metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­iodidomercury(II)]-μ2-2-amino­pyrazine-κ2N1:N4]

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and bDepartment of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshar, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 7 February 2012; accepted 12 February 2012; online 17 February 2012)

In the crystal of the title polymeric compound, [HgI2(C4H5N3)]n, the HgII cation is located on a twofold rotation axis and is coordinated by two I anions and two 2-amino­pyrazine ligands in a distorted HgI2N2 tetra­hedral geometry. In the crystal, the 2-amino­pyrazine ligand is equally disordered over two positions about an inversion center, and bridges the HgII cations with pyrazine N atoms to form a polymeric chain running along the c axis. In the polymeric chain, the amino groups link to the coordinated I anions via inter­molecular N—H⋯I hydrogen bonds.

Related literature

For related structures, see: Sun et al. (2009[Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2009). Acta Cryst. C65, m478-m480.]); Pagola et al. (2008[Pagola, S., Pike, R. D., deKrafft, K. & Tronic, T. A. (2008). Acta Cryst. C64, m134-m136.]); Boonmak et al. (2010[Boonmak, J., Nakano, M., Chaichit, N., Pakawatchai, C. & Youngme, S. (2010). Dalton Trans. 39, 8161-8167.]); Gao & Ng (2011[Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1049-m1050.]); Goher et al. (2008[Goher, M. A. S., Mautner, F. A., Sodin, B. & Bitschnau, B. (2008). J. Mol. Struct. 879, 96-101.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C4H5N3)]

  • Mr = 549.50

  • Monoclinic, C 2/c

  • a = 15.3389 (19) Å

  • b = 6.8791 (8) Å

  • c = 9.6239 (11) Å

  • β = 103.828 (10)°

  • V = 986.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 21.81 mm−1

  • T = 298 K

  • 0.50 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.275, Tmax = 0.417

  • 2648 measured reflections

  • 933 independent reflections

  • 911 reflections with I > 2σ(I)

  • Rint = 0.173

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.224

  • S = 1.08

  • 933 reflections

  • 52 parameters

  • H-atom parameters constrained

  • Δρmax = 2.67 e Å−3

  • Δρmin = −2.69 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—I1 2.6373 (13)
Hg1—N1i 2.497 (11)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯I1i 0.86 2.83 3.67 (3) 169
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Aminopyrazine is a good ligand and numerous complexes with 2-aminopyrazine have been prepared, such as that of silver (Sun et al., 2009), copper (Pagola et al., 2008), cobalt, iron and cadmium (Boonmak et al., 2010) and zinc (Gao & Ng, 2011; Goher et al., 2008). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one half molecule. The HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-aminopyrazine and two I atoms. The Hgd-I and Hg—N bond lengths angles are collected in Table 1.

Intermolecular N—H···I hydrogen bonds (Table 2) seem to be effective in the stabilization of the polymeric structure (Fig. 2).

Related literature top

For related structures, see: Sun et al. (2009); Pagola et al. (2008); Boonmak et al. (2010); Gao & Ng (2011); Goher et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 2-aminopyrazine (0.15 g, 1.50 mmol) in methanol (10 ml) was added to a solution of HgI2 (0.55 g, 1.50 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless needle crystals of the title compound were isolated (yield 0.63 g, 76.4%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N). In the crystal, the 2-aminopyrazine ring is equqlly disordered over two positions about an inversion center.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: #1: -x, 1 - y, 1 - z; #2: -x, y, 3/2 - z].
[Figure 2] Fig. 2. A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.
catena-Poly[[diiodidomercury(II)]-µ2-2-aminopyrazine- κ2N1:N4] top
Crystal data top
[HgI2(C4H5N3)]F(000) = 944
Mr = 549.50Dx = 3.701 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2648 reflections
a = 15.3389 (19) Åθ = 2.7–26.0°
b = 6.8791 (8) ŵ = 21.81 mm1
c = 9.6239 (11) ÅT = 298 K
β = 103.828 (10)°Needle, colorless
V = 986.1 (2) Å30.50 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
933 independent reflections
Radiation source: fine-focus sealed tube911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.173
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.275, Tmax = 0.417k = 88
2648 measured reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1405P)2 + 17.0935P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
933 reflectionsΔρmax = 2.67 e Å3
52 parametersΔρmin = 2.69 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
[HgI2(C4H5N3)]V = 986.1 (2) Å3
Mr = 549.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3389 (19) ŵ = 21.81 mm1
b = 6.8791 (8) ÅT = 298 K
c = 9.6239 (11) Å0.50 × 0.05 × 0.04 mm
β = 103.828 (10)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
933 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
911 reflections with I > 2σ(I)
Tmin = 0.275, Tmax = 0.417Rint = 0.173
2648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1405P)2 + 17.0935P]
where P = (Fo2 + 2Fc2)/3
933 reflectionsΔρmax = 2.67 e Å3
52 parametersΔρmin = 2.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0725 (10)0.383 (2)0.5415 (17)0.042 (3)
H10.12340.30630.57100.050*
C20.0746 (11)0.455 (2)0.542 (2)0.044 (3)
H2C0.12740.42400.56940.054*0.50
N10.0046 (8)0.3371 (17)0.5809 (12)0.040 (2)
N20.154 (2)0.409 (5)0.578 (4)0.059 (8)0.50
H2A0.15860.30480.62510.071*0.50
H2B0.19990.48560.55310.071*0.50
Hg10.00000.05992 (11)0.75000.0451 (6)
I10.16288 (9)0.07523 (19)0.76493 (17)0.0629 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (7)0.040 (7)0.051 (7)0.005 (6)0.016 (6)0.008 (7)
C20.034 (7)0.046 (8)0.055 (9)0.003 (5)0.016 (6)0.005 (6)
N10.039 (6)0.035 (5)0.050 (6)0.002 (4)0.018 (5)0.004 (5)
N20.054 (17)0.062 (17)0.070 (17)0.020 (14)0.032 (15)0.034 (14)
Hg10.0390 (8)0.0411 (8)0.0576 (8)0.0000.0164 (5)0.000
I10.0484 (10)0.0655 (10)0.0793 (11)0.0199 (5)0.0241 (7)0.0154 (5)
Geometric parameters (Å, º) top
C1—N11.363 (19)N1—Hg12.497 (11)
C1—C2i1.38 (2)N2—H2A0.8600
C1—H10.9300N2—H2B0.8600
C2—N11.33 (2)Hg1—I1ii2.6372 (13)
C2—H2C0.9300Hg1—I12.6373 (13)
C2—C1i1.38 (2)Hg1—N1ii2.497 (11)
C2—N21.38 (4)
N1—C1—C2i119.6 (14)C1—N1—Hg1117.9 (10)
N1—C1—H1120.2C2—N2—H2A120.0
C2i—C1—H1120.2C2—N2—H2B120.0
C1i—C2—H2C119.0H2A—N2—H2B120.0
N1i—C2—H2C149.0N1ii—Hg1—N180.4 (5)
N1—C2—C1i121.6 (15)N1ii—Hg1—I1ii100.6 (3)
N1—C2—N2120.0 (17)N1—Hg1—I1ii110.8 (3)
C1i—C2—N2118.2 (18)N1ii—Hg1—I1110.8 (3)
C2—N1—C1118.6 (13)N1—Hg1—I1100.6 (3)
C2—N1—Hg1122.9 (10)I1ii—Hg1—I1138.71 (7)
C1i—C2—N1—C13 (3)C2—N1—Hg1—N1ii68.8 (12)
N2—C2—N1—C1179 (2)C1—N1—Hg1—N1ii102.6 (12)
C1i—C2—N1—Hg1174.4 (13)C2—N1—Hg1—I1ii29.0 (13)
N2—C2—N1—Hg110 (3)C1—N1—Hg1—I1ii159.7 (10)
C2i—C1—N1—C23 (3)C2—N1—Hg1—I1178.4 (12)
C2i—C1—N1—Hg1174.8 (12)C1—N1—Hg1—I17.0 (11)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···I1ii0.862.833.67 (3)169
Symmetry code: (ii) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[HgI2(C4H5N3)]
Mr549.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.3389 (19), 6.8791 (8), 9.6239 (11)
β (°) 103.828 (10)
V3)986.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)21.81
Crystal size (mm)0.50 × 0.05 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.275, 0.417
No. of measured, independent and
observed [I > 2σ(I)] reflections
2648, 933, 911
Rint0.173
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.224, 1.08
No. of reflections933
No. of parameters52
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1405P)2 + 17.0935P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.67, 2.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Hg1—I12.6373 (13)Hg1—N1i2.497 (11)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···I1i0.862.833.67 (3)169
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationBoonmak, J., Nakano, M., Chaichit, N., Pakawatchai, C. & Youngme, S. (2010). Dalton Trans. 39, 8161–8167.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1049–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoher, M. A. S., Mautner, F. A., Sodin, B. & Bitschnau, B. (2008). J. Mol. Struct. 879, 96–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationPagola, S., Pike, R. D., deKrafft, K. & Tronic, T. A. (2008). Acta Cryst. C64, m134–m136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Luo, G.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2009). Acta Cryst. C65, m478–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds