organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(4-Fluoro­benzyl­imino)­meth­yl]-4-methyl­phenol

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 21 May 2012; accepted 14 June 2012; online 20 June 2012)

In the title Schiff base compound, C15H14FNO, the benzene rings make a dihedral angle of 72.75 (13)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, weak ππ stacking occurs between the phenol rings of inversion-related mol­ecules, the centroid–centroid distance being 3.7731 (14) Å.

Related literature

For background and related compounds, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2043.]); Xia et al. (2009[Xia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14FNO

  • Mr = 243.28

  • Monoclinic, P 21 /c

  • a = 15.0297 (9) Å

  • b = 6.1496 (3) Å

  • c = 14.3090 (9) Å

  • β = 104.142 (6)°

  • V = 1282.45 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.38 × 0.21 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 9046 measured reflections

  • 2265 independent reflections

  • 1552 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.150

  • S = 1.10

  • 2265 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.628 (3) 147

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base have played an important role in the development of coordination chemistry (Xia et al., 2009) as they readily form stable complexes with most of the transition metals. Some of the reasons are that the N atom plays an important role in the formation of metal complexes, and that Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). Here we report on a new Schiff base.

The molecular structures of(I) illustrated in the Fig. 1. The C8 and N1 atoms form a 1.46 (4) Å single bond is longer than the double bond [1.28 (3) Å] formed by C7 and N1. The molecular structure is stabilized by an intramolecular O—H···N hydrogen bond.

Related literature top

For background and related compounds, see: Cohen et al. (1964); Xia et al. (2009).

Experimental top

2-Hydroxy-4-methylbenzaldehyde (20 mmol, 2.72 g) and (4-fluorophenyl)methanamine (20 mmol, 2.5 g) were dissolved in ethanol respectively. Then put them together and the solution was refluxed for 30 min. Yellow powder precipitates when cooled to room temperature. After evaporation, a crude product was recrystallized twice from methanol to give yellow crystals.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93– 0.97, O—H = 0.82 Å). Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Structure description top

Schiff base have played an important role in the development of coordination chemistry (Xia et al., 2009) as they readily form stable complexes with most of the transition metals. Some of the reasons are that the N atom plays an important role in the formation of metal complexes, and that Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). Here we report on a new Schiff base.

The molecular structures of(I) illustrated in the Fig. 1. The C8 and N1 atoms form a 1.46 (4) Å single bond is longer than the double bond [1.28 (3) Å] formed by C7 and N1. The molecular structure is stabilized by an intramolecular O—H···N hydrogen bond.

For background and related compounds, see: Cohen et al. (1964); Xia et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2-[(E)-(4-Fluorobenzylimino)methyl]-4-methylphenol top
Crystal data top
C15H14FNOF(000) = 512.0
Mr = 243.28Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2338 reflections
a = 15.0297 (9) Åθ = 1.0–25.0°
b = 6.1496 (3) ŵ = 0.09 mm1
c = 14.3090 (9) ÅT = 293 K
β = 104.142 (6)°Block, yellow
V = 1282.45 (13) Å30.38 × 0.21 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ω scansh = 1717
9046 measured reflectionsk = 77
2265 independent reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.4777P]
where P = (Fo2 + 2Fc2)/3
2265 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C15H14FNOV = 1282.45 (13) Å3
Mr = 243.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0297 (9) ŵ = 0.09 mm1
b = 6.1496 (3) ÅT = 293 K
c = 14.3090 (9) Å0.38 × 0.21 × 0.14 mm
β = 104.142 (6)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1552 reflections with I > 2σ(I)
9046 measured reflectionsRint = 0.030
2265 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.150H-atom parameters constrained
S = 1.10Δρmax = 0.15 e Å3
2265 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02053 (15)0.5287 (4)0.65069 (15)0.0460 (6)
O10.10373 (12)0.2040 (3)0.63178 (13)0.0702 (5)
H10.14540.27930.66330.105*
C70.10205 (17)0.6427 (4)0.70213 (16)0.0553 (6)
H7A0.09660.78520.72180.066*
C60.02389 (17)0.3154 (4)0.61582 (16)0.0515 (6)
C50.05629 (19)0.2196 (4)0.56346 (18)0.0606 (7)
H5A0.05500.07870.54020.073*
C30.14383 (18)0.5419 (4)0.57872 (17)0.0587 (7)
C20.06444 (16)0.6353 (4)0.63143 (16)0.0533 (6)
H2A0.06710.77520.65530.064*
N10.18143 (15)0.5538 (4)0.72148 (15)0.0637 (6)
C40.13757 (18)0.3317 (5)0.54576 (17)0.0624 (7)
H4A0.19050.26420.51030.075*
C90.23392 (19)0.6640 (6)0.5563 (2)0.0902 (10)
H9A0.22240.81680.55210.135*
H9B0.26490.63880.60660.135*
H9C0.27170.61400.49600.135*
C100.32939 (16)0.7009 (5)0.71083 (18)0.0594 (7)
C80.25963 (19)0.6878 (6)0.7706 (2)0.0798 (9)
H8A0.28780.62500.83300.096*
H8B0.23850.83280.78090.096*
F10.51784 (14)0.7389 (4)0.54697 (17)0.1337 (9)
C150.38998 (19)0.5337 (5)0.7092 (2)0.0754 (8)
H15A0.38830.41050.74640.090*
C130.45416 (19)0.7270 (6)0.5999 (2)0.0800 (9)
C110.33333 (18)0.8798 (5)0.6546 (2)0.0701 (8)
H11A0.29280.99430.65440.084*
C140.45313 (19)0.5445 (6)0.6536 (2)0.0840 (9)
H14A0.49370.43080.65290.101*
C120.3958 (2)0.8944 (5)0.5983 (2)0.0795 (9)
H12A0.39761.01630.56040.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0579 (14)0.0454 (13)0.0398 (12)0.0019 (11)0.0216 (10)0.0035 (10)
O10.0752 (12)0.0557 (11)0.0887 (13)0.0113 (9)0.0373 (10)0.0010 (10)
C70.0664 (16)0.0565 (15)0.0483 (13)0.0059 (12)0.0244 (12)0.0014 (12)
C60.0675 (16)0.0451 (14)0.0507 (13)0.0023 (12)0.0312 (12)0.0029 (11)
C50.0812 (18)0.0508 (15)0.0591 (15)0.0124 (14)0.0347 (14)0.0112 (13)
C30.0670 (16)0.0643 (17)0.0475 (13)0.0028 (13)0.0191 (12)0.0075 (13)
C20.0694 (16)0.0446 (13)0.0497 (13)0.0042 (12)0.0219 (12)0.0033 (11)
N10.0596 (13)0.0755 (15)0.0597 (13)0.0104 (12)0.0216 (11)0.0014 (11)
C40.0697 (17)0.0713 (18)0.0494 (14)0.0164 (14)0.0207 (13)0.0049 (14)
C90.0684 (19)0.105 (3)0.092 (2)0.0169 (17)0.0095 (17)0.018 (2)
C100.0463 (14)0.0720 (18)0.0561 (15)0.0083 (13)0.0050 (11)0.0012 (14)
C80.0684 (18)0.110 (2)0.0631 (17)0.0216 (17)0.0198 (14)0.0138 (17)
F10.1096 (15)0.160 (2)0.159 (2)0.0252 (14)0.0876 (15)0.0185 (16)
C150.0673 (18)0.074 (2)0.0802 (19)0.0018 (15)0.0096 (15)0.0124 (16)
C130.0612 (18)0.097 (3)0.089 (2)0.0158 (17)0.0329 (16)0.009 (2)
C110.0580 (16)0.0698 (19)0.0807 (19)0.0033 (14)0.0136 (14)0.0013 (16)
C140.0587 (17)0.083 (2)0.109 (3)0.0091 (16)0.0190 (17)0.012 (2)
C120.078 (2)0.075 (2)0.087 (2)0.0110 (17)0.0240 (17)0.0117 (17)
Geometric parameters (Å, º) top
C1—C21.402 (3)C9—H9B0.9600
C1—C61.409 (3)C9—H9C0.9600
C1—C71.447 (3)C10—C111.373 (4)
O1—C61.352 (3)C10—C151.378 (3)
O1—H10.8200C10—C81.508 (3)
C7—N11.280 (3)C8—H8A0.9700
C7—H7A0.9300C8—H8B0.9700
C6—C51.385 (3)F1—C131.360 (3)
C5—C41.371 (4)C15—C141.381 (4)
C5—H5A0.9300C15—H15A0.9300
C3—C21.372 (3)C13—C121.349 (4)
C3—C41.387 (4)C13—C141.362 (4)
C3—C91.513 (4)C11—C121.381 (4)
C2—H2A0.9300C11—H11A0.9300
N1—C81.466 (3)C14—H14A0.9300
C4—H4A0.9300C12—H12A0.9300
C9—H9A0.9600
C2—C1—C6118.4 (2)H9A—C9—H9C109.5
C2—C1—C7119.4 (2)H9B—C9—H9C109.5
C6—C1—C7122.2 (2)C11—C10—C15117.7 (3)
C6—O1—H1109.5C11—C10—C8120.7 (3)
N1—C7—C1122.1 (2)C15—C10—C8121.6 (3)
N1—C7—H7A118.9N1—C8—C10110.2 (2)
C1—C7—H7A118.9N1—C8—H8A109.6
O1—C6—C5119.7 (2)C10—C8—H8A109.6
O1—C6—C1121.3 (2)N1—C8—H8B109.6
C5—C6—C1119.1 (2)C10—C8—H8B109.6
C4—C5—C6120.3 (2)H8A—C8—H8B108.1
C4—C5—H5A119.9C10—C15—C14121.6 (3)
C6—C5—H5A119.9C10—C15—H15A119.2
C2—C3—C4117.1 (2)C14—C15—H15A119.2
C2—C3—C9121.4 (3)C12—C13—F1119.6 (3)
C4—C3—C9121.5 (3)C12—C13—C14122.7 (3)
C3—C2—C1122.7 (2)F1—C13—C14117.7 (3)
C3—C2—H2A118.7C10—C11—C12121.8 (3)
C1—C2—H2A118.7C10—C11—H11A119.1
C7—N1—C8117.3 (3)C12—C11—H11A119.1
C5—C4—C3122.5 (2)C13—C14—C15118.0 (3)
C5—C4—H4A118.8C13—C14—H14A121.0
C3—C4—H4A118.8C15—C14—H14A121.0
C3—C9—H9A109.5C13—C12—C11118.2 (3)
C3—C9—H9B109.5C13—C12—H12A120.9
H9A—C9—H9B109.5C11—C12—H12A120.9
C3—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.628 (3)147

Experimental details

Crystal data
Chemical formulaC15H14FNO
Mr243.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0297 (9), 6.1496 (3), 14.3090 (9)
β (°) 104.142 (6)
V3)1282.45 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.21 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9046, 2265, 1552
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.150, 1.10
No. of reflections2265
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.628 (3)147
 

Acknowledgements

This project was supported by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University, China (No. Xkl09070).

References

First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.  CrossRef Web of Science Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds