organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Formyl­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium

aUnité de recherche de Chimie de l'Environnement, et Moléculaire Structurale, Faculté du sciences exactes, Université de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: king.ali@hotmail.fr

(Received 22 August 2013; accepted 27 August 2013; online 4 September 2013)

In the title zwitterion, C17H12N2O2, the dihedral angle between the benzene ring and naphthalene ring system is 11.76 (7)° and an intra­molecular N—H⋯O hydrogen bond exists. In the crystal, molecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]). For a related structure, see: Xu et al. (2010[Xu, J.-J., Li, J., Pi, M. & Jin, C.-M. (2010). Acta Cryst. E66, o1752.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O2

  • Mr = 276.29

  • Monoclinic, P 21 /c

  • a = 5.601 (4) Å

  • b = 7.780 (5) Å

  • c = 29.70 (2) Å

  • β = 94.624 (16)°

  • V = 1290.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.09 × 0.04 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 16470 measured reflections

  • 3964 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.01

  • 3963 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.97 (3) 1.83 (3) 2.577 (3) 133 (3)
C6—H6⋯O1i 0.93 2.41 3.327 (4) 168
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: KappaCCD Server Software (Nonius, 1999[Nonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azo compounds represent the dominant class of synthetic colourant employed in the textile, printing, agrochemical and pharmaceutical industries (Lee et al., 2004); Oueslati et al., 2004). As a result of the presence of the stable chromophoric azo group (N=N) which is capable of linking different aromatic systems with electron-donating and/or electron-withdrawing groups, dyes can be designed to resist chemical or photochemical degradation processes.

The molecular structure of (I) and the atom-numbering scheme are shown in Figure 1. Two aromatic rings A (C1—C6) and B (C7—C16) show a little deviation from planarity with a dihedral angle of 11.76 °. Intramolecular hydrogen bonds are formed between the phenol hydroxyl groups and the nearest N atom in the 3-aminobenzaldehyde groups [N—H—O = 2.577 (3)], similar to that reported previously (Xu et al., 2010).

Related literature top

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). For a related structure, see: Xu et al. (2010).

Experimental top

Treatment of 3-aminobenzaldehyde (0.02 mol) in 6 ml of 12M HCl and NaNO2 (0.0214 mol) in 8 ml of H2O for 30 min. To the obtained solution, was added dropwise a solution of naphthalen-2-ol, and the resulting brown precipitates were filtrated and washed with water, and dried in a desiccator for several days. Single crystals of I were obtained by slow evaporation from a pentane.

Refinement top

H1 atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined in ridding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Hydrogen atoms is shown as a small spheres.
(E)-1-(3-Formylphenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium top
Crystal data top
C17H12N2O2F(000) = 576
Mr = 276.29Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3964 reflections
a = 5.601 (4) Åθ = 1.3–30.7°
b = 7.780 (5) ŵ = 0.10 mm1
c = 29.70 (2) ÅT = 293 K
β = 94.624 (16)°Needle, red
V = 1290.0 (15) Å30.09 × 0.04 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2155 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 30.7°, θmin = 1.4°
CCD rotation images, thick slices scansh = 77
16470 measured reflectionsk = 1111
3964 independent reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.068P)2 + 0.0107P]
where P = (Fo2 + 2Fc2)/3
3963 reflections(Δ/σ)max = 0.002
194 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H12N2O2V = 1290.0 (15) Å3
Mr = 276.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.601 (4) ŵ = 0.10 mm1
b = 7.780 (5) ÅT = 293 K
c = 29.70 (2) Å0.09 × 0.04 × 0.01 mm
β = 94.624 (16)°
Data collection top
Nonius KappaCCD
diffractometer
2155 reflections with I > 2σ(I)
16470 measured reflectionsRint = 0.078
3964 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
3963 reflectionsΔρmin = 0.23 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1128 (2)0.36260 (19)0.05566 (4)0.0354 (4)
O20.0805 (2)0.98626 (19)0.12237 (5)0.0382 (4)
N10.7771 (3)0.5614 (2)0.07936 (5)0.0262 (4)
N20.8540 (3)0.53524 (19)0.12186 (5)0.0244 (3)
C10.5770 (3)0.6695 (2)0.06949 (6)0.0236 (4)
C20.4368 (3)0.7287 (2)0.10308 (6)0.0233 (4)
H20.47460.69800.13310.028*
C30.2409 (3)0.8333 (2)0.09152 (6)0.0252 (4)
C40.1826 (4)0.8796 (3)0.04653 (6)0.0311 (5)
H40.05140.95000.03880.037*
C50.3226 (4)0.8194 (3)0.01347 (7)0.0339 (5)
H50.28360.84880.01660.041*
C60.5206 (4)0.7156 (3)0.02464 (6)0.0307 (5)
H60.61470.67720.00230.037*
C71.0448 (3)0.4360 (2)0.13145 (6)0.0244 (4)
C81.1796 (3)0.3516 (2)0.09708 (6)0.0275 (4)
C91.3961 (3)0.2599 (2)0.11294 (7)0.0299 (4)
H91.48500.20500.09210.036*
C101.4711 (3)0.2523 (2)0.15691 (7)0.0289 (4)
H101.61320.19470.16540.035*
C111.3401 (3)0.3301 (2)0.19198 (6)0.0260 (4)
C121.1257 (3)0.4201 (2)0.17941 (6)0.0231 (4)
C130.9988 (3)0.4950 (2)0.21333 (6)0.0262 (4)
H130.85740.55430.20540.031*
C141.0815 (3)0.4817 (2)0.25807 (6)0.0291 (4)
H140.99570.53220.28010.035*
C151.2930 (4)0.3929 (2)0.27070 (7)0.0306 (5)
H151.34780.38420.30100.037*
C161.4203 (3)0.3179 (2)0.23791 (6)0.0289 (4)
H161.56100.25860.24640.035*
C170.0939 (4)0.8931 (2)0.12780 (7)0.0299 (4)
H170.13860.85640.15710.036*
H10.862 (5)0.511 (4)0.0554 (10)0.079 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (8)0.0430 (8)0.0283 (8)0.0046 (7)0.0063 (6)0.0055 (6)
O20.0316 (8)0.0381 (8)0.0459 (9)0.0057 (7)0.0096 (7)0.0013 (7)
N10.0251 (8)0.0315 (9)0.0222 (8)0.0016 (7)0.0040 (7)0.0001 (7)
N20.0250 (8)0.0244 (8)0.0240 (8)0.0036 (6)0.0036 (6)0.0014 (6)
C10.0221 (9)0.0239 (9)0.0250 (9)0.0017 (7)0.0026 (7)0.0012 (7)
C20.0228 (9)0.0274 (9)0.0197 (9)0.0023 (7)0.0005 (7)0.0001 (7)
C30.0236 (9)0.0261 (9)0.0261 (10)0.0037 (8)0.0020 (7)0.0011 (8)
C40.0278 (10)0.0339 (11)0.0312 (11)0.0044 (8)0.0003 (8)0.0035 (8)
C50.0372 (12)0.0425 (12)0.0217 (9)0.0040 (9)0.0002 (8)0.0050 (9)
C60.0325 (11)0.0360 (11)0.0246 (10)0.0001 (9)0.0079 (8)0.0002 (8)
C70.0225 (9)0.0224 (9)0.0289 (10)0.0012 (7)0.0048 (8)0.0007 (7)
C80.0281 (10)0.0258 (10)0.0295 (10)0.0039 (8)0.0081 (8)0.0015 (8)
C90.0253 (10)0.0283 (10)0.0374 (12)0.0005 (8)0.0104 (8)0.0037 (8)
C100.0210 (10)0.0240 (9)0.0422 (12)0.0018 (8)0.0055 (8)0.0026 (8)
C110.0223 (9)0.0221 (9)0.0339 (10)0.0032 (7)0.0037 (8)0.0015 (8)
C120.0203 (9)0.0223 (9)0.0270 (10)0.0033 (7)0.0029 (7)0.0018 (7)
C130.0254 (9)0.0252 (9)0.0284 (10)0.0016 (8)0.0056 (8)0.0014 (8)
C140.0327 (11)0.0278 (10)0.0272 (10)0.0004 (8)0.0049 (8)0.0004 (8)
C150.0368 (11)0.0270 (10)0.0271 (10)0.0039 (8)0.0035 (9)0.0036 (8)
C160.0248 (10)0.0250 (10)0.0362 (11)0.0001 (8)0.0021 (8)0.0044 (8)
C170.0293 (10)0.0297 (10)0.0310 (11)0.0003 (8)0.0040 (8)0.0023 (8)
Geometric parameters (Å, º) top
O1—C81.260 (2)C7—C81.472 (3)
O2—C171.217 (2)C8—C91.453 (3)
N1—N21.316 (2)C9—C101.340 (3)
N1—C11.413 (2)C9—H90.9300
N1—H10.97 (3)C10—C111.454 (3)
N2—C71.331 (2)C10—H100.9300
C1—C61.391 (3)C11—C161.405 (3)
C1—C21.397 (3)C11—C121.414 (3)
C2—C31.387 (3)C12—C131.405 (3)
C2—H20.9300C13—C141.375 (3)
C3—C41.397 (3)C13—H130.9300
C3—C171.483 (3)C14—C151.396 (3)
C4—C51.387 (3)C14—H140.9300
C4—H40.9300C15—C161.382 (3)
C5—C61.390 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C121.465 (3)
N2—N1—C1118.93 (16)C10—C9—C8121.69 (18)
N2—N1—H1119.8 (17)C10—C9—H9119.2
C1—N1—H1121.2 (17)C8—C9—H9119.2
N1—N2—C7119.34 (16)C9—C10—C11122.90 (18)
C6—C1—C2120.10 (17)C9—C10—H10118.6
C6—C1—N1117.88 (17)C11—C10—H10118.6
C2—C1—N1122.02 (17)C16—C11—C12119.23 (17)
C3—C2—C1119.72 (17)C16—C11—C10121.81 (18)
C3—C2—H2120.1C12—C11—C10118.96 (18)
C1—C2—H2120.1C13—C12—C11118.94 (17)
C2—C3—C4120.49 (17)C13—C12—C7121.84 (17)
C2—C3—C17118.60 (17)C11—C12—C7119.20 (17)
C4—C3—C17120.91 (18)C14—C13—C12120.71 (18)
C5—C4—C3119.22 (19)C14—C13—H13119.6
C5—C4—H4120.4C12—C13—H13119.6
C3—C4—H4120.4C13—C14—C15120.62 (18)
C4—C5—C6120.87 (18)C13—C14—H14119.7
C4—C5—H5119.6C15—C14—H14119.7
C6—C5—H5119.6C16—C15—C14119.64 (18)
C5—C6—C1119.59 (18)C16—C15—H15120.2
C5—C6—H6120.2C14—C15—H15120.2
C1—C6—H6120.2C15—C16—C11120.86 (18)
N2—C7—C12115.93 (16)C15—C16—H16119.6
N2—C7—C8123.94 (17)C11—C16—H16119.6
C12—C7—C8120.07 (17)O2—C17—C3125.28 (19)
O1—C8—C9121.63 (17)O2—C17—H17117.4
O1—C8—C7121.23 (18)C3—C17—H17117.4
C9—C8—C7117.11 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.97 (3)1.83 (3)2.577 (3)133 (3)
C6—H6···O1i0.932.413.327 (4)168
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.97 (3)1.83 (3)2.577 (3)133 (3)
C6—H6···O1i0.932.413.327 (4)168
Symmetry code: (i) x+2, y+1, z.
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J.-J., Li, J., Pi, M. & Jin, C.-M. (2010). Acta Cryst. E66, o1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds