metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m579-m580

Poly[(μ3-5-tert-butyl­benzene-1,3-di­carboxyl­ato)di­pyridine­cobalt(II)]

aDepartment of Chemistry, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul 156-743, Republic of Korea
*Correspondence e-mail: jaheon@ssu.ac.kr

(Received 24 September 2013; accepted 26 September 2013; online 2 October 2013)

In the title compound, [Co(C12H12O4)(C5H5N)2]n, the CoII cation is coordinated by four O atoms from three 5-tert-butyl­benzene-1,3-di­carboxyl­ate anions and two N atoms from pyridine mol­ecules in a distorted octa­hedral geometry. One carboxyl­ate group of the anionic ligand chelates a CoII cation while another carboxyl­ate group bridges two CoII cations, resulting in a polymeric layer parallel to (101). Weak C—H⋯O hydrogen bonds occur between adjacent polymeric layers. In the crystal, one of pyridine mol­ecules is equally disordered over two positions.

Related literature

For metal-organic frameworks composed of cobalt cations and 5-tert-butyl­benzene-1,3-di­carboxyl­ate ligands without additional bridging ligands, see: Chen et al. (2011[Chen, L.-J., Su, J.-B., Huang, R.-B., Lin, S., Yang, M.-X. & Huang, H. (2011). Dalton Trans. 40, 9731-9736.]); Du et al. (2009[Du, Z.-X., Wang, L.-Y. & Hou, H.-W. (2009). Z. Anorg. Allg. Chem. 635, 1659-1663.]); Ma et al. (2009[Ma, L.-F., Wang, L.-Y., Lu, D.-H., Batten, S. R. & Wang, J.-G. (2009). Cryst. Growth Des. 9, 1741-1749.]); Qin & Ju (2010[Qin, J.-H. & Ju, F.-Y. (2010). Chin. J. Struct. Chem. 29, 1108-1114.]). For a copper(II) complex with 5-tert-butylbenzene-1,3-­dicarboxyl­ate ligand, see: Li & Zhou (2010[Li, J.-R. & Zhou, H.-C. (2010). Nat. Chem. 2, 893-898.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H12O4)(C5H5N)2]

  • Mr = 437.34

  • Monoclinic, P 21 /n

  • a = 9.7357 (3) Å

  • b = 15.6699 (6) Å

  • c = 13.0764 (5) Å

  • β = 94.791 (1)°

  • V = 1987.93 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 173 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.663, Tmax = 0.775

  • 12370 measured reflections

  • 4580 independent reflections

  • 3843 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.11

  • 4580 reflections

  • 314 parameters

  • 66 restraints

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.014 (2)
Co1—O2i 2.0608 (19)
Co1—O3ii 2.324 (2)
Co1—O4ii 2.103 (2)
Co1—N1 2.182 (3)
Co1—N2 2.195 (9)
Co1—N2A 2.117 (11)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4iii 0.95 2.55 3.287 (5) 134
Symmetry code: (iii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: CrystalMaker (CrystalMaker Software, 2013[CrystalMaker Software (2013). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


1. Comment top

The bent ligand, 5-tert-1,3-benzene­dicarb­oxy­lic acid (H2BDC_tBu) can form inter­esting metal-organic polyhedra (MOPs) through solvothermal reactions with copper ions which frequently give paddle-wheel type clusters (Li & Zhou, 2010). In contrast, the reactions between cobalt ion and H2BDC_tBu provide various types of metal-organic frameworks (MOFs) including even a molecular cyclic compound: for examples such as rings, chains, layers, and three-dimensional networks, see Chen et al., 2011; Du et al., 2009; Ma et al., 2009; Qin & Ju, 2010. The combination of a diverse coordination property of cobalt ion, and a bulky tert-butyl groups in the anionic ligand can give a possibility of making inter­esting MOFs. For example, a reaction between cobalt ions and the ligands in polar solvent, the hydro­phobic tertiary butyl groups assembled together, making polar carboxyl­ate groups be exposed to pores to give hydro­philic environment (Ma et al., 2009). In searching for new Co-BDC_tBu frameworks, we obtained a two-dimensional layered structure of which inter-layer space is filled with hydro­phobic and coordinated pyridine molecules and tert-butyl groups of the anionic ligands.

2. Experimental top

Cobalt(II) nitrate tetra­hydrate (40 mg) and 5-tert-butyl­benzene-1,3-di­carb­oxy­lic acid (31 mg) were dissolved in a mixed solvent (N,N-di­methyl­formamide, 8.0 ml; ethanol, 0.4 ml; pyridine, 0.4 ml). This reaction mixture was transferred to a Teflon-lined vessel (23 ml), and heated at 378 K and for 2 days. Large violet block crystals were obtained and used for single crystal X-ray diffraction analyses.

3. Refinement top

In the asymmetric unit, one of two pyridine molecules is disordered over two positions with a site occupancy factor of 0.5, respectively. The site occupancy factors were converged to 0.50787 and 0.49213 for each disordered portion with isotropic thermal parameters, and thus the factors were fixed to 0.5 respectively at the final stage of refinement; the thermal parameters did not converge when the site occupancy factors were refined together. Due to the disorder, the geometry of disordered pyridine was restrained by FLAT and SAME SHELX instructions. In addition, the anisotropic thermal parameters of N2, N2A, C30, and C30A atoms were treated isotropically using an ISOR instruction. However, the C19A thermal parameters were equaled to those of C19 using an EADP instruction. Hydrogen atoms of the aromatic and methyl groups were placed at calculated positions with C—H = 0.95 Å and 0.98 Å, respectively and allowed to ride with Uiso(H) = 1.2 Ueq(C).

Related literature top

For metal-organic frameworks composed of cobalt cations and 5-tert-butylbenzene-1,3-dicarboxylate ligands without additional bridging ligands, see: Chen et al. (2011); Du et al. (2009); Ma et al. (2009); Qin & Ju (2010). For a copper(II) complex with 5-tert-1,3-benzenedicarboxylate ligand, see: Li & Zhou (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker Software, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. (a) An asymmetric unit of the title compound is shown with the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for simplicity. (b) The full coordination environment of the cobalt cluster is shown with ball-and-stick models. The atoms in the asymmetric unit are highlited with empty balls.
[Figure 2] Fig. 2. A two-dimensional layer approximately parallel to the (101) plane is represented.
[Figure 3] Fig. 3. (a) The layer in Figure 2 is drawn with the lattice lines along the b axis. (b) A packing view is shown with three layers represented with different colors.
Poly[(µ3-5-tert-butylbenzene-1,3-dicarboxylato)dipyridinecobalt(II)] top
Crystal data top
[Co(C12H12O4)(C5H5N)2]F(000) = 908
Mr = 437.34Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6406 reflections
a = 9.7357 (3) Åθ = 2.5–28.2°
b = 15.6699 (6) ŵ = 0.90 mm1
c = 13.0764 (5) ÅT = 173 K
β = 94.791 (1)°Block, violet
V = 1987.93 (12) Å30.50 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4580 independent reflections
Radiation source: fine-focus sealed tube3843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.663, Tmax = 0.775k = 1720
12370 measured reflectionsl = 1713
Refinement top
Refinement on F266 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.059P)2 + 3.5707P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max = 0.001
S = 1.11Δρmax = 1.25 e Å3
4580 reflectionsΔρmin = 0.64 e Å3
314 parameters
Crystal data top
[Co(C12H12O4)(C5H5N)2]V = 1987.93 (12) Å3
Mr = 437.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7357 (3) ŵ = 0.90 mm1
b = 15.6699 (6) ÅT = 173 K
c = 13.0764 (5) Å0.50 × 0.40 × 0.30 mm
β = 94.791 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4580 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3843 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.775Rint = 0.021
12370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04966 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.11Δρmax = 1.25 e Å3
4580 reflectionsΔρmin = 0.64 e Å3
314 parameters
Special details top

Geometry. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.44382 (4)0.12814 (2)0.54417 (3)0.02396 (13)
O10.4499 (3)0.01260 (13)0.61177 (17)0.0394 (5)
O20.4464 (2)0.12667 (11)0.58392 (15)0.0263 (4)
O30.1852 (2)0.30891 (12)0.83448 (16)0.0342 (5)
O40.1101 (2)0.24206 (13)0.96689 (15)0.0305 (4)
C10.3528 (3)0.07399 (16)0.73420 (19)0.0207 (5)
C20.3038 (3)0.15329 (16)0.76379 (19)0.0210 (5)
H20.31530.20240.72280.025*
C30.2379 (3)0.15960 (17)0.8543 (2)0.0234 (5)
C40.2262 (3)0.08775 (18)0.9164 (2)0.0261 (5)
H40.18280.09320.97850.031*
C50.2770 (3)0.00814 (17)0.8893 (2)0.0244 (5)
C60.3373 (3)0.00254 (16)0.7962 (2)0.0236 (5)
H60.36870.05140.77440.028*
C70.4206 (3)0.06185 (16)0.63520 (19)0.0203 (5)
C80.1748 (3)0.24228 (17)0.8864 (2)0.0257 (5)
C90.2610 (3)0.07170 (19)0.9557 (2)0.0326 (6)
C100.3841 (5)0.1310 (3)0.9510 (4)0.0771 (17)
H10A0.37730.17771.00010.116*
H10B0.38500.15440.88160.116*
H10C0.46940.09900.96830.116*
C110.1368 (5)0.1215 (3)0.9076 (5)0.0868 (19)
H11A0.05370.08630.90850.130*
H11B0.15200.13620.83650.130*
H11C0.12520.17390.94690.130*
C120.2442 (10)0.0500 (3)1.0652 (3)0.127 (3)
H12A0.32340.01621.09300.190*
H12B0.15950.01681.06930.190*
H12C0.23860.10261.10510.190*
N10.6310 (3)0.16214 (15)0.63878 (19)0.0302 (5)
C130.6260 (4)0.1716 (3)0.7395 (3)0.0621 (12)
H130.54180.15850.76780.074*
C140.7352 (5)0.1993 (4)0.8058 (3)0.0688 (13)
H140.72550.20450.87720.083*
C150.8549 (4)0.2186 (3)0.7673 (3)0.0533 (10)
H150.93110.23870.81080.064*
C160.8649 (5)0.2088 (4)0.6645 (4)0.0734 (15)
H160.94880.22110.63530.088*
C170.7502 (4)0.1806 (3)0.6033 (3)0.0550 (10)
H170.75830.17430.53180.066*
N20.2472 (9)0.1037 (5)0.4542 (7)0.0300 (18)0.5
C180.2420 (11)0.0415 (5)0.3860 (6)0.055 (3)0.5
H180.32220.00710.38510.066*0.5
C190.1310 (12)0.0203 (7)0.3143 (8)0.091 (3)0.5
H190.13700.02600.26790.109*0.5
C200.0168 (10)0.0680 (5)0.3141 (7)0.067 (2)0.5
H200.06070.05620.26710.080*0.5
C210.0130 (8)0.1349 (5)0.3834 (7)0.082 (4)0.5
H210.06640.16990.38550.098*0.5
C220.1299 (8)0.1485 (5)0.4496 (7)0.068 (3)0.5
H220.12620.19450.49670.082*0.5
N2A0.2579 (10)0.0868 (5)0.4638 (8)0.038 (2)0.5
C18A0.2377 (10)0.0736 (5)0.3620 (8)0.074 (4)0.5
H18A0.31560.08200.32390.089*0.5
C19A0.1159 (12)0.0489 (5)0.3055 (10)0.091 (3)0.5
H19A0.11050.04100.23320.109*0.5
C20A0.0078 (12)0.0374 (6)0.3605 (8)0.079 (3)0.5
H20A0.07780.02060.32630.094*0.5
C21A0.0159 (9)0.0488 (6)0.4613 (7)0.109 (6)0.5
H21A0.06210.04040.49910.131*0.5
C22A0.1429 (8)0.0734 (5)0.5102 (7)0.072 (3)0.5
H22A0.14770.08110.58240.086*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0331 (2)0.01763 (19)0.0226 (2)0.00231 (14)0.01078 (14)0.00066 (13)
O10.0653 (16)0.0189 (10)0.0373 (12)0.0033 (10)0.0248 (11)0.0037 (8)
O20.0347 (10)0.0209 (9)0.0248 (9)0.0011 (8)0.0112 (8)0.0027 (7)
O30.0502 (13)0.0207 (10)0.0335 (11)0.0038 (9)0.0152 (9)0.0009 (8)
O40.0393 (11)0.0279 (10)0.0258 (10)0.0057 (8)0.0123 (8)0.0022 (8)
C10.0210 (11)0.0217 (12)0.0195 (11)0.0009 (9)0.0027 (9)0.0011 (9)
C20.0230 (12)0.0188 (11)0.0213 (12)0.0006 (9)0.0034 (10)0.0010 (9)
C30.0245 (12)0.0228 (12)0.0234 (13)0.0011 (10)0.0039 (10)0.0021 (10)
C40.0285 (13)0.0279 (14)0.0226 (13)0.0004 (11)0.0070 (10)0.0005 (10)
C50.0267 (13)0.0238 (13)0.0229 (12)0.0016 (10)0.0031 (10)0.0027 (10)
C60.0271 (13)0.0197 (12)0.0242 (13)0.0006 (10)0.0035 (10)0.0008 (10)
C70.0199 (11)0.0198 (12)0.0213 (12)0.0009 (9)0.0035 (9)0.0011 (9)
C80.0302 (14)0.0231 (13)0.0243 (13)0.0022 (10)0.0046 (11)0.0044 (10)
C90.0412 (17)0.0268 (14)0.0315 (15)0.0020 (12)0.0128 (12)0.0084 (11)
C100.079 (3)0.058 (3)0.100 (4)0.031 (2)0.045 (3)0.053 (3)
C110.067 (3)0.070 (3)0.121 (5)0.031 (2)0.005 (3)0.051 (3)
C120.307 (11)0.044 (3)0.036 (2)0.032 (4)0.056 (4)0.018 (2)
N10.0379 (13)0.0244 (11)0.0284 (12)0.0031 (10)0.0042 (10)0.0017 (9)
C130.052 (2)0.102 (4)0.0326 (19)0.022 (2)0.0082 (16)0.013 (2)
C140.069 (3)0.100 (4)0.036 (2)0.016 (3)0.0039 (19)0.017 (2)
C150.056 (2)0.048 (2)0.052 (2)0.0120 (17)0.0178 (18)0.0064 (17)
C160.048 (2)0.112 (4)0.059 (3)0.029 (3)0.005 (2)0.024 (3)
C170.043 (2)0.086 (3)0.0362 (19)0.014 (2)0.0033 (15)0.0108 (19)
N20.023 (3)0.025 (3)0.042 (3)0.007 (2)0.006 (2)0.002 (3)
C180.052 (5)0.043 (4)0.066 (7)0.020 (4)0.020 (5)0.018 (4)
C190.054 (4)0.151 (10)0.065 (4)0.018 (5)0.006 (3)0.000 (5)
C200.056 (4)0.067 (4)0.075 (4)0.009 (3)0.015 (4)0.004 (4)
C210.040 (4)0.076 (6)0.123 (9)0.027 (4)0.037 (5)0.056 (6)
C220.057 (5)0.061 (5)0.084 (7)0.016 (4)0.008 (5)0.033 (5)
N2A0.032 (4)0.030 (4)0.054 (4)0.009 (3)0.011 (3)0.005 (3)
C18A0.032 (4)0.144 (13)0.046 (5)0.005 (7)0.003 (4)0.023 (8)
C19A0.054 (4)0.151 (10)0.065 (4)0.018 (5)0.006 (3)0.000 (5)
C20A0.083 (5)0.081 (5)0.073 (5)0.009 (4)0.015 (4)0.013 (4)
C21A0.051 (5)0.203 (16)0.078 (7)0.065 (8)0.030 (5)0.050 (9)
C22A0.053 (5)0.103 (8)0.061 (5)0.022 (5)0.016 (4)0.012 (5)
Geometric parameters (Å, º) top
Co1—O12.014 (2)C12—H12B0.9800
Co1—O2i2.0608 (19)C12—H12C0.9800
Co1—O3ii2.324 (2)N1—C171.317 (4)
Co1—O4ii2.103 (2)N1—C131.330 (4)
Co1—N12.182 (3)C13—C141.384 (5)
Co1—N22.195 (9)C13—H130.9500
Co1—N2A2.117 (11)C14—C151.342 (6)
O1—C71.245 (3)C14—H140.9500
O2—C71.254 (3)C15—C161.365 (6)
O2—Co1i2.0608 (19)C15—H150.9500
O3—C81.254 (3)C16—C171.391 (5)
O3—Co1iii2.324 (2)C16—H160.9500
O4—C81.271 (3)C17—H170.9500
O4—Co1iii2.102 (2)N2—C221.337 (10)
C1—C61.398 (4)N2—C181.320 (10)
C1—C21.397 (3)C18—C191.410 (11)
C1—C71.513 (3)C18—H180.9500
C2—C31.396 (4)C19—C201.340 (12)
C2—H20.9500C19—H190.9500
C3—C41.398 (4)C20—C211.388 (10)
C3—C81.508 (4)C20—H200.9500
C4—C51.398 (4)C21—C221.388 (10)
C4—H40.9500C21—H210.9500
C5—C61.399 (4)C22—H220.9500
C5—C91.538 (4)N2A—C22A1.333 (11)
C6—H60.9500N2A—C18A1.346 (11)
C9—C121.494 (5)C18A—C19A1.398 (11)
C9—C101.522 (5)C18A—H18A0.9500
C9—C111.529 (6)C19A—C20A1.336 (12)
C10—H10A0.9800C19A—H19A0.9500
C10—H10B0.9800C20A—C21A1.325 (11)
C10—H10C0.9800C20A—H20A0.9500
C11—H11A0.9800C21A—C22A1.398 (10)
C11—H11B0.9800C21A—H21A0.9500
C11—H11C0.9800C22A—H22A0.9500
C12—H12A0.9800
O1—Co1—O2i110.40 (8)H11A—C11—H11C109.5
O1—Co1—O4ii153.91 (8)H11B—C11—H11C109.5
O2i—Co1—O4ii95.64 (7)C9—C12—H12A109.5
O1—Co1—N2A86.3 (2)C9—C12—H12B109.5
O2i—Co1—N2A94.2 (3)H12A—C12—H12B109.5
O4ii—Co1—N2A93.6 (2)C9—C12—H12C109.5
O1—Co1—N188.74 (10)H12A—C12—H12C109.5
O2i—Co1—N189.90 (9)H12B—C12—H12C109.5
O4ii—Co1—N189.70 (9)C17—N1—C13115.5 (3)
N2A—Co1—N1174.4 (2)C17—N1—Co1124.9 (2)
O1—Co1—N294.1 (2)C13—N1—Co1119.4 (2)
O2i—Co1—N292.9 (2)N1—C13—C14124.4 (4)
O4ii—Co1—N286.0 (2)N1—C13—H13117.8
N1—Co1—N2175.1 (2)C14—C13—H13117.8
O1—Co1—O3ii94.57 (8)C15—C14—C13118.8 (4)
O2i—Co1—O3ii154.98 (7)C15—C14—H14120.6
O4ii—Co1—O3ii59.36 (7)C13—C14—H14120.6
N2A—Co1—O3ii88.9 (3)C14—C15—C16118.7 (4)
N1—Co1—O3ii89.01 (9)C14—C15—H15120.7
N2—Co1—O3ii86.7 (2)C16—C15—H15120.7
C7—O1—Co1162.0 (2)C15—C16—C17118.8 (4)
C7—O2—Co1i125.77 (16)C15—C16—H16120.6
C8—O3—Co1iii84.88 (16)C17—C16—H16120.6
C8—O4—Co1iii94.51 (17)N1—C17—C16123.8 (4)
C6—C1—C2119.7 (2)N1—C17—H17118.1
C6—C1—C7118.1 (2)C16—C17—H17118.1
C2—C1—C7122.1 (2)C22—N2—C18111.9 (8)
C3—C2—C1119.3 (2)C22—N2—Co1129.5 (6)
C3—C2—H2120.3C18—N2—Co1118.3 (7)
C1—C2—H2120.3N2—C18—C19127.5 (10)
C2—C3—C4120.0 (2)N2—C18—H18116.3
C2—C3—C8121.6 (2)C19—C18—H18116.3
C4—C3—C8118.4 (2)C20—C19—C18117.4 (11)
C5—C4—C3121.6 (2)C20—C19—H19121.3
C5—C4—H4119.2C18—C19—H19121.3
C3—C4—H4119.2C19—C20—C21119.1 (9)
C4—C5—C6117.4 (2)C19—C20—H20120.4
C4—C5—C9121.9 (2)C21—C20—H20120.4
C6—C5—C9120.7 (2)C20—C21—C22117.3 (7)
C1—C6—C5121.9 (2)C20—C21—H21121.4
C1—C6—H6119.1C22—C21—H21121.4
C5—C6—H6119.1N2—C22—C21126.9 (8)
O1—C7—O2124.5 (2)N2—C22—H22116.6
O1—C7—C1117.0 (2)C21—C22—H22116.6
O2—C7—C1118.5 (2)C22A—N2A—C18A111.5 (9)
O3—C8—O4121.2 (2)C22A—N2A—Co1122.6 (8)
O3—C8—C3120.7 (2)C18A—N2A—Co1125.9 (7)
O4—C8—C3118.0 (2)N2A—C18A—C19A127.8 (9)
C12—C9—C10109.1 (4)N2A—C18A—H18A116.1
C12—C9—C11111.4 (5)C19A—C18A—H18A116.1
C10—C9—C11105.7 (4)C20A—C19A—C18A115.1 (11)
C12—C9—C5112.3 (3)C20A—C19A—H19A122.5
C10—C9—C5110.9 (3)C18A—C19A—H19A122.5
C11—C9—C5107.3 (3)C19A—C20A—C21A122.3 (11)
C9—C10—H10A109.5C19A—C20A—H20A118.9
C9—C10—H10B109.5C21A—C20A—H20A118.9
H10A—C10—H10B109.5C20A—C21A—C22A117.9 (9)
C9—C10—H10C109.5C20A—C21A—C21Aiv115.4 (7)
H10A—C10—H10C109.5C20A—C21A—H21A121.0
H10B—C10—H10C109.5C22A—C21A—H21A121.0
C9—C11—H11A109.5N2A—C22A—C21A125.4 (9)
C9—C11—H11B109.5N2A—C22A—H22A117.3
H11A—C11—H11B109.5C21A—C22A—H22A117.3
C9—C11—H11C109.5
C6—C1—C2—C31.1 (4)C6—C5—C9—C12159.0 (5)
C7—C1—C2—C3177.7 (2)C4—C5—C9—C10146.6 (4)
C1—C2—C3—C42.6 (4)C6—C5—C9—C1036.7 (4)
C1—C2—C3—C8175.9 (2)C4—C5—C9—C1198.4 (4)
C2—C3—C4—C51.3 (4)C6—C5—C9—C1178.3 (4)
C8—C3—C4—C5177.3 (3)C17—N1—C13—C140.4 (7)
C3—C4—C5—C61.4 (4)Co1—N1—C13—C14174.9 (4)
C3—C4—C5—C9178.2 (3)N1—C13—C14—C150.3 (9)
C2—C1—C6—C51.7 (4)C13—C14—C15—C161.0 (8)
C7—C1—C6—C5179.4 (2)C14—C15—C16—C171.0 (8)
C4—C5—C6—C12.9 (4)C13—N1—C17—C160.4 (7)
C9—C5—C6—C1179.8 (3)Co1—N1—C17—C16174.5 (4)
Co1—O1—C7—O279.6 (7)C15—C16—C17—N10.3 (8)
Co1—O1—C7—C1102.2 (6)C22—N2—C18—C190.02 (6)
Co1i—O2—C7—O15.1 (4)Co1—N2—C18—C19173.7 (5)
Co1i—O2—C7—C1172.99 (16)N2—C18—C19—C200.03 (7)
C6—C1—C7—O14.8 (4)C18—C19—C20—C210.09 (15)
C2—C1—C7—O1174.1 (3)C19—C20—C21—C220.14 (19)
C6—C1—C7—O2173.5 (2)C18—N2—C22—C210.08 (16)
C2—C1—C7—O27.7 (4)Co1—N2—C22—C21172.8 (6)
Co1iii—O3—C8—O40.3 (3)C20—C21—C22—N20.1 (2)
Co1iii—O3—C8—C3179.1 (2)C22A—N2A—C18A—C19A0.04 (6)
Co1iii—O4—C8—O30.3 (3)Co1—N2A—C18A—C19A177.9 (5)
Co1iii—O4—C8—C3179.0 (2)N2A—C18A—C19A—C20A0.02 (7)
C2—C3—C8—O33.1 (4)C18A—C19A—C20A—C21A0.09 (15)
C4—C3—C8—O3178.4 (3)C19A—C20A—C21A—C22A0.2 (2)
C2—C3—C8—O4176.3 (3)C18A—N2A—C22A—C21A0.12 (15)
C4—C3—C8—O42.2 (4)Co1—N2A—C22A—C21A177.9 (5)
C4—C5—C9—C1224.3 (5)C20A—C21A—C22A—N2A0.2 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4v0.952.553.287 (5)134
Symmetry code: (v) x+1, y, z+2.
Selected bond lengths (Å) top
Co1—O12.014 (2)Co1—N12.182 (3)
Co1—O2i2.0608 (19)Co1—N22.195 (9)
Co1—O3ii2.324 (2)Co1—N2A2.117 (11)
Co1—O4ii2.103 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4iii0.952.553.287 (5)134
Symmetry code: (iii) x+1, y, z+2.
 

Acknowledgements

This research was supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-J., Su, J.-B., Huang, R.-B., Lin, S., Yang, M.-X. & Huang, H. (2011). Dalton Trans. 40, 9731–9736.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCrystalMaker Software (2013). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationDu, Z.-X., Wang, L.-Y. & Hou, H.-W. (2009). Z. Anorg. Allg. Chem. 635, 1659–1663.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-R. & Zhou, H.-C. (2010). Nat. Chem. 2, 893–898.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMa, L.-F., Wang, L.-Y., Lu, D.-H., Batten, S. R. & Wang, J.-G. (2009). Cryst. Growth Des. 9, 1741–1749.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, J.-H. & Ju, F.-Y. (2010). Chin. J. Struct. Chem. 29, 1108–1114.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages m579-m580
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds