7—H7118.2O4—C17—O5122.5 (11)
C6—C7—H7118.2N4—C17—O5108.0 (10)
C7—C8—C9109.6 (11)C3—N1—C4124.7 (9)
C7—C8—Cl1A163.7 (10)C3—N1—C2110.5 (9)
C9—C8—Cl1A83.0 (9)C4—N1—C2123.4 (9)
C7—C8—H8125.2C6—N2—C5129.0 (10)
C9—C8—H8125.2C6—N2—C12108.8 (9)
Cl1A—C8—H843.4C5—N2—C12121.7 (10)
C8—C9—C10131.9 (10)C12—N3—C11112.8 (8)
C8—C9—Cl1B114.8 (10)C12—N3—C13120.4 (9)
C10—C9—Cl1B112.8 (9)C11—N3—C13126.7 (9)
C8—C9—Cl1A54.8 (8)C17—N4—C15114.1 (10)
C10—C9—Cl1A172.8 (7)C17—N4—C14121.8 (10)
Cl1B—C9—Cl1A61.2 (4)C15—N4—C14123.8 (8)
C8—C9—H9114.0C3—O1—C1107.4 (10)
C10—C9—H9114.0C17—O5—C16111.2 (8)
Cl1B—C9—H98.4C8—Cl1A—Cl1B94.4 (5)
Cl1A—C9—H959.3C8—Cl1A—C942.2 (4)
C11—C10—C9113.4 (10)Cl1B—Cl1A—C953.0 (4)
C11—C10—H10123.3C9—Cl1B—Cl1A65.9 (6)
C9—C10—H10123.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.972.423.247 (13)143
C14—H14A···O4ii0.972.483.315 (13)144
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.972.423.247 (13)143.3
C14—H14A···O4ii0.972.483.315 (13)144.3
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2.
 

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853.  CSD CrossRef IUCr Journals Google Scholar
First citationDiekema, D. J. & Jones, R. N. (2000). Drugs, 59, 7–16.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D. A., Ng, H. P. & Rieger, D. L. (1993). J. Am. Chem. Soc. 115, 11446–11459.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983–10986.  CAS PubMed Web of Science Google Scholar
First citationMatsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron, 61, 8073–8094.  Web of Science CrossRef CAS Google Scholar
First citationMukhtar, T. A. & Wright, G. D. (2005). Chem. Rev. 105, 529–542.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36.  PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o735-o736
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds