organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-dimeth­­oxy-2,2′-bi­pyridine

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 July 2015; accepted 23 July 2015; online 31 July 2015)

In the title compound, C12H12N2O2, the dihedral angle between the planes of the two pyridine rings is 5.8 (1)°. Neighbouring mol­ecules are linked via C(Me)—H⋯N inter­actions, generating a two-dimensional sheet structure; C—H⋯π inter­actions further link the mol­ecules into a three-dimensional network. An overlapped arrangement of parallel pyridine rings in neighbouring mol­ecules [centroid-to-centroid distance = 3.6655 (15) Å] is observed in the crystal structure.

Keywords: crystal structure.

1. Related literature

For related structure of 4,4′-substituted 2,2′-bi­pyridines, see: Merritt & Schroeder (1956[Merritt, L. L. & Schroeder, E. (1956). Acta Cryst. 9, 801-804.]); Tynan et al. (2003[Tynan, E., Jensen, P., Kruger, P. E., Lees, A. C. & Nieuwenhuyzen, M. (2003). Dalton Trans. pp. 1223-1228.]); Pearson et al. (2004[Pearson, P., Kepert, C. M., Deacon, G. B., Spiccia, L., Warden, A. C., Skelton, B. W. & White, A. H. (2004). Inorg. Chem. 43, 683-691.]); Haberecht et al. (2005[Haberecht, M. C., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 745-752.]); Fujihara et al. (2005[Fujihara, T., Suzuki, H. & Nagasawa, A. (2005). Acta Cryst. E61, o1867-o1868.]). For hydrogen-bonded motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H12N2O2

  • Mr = 216.24

  • Monoclinic, P 21

  • a = 6.4235 (11) Å

  • b = 10.8139 (18) Å

  • c = 8.0123 (14) Å

  • β = 109.462 (2)°

  • V = 524.76 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.24 × 0.07 × 0.05 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS2014; Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = ?, Tmax = ?

  • 5925 measured reflections

  • 2301 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.014

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.01

  • 2301 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack x determined using 976 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.7 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1- and N2-rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯N1i 0.98 2.58 3.503 (3) 158
C12—H12B⋯N2ii 0.98 2.62 3.513 (3) 151
C1—H1⋯Cg2iii 0.95 2.68 3.515 (3) 146
C12—H12ACg1iv 0.98 2.72 3.439 (3) 134
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) [-x, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: XCIF (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The molecular structure of title compound (I) is illustrated in Fig. 1. In the crystal, all bond lengths and angles are similar to those of the other similar 4,4'-substituted 2,2'-bi­pyridines (Merritt & Schroeder, 1956; Tynan et al., 2003; Pearson et al., 2004; Haberecht et al., 2005; Fujihara et al., 2005). The dihedral angle between two pyridine rings is 5.8 (1)°. The neighbouring molecules are linked via inter­molecular C–H···N inter­actions with an R22(16) ring motif (Etter et al., 1990; Bernstein et al., 1995), generating 2D sheet structure as shown in Fig. 2. An overlapped arrangement of parallel pyridine rings in neighbouring molecules [centroid-centroid distance = 3.6655 (15) Å] is observed in the crystal structure. Furthermore, inter­molecular C–H···π inter­actions link the molecules into a three-dimensional network, as shown in Fig. 3.

Synthesis and crystallization top

Crystals of (I) suitable for X-ray diffraction were obtained from solutions in acetone of a commercially available sample (Aldrich) by slow evaporation at 298 K. 1H NMR (500MHz, CDCl3): δ 4.10 (s, 6H, -OCH3), 7.03(dd, 2H, py-5H), 8.37(d, 2H, py-H3), 8.56(d, 2H, py-H6).

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95-0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for aromatic H atoms.

Related literature top

For related structure of 4,4'-substituted 2,2'-bipyridines, see: Merritt & Schroeder (1956); Tynan et al. (2003); Pearson et al. (2004); Haberecht et al. (2005); Fujihara et al. (2005). For hydrogen-bonded motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Structure description top

The molecular structure of title compound (I) is illustrated in Fig. 1. In the crystal, all bond lengths and angles are similar to those of the other similar 4,4'-substituted 2,2'-bi­pyridines (Merritt & Schroeder, 1956; Tynan et al., 2003; Pearson et al., 2004; Haberecht et al., 2005; Fujihara et al., 2005). The dihedral angle between two pyridine rings is 5.8 (1)°. The neighbouring molecules are linked via inter­molecular C–H···N inter­actions with an R22(16) ring motif (Etter et al., 1990; Bernstein et al., 1995), generating 2D sheet structure as shown in Fig. 2. An overlapped arrangement of parallel pyridine rings in neighbouring molecules [centroid-centroid distance = 3.6655 (15) Å] is observed in the crystal structure. Furthermore, inter­molecular C–H···π inter­actions link the molecules into a three-dimensional network, as shown in Fig. 3.

For related structure of 4,4'-substituted 2,2'-bipyridines, see: Merritt & Schroeder (1956); Tynan et al. (2003); Pearson et al. (2004); Haberecht et al. (2005); Fujihara et al. (2005). For hydrogen-bonded motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Synthesis and crystallization top

Crystals of (I) suitable for X-ray diffraction were obtained from solutions in acetone of a commercially available sample (Aldrich) by slow evaporation at 298 K. 1H NMR (500MHz, CDCl3): δ 4.10 (s, 6H, -OCH3), 7.03(dd, 2H, py-5H), 8.37(d, 2H, py-H3), 8.56(d, 2H, py-H6).

Refinement details top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95-0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and XPREP (Bruker2014); program(s) used to solve structure: SHELXL2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of compound (I) showing the formation of 2D sheet. Dashed lines indicate the intermolecular C-H···N interactions. [Symmetry code: (i) x, y, 1+ z; (ii) x, y, -1+ z.]
[Figure 3] Fig. 3. Part of the crystal structure showing the intersheet stacking interactions and the weak C-H···π hydrogen bonds.
4,4'-Dimethoxy-2,2'-bipyridine top
Crystal data top
C12H12N2O2F(000) = 228
Mr = 216.24Dx = 1.369 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4235 (11) ÅCell parameters from 3527 reflections
b = 10.8139 (18) Åθ = 2.7–28.3°
c = 8.0123 (14) ŵ = 0.10 mm1
β = 109.462 (2)°T = 200 K
V = 524.76 (16) Å3Plate, colourless
Z = 20.24 × 0.07 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2301 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode2155 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.014
Detector resolution: 8.333 pixels mm-1θmax = 27.1°, θmin = 2.7°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS2014; Bruker, 2014)
k = 1313
l = 1010
5925 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.038P)2 + 0.1642P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.20 e Å3
2301 reflectionsΔρmin = 0.16 e Å3
147 parametersAbsolute structure: Flack x determined using 976 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.7 (3)
Crystal data top
C12H12N2O2V = 524.76 (16) Å3
Mr = 216.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4235 (11) ŵ = 0.10 mm1
b = 10.8139 (18) ÅT = 200 K
c = 8.0123 (14) Å0.24 × 0.07 × 0.05 mm
β = 109.462 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2301 independent reflections
Absorption correction: multi-scan
(SADABS2014; Bruker, 2014)
2155 reflections with I > 2σ(I)
Rint = 0.014
5925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.20 e Å3
S = 1.01Δρmin = 0.16 e Å3
2301 reflectionsAbsolute structure: Flack x determined using 976 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
147 parametersAbsolute structure parameter: 0.7 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.4311 (0.0049) x + 8.4883 (0.0065) y - 0.9456 (0.0066) z = 4.1170 (0.0067)

* -0.0041 (0.0014) N2 * 0.0008 (0.0014) C6 * 0.0044 (0.0014) C7 * -0.0064 (0.0014) C8 * 0.0031 (0.0015) C9 * 0.0021 (0.0016) C10 -0.0086 (0.0030) O2 -0.0684 (0.0042) C12

Rms deviation of fitted atoms = 0.0039

- 3.4675 (0.0048) x + 8.7970 (0.0059) y - 0.1939 (0.0067) z = 4.4232 (0.0036)

Angle to previous plane (with approximate esd) = 5.832 ( 0.127 )

* 0.0007 (0.0014) N1 * 0.0006 (0.0016) C1 * -0.0022 (0.0015) C2 * 0.0024 (0.0015) C3 * -0.0011 (0.0013) C4 * -0.0005 (0.0013) C5 0.0002 (0.0030) O1 -0.0031 (0.0045) C11

Rms deviation of fitted atoms = 0.0015

- 3.4311 (0.0049) x + 8.4883 (0.0065) y - 0.9456 (0.0066) z = 4.1170 (0.0067)

Angle to previous plane (with approximate esd) = 5.832 ( 0.127 )

* -0.0041 (0.0014) N2 * 0.0008 (0.0014) C6 * 0.0044 (0.0014) C7 * -0.0064 (0.0014) C8 * 0.0031 (0.0015) C9 * 0.0021 (0.0016) C10 -3.3185 (0.0031) N1_$4 -3.3333 (0.0027) C1_$4 -3.4592 (0.0024) C2_$4 -3.5727 (0.0026) C3_$4 -3.5648 (0.0032) C4_$4 -3.4354 (0.0034) C5_$4

Rms deviation of fitted atoms = 0.0039

- 3.4675 (0.0048) x + 8.7970 (0.0059) y - 0.1939 (0.0067) z = 4.4232 (0.0036)

Angle to previous plane (with approximate esd) = 5.832 ( 0.127 )

* 0.0007 (0.0014) N1 * 0.0006 (0.0016) C1 * -0.0022 (0.0015) C2 * 0.0024 (0.0015) C3 * -0.0011 (0.0013) C4 * -0.0005 (0.0013) C5 3.5634 (0.0029) N2_$3 3.4535 (0.0033) C6_$3 3.3280 (0.0034) C7_$3 3.3037 (0.0027) C8_$3 3.4295 (0.0025) C9_$3 3.5529 (0.0027) C10_$3

Rms deviation of fitted atoms = 0.0015

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1486 (3)0.4462 (2)0.0875 (3)0.0267 (5)
H10.25340.40310.00680.032*
C20.1727 (4)0.4400 (2)0.2528 (3)0.0266 (5)
H20.28920.39400.27110.032*
C30.0204 (3)0.5037 (2)0.3910 (3)0.0229 (4)
C40.1487 (3)0.56915 (19)0.3571 (3)0.0236 (4)
H40.25560.61300.44920.028*
C50.1577 (3)0.56905 (19)0.1864 (3)0.0221 (4)
C60.3359 (3)0.63676 (19)0.1424 (3)0.0217 (4)
C70.3547 (4)0.6263 (2)0.0241 (3)0.0238 (4)
H70.25390.57680.11260.029*
C80.5240 (4)0.68943 (19)0.0599 (3)0.0235 (4)
C90.6663 (4)0.7627 (2)0.0716 (3)0.0268 (5)
H90.78230.80810.05140.032*
C100.6319 (4)0.7668 (2)0.2337 (3)0.0295 (5)
H100.72930.81660.32390.035*
C110.1939 (4)0.4392 (3)0.5974 (3)0.0356 (6)
H11A0.33800.47190.52510.053*
H11B0.17650.44820.72300.053*
H11C0.18460.35150.56980.053*
C120.7110 (4)0.7348 (2)0.2653 (3)0.0321 (5)
H12A0.70090.82440.25090.048*
H12B0.70050.71640.38760.048*
H12C0.85260.70480.18440.048*
N10.0100 (3)0.50795 (19)0.0503 (2)0.0244 (4)
N20.4729 (3)0.70612 (19)0.2732 (2)0.0275 (4)
O10.0221 (3)0.50643 (16)0.5595 (2)0.0307 (4)
O20.5337 (3)0.67463 (15)0.2257 (2)0.0304 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (10)0.0285 (11)0.0256 (10)0.0048 (10)0.0069 (8)0.0029 (9)
C20.0252 (10)0.0274 (11)0.0292 (11)0.0049 (10)0.0118 (9)0.0023 (10)
C30.0256 (10)0.0222 (10)0.0227 (10)0.0027 (9)0.0105 (8)0.0002 (9)
C40.0224 (10)0.0225 (10)0.0242 (11)0.0003 (8)0.0055 (8)0.0007 (9)
C50.0210 (9)0.0208 (10)0.0248 (10)0.0015 (8)0.0082 (8)0.0014 (8)
C60.0201 (10)0.0196 (10)0.0252 (10)0.0019 (8)0.0071 (8)0.0017 (8)
C70.0229 (10)0.0234 (10)0.0250 (10)0.0012 (8)0.0077 (8)0.0016 (8)
C80.0239 (10)0.0239 (11)0.0235 (10)0.0023 (9)0.0090 (8)0.0024 (8)
C90.0244 (10)0.0279 (11)0.0296 (11)0.0040 (9)0.0112 (9)0.0018 (9)
C100.0267 (11)0.0338 (13)0.0267 (11)0.0074 (9)0.0071 (9)0.0046 (9)
C110.0397 (13)0.0443 (14)0.0292 (12)0.0120 (12)0.0200 (10)0.0030 (11)
C120.0345 (12)0.0370 (13)0.0287 (12)0.0063 (10)0.0158 (10)0.0006 (10)
N10.0241 (8)0.0265 (9)0.0229 (9)0.0015 (7)0.0081 (7)0.0003 (7)
N20.0257 (9)0.0321 (10)0.0252 (9)0.0040 (8)0.0091 (7)0.0014 (8)
O10.0333 (8)0.0362 (9)0.0254 (8)0.0085 (7)0.0137 (6)0.0025 (7)
O20.0325 (9)0.0366 (9)0.0256 (8)0.0094 (7)0.0144 (7)0.0042 (7)
Geometric parameters (Å, º) top
C1—N11.332 (3)C8—O21.359 (3)
C1—C21.385 (3)C8—C91.390 (3)
C1—H10.9500C9—C101.389 (3)
C2—C31.391 (3)C9—H90.9500
C2—H20.9500C10—N21.338 (3)
C3—O11.354 (3)C10—H100.9500
C3—C41.398 (3)C11—O11.436 (3)
C4—C51.388 (3)C11—H11A0.9800
C4—H40.9500C11—H11B0.9800
C5—N11.355 (3)C11—H11C0.9800
C5—C61.496 (2)C12—O21.436 (3)
C6—N21.349 (3)C12—H12A0.9800
C6—C71.384 (3)C12—H12B0.9800
C7—C81.393 (3)C12—H12C0.9800
C7—H70.9500
N1—C1—C2125.1 (2)C9—C8—C7119.02 (19)
N1—C1—H1117.4C10—C9—C8117.2 (2)
C2—C1—H1117.4C10—C9—H9121.4
C1—C2—C3117.7 (2)C8—C9—H9121.4
C1—C2—H2121.2N2—C10—C9125.3 (2)
C3—C2—H2121.2N2—C10—H10117.4
O1—C3—C2124.60 (19)C9—C10—H10117.4
O1—C3—C4116.61 (18)O1—C11—H11A109.5
C2—C3—C4118.79 (19)O1—C11—H11B109.5
C5—C4—C3118.80 (18)H11A—C11—H11B109.5
C5—C4—H4120.6O1—C11—H11C109.5
C3—C4—H4120.6H11A—C11—H11C109.5
N1—C5—C4123.02 (19)H11B—C11—H11C109.5
N1—C5—C6115.79 (17)O2—C12—H12A109.5
C4—C5—C6121.18 (17)O2—C12—H12B109.5
N2—C6—C7123.39 (19)H12A—C12—H12B109.5
N2—C6—C5116.19 (17)O2—C12—H12C109.5
C7—C6—C5120.41 (17)H12A—C12—H12C109.5
C6—C7—C8118.92 (19)H12B—C12—H12C109.5
C6—C7—H7120.5C1—N1—C5116.58 (18)
C8—C7—H7120.5C10—N2—C6116.14 (19)
O2—C8—C9125.1 (2)C3—O1—C11117.47 (18)
O2—C8—C7115.88 (18)C8—O2—C12117.40 (17)
N1—C1—C2—C30.3 (4)C6—C7—C8—C91.1 (3)
C1—C2—C3—O1180.0 (2)O2—C8—C9—C10179.9 (2)
C1—C2—C3—C40.5 (3)C7—C8—C9—C101.0 (3)
O1—C3—C4—C5179.94 (18)C8—C9—C10—N20.1 (4)
C2—C3—C4—C50.4 (3)C2—C1—N1—C50.1 (3)
C3—C4—C5—N10.2 (3)C4—C5—N1—C10.0 (3)
C3—C4—C5—C6179.56 (19)C6—C5—N1—C1179.41 (18)
N1—C5—C6—N2174.7 (2)C9—C10—N2—C60.5 (4)
C4—C5—C6—N25.8 (3)C7—C6—N2—C100.4 (3)
N1—C5—C6—C75.5 (3)C5—C6—N2—C10179.92 (19)
C4—C5—C6—C7173.9 (2)C2—C3—O1—C110.2 (3)
N2—C6—C7—C80.4 (3)C4—C3—O1—C11179.7 (2)
C5—C6—C7—C8179.28 (17)C9—C8—O2—C123.0 (3)
C6—C7—C8—O2179.70 (18)C7—C8—O2—C12177.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1- and N2-rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···N20.952.502.813 (3)99
C7—H7···N10.952.462.789 (3)100
C11—H11B···N1i0.982.583.503 (3)158
C12—H12B···N2ii0.982.623.513 (3)151
C1—H1···Cg2iii0.952.683.515 (3)146
C12—H12A···Cg1iv0.982.723.439 (3)134
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x, y1/2, z; (iv) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1- and N2-rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11B···N1i0.982.583.503 (3)157.8
C12—H12B···N2ii0.982.623.513 (3)150.8
C1—H1···Cg2iii0.952.683.515 (3)146
C12—H12A···Cg1iv0.982.723.439 (3)134
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x, y1/2, z; (iv) x+1, y+1/2, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujihara, T., Suzuki, H. & Nagasawa, A. (2005). Acta Cryst. E61, o1867–o1868.  CSD CrossRef IUCr Journals Google Scholar
First citationHaberecht, M. C., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 745–752.  CAS Google Scholar
First citationMerritt, L. L. & Schroeder, E. (1956). Acta Cryst. 9, 801–804.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPearson, P., Kepert, C. M., Deacon, G. B., Spiccia, L., Warden, A. C., Skelton, B. W. & White, A. H. (2004). Inorg. Chem. 43, 683–691.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTynan, E., Jensen, P., Kruger, P. E., Lees, A. C. & Nieuwenhuyzen, M. (2003). Dalton Trans. pp. 1223–1228.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds