metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-ethyl-1H-imidazole-5-carboxyl­ato-κ2N3,O4)zinc trihydrate

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China
*Correspondence e-mail: zhanghn1010@163.com

(Received 23 April 2011; accepted 3 May 2011; online 7 May 2011)

In the crystal structure of the title compound, [Zn(C7H7N2O4)2(H2O)2]·3H2O, the ZnII ion, located an inversion center, is N,O-chelated by two 5-carb­oxy-2-ethyl-1H-imidazole-4-carboxyl­ate anions and further coordinated by two water mol­ecules in a distorted octa­hedral geometry. The carb­oxy group links with the carboxyl­ate group of the same ligand via an intra­molecular O—H⋯O hydrogen bond. An extensive inter­molecular N—H⋯O and O—H⋯O hydrogen-bonded network exists in the crystal structure. One disordered lattice water mol­ecule is half-occupied and is located close to an inversion center.

Related literature

For coordination polymers built from 2-ethyl-4,5-imidazole­dicarboxyl­ate, see: Li et al. (2011[Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295-m296.]); Wang et al. (2008[Wang, S., Zhang, L.-R., Li, G.-H., Huo, Q.-S. & Liu, Y.-L. (2008). CrystEngComm, 10, 1662-1666.]); Zhang et al. (2010[Zhang, F.-W., Li, Z.-F., Ge, T.-Z., Yao, H.-C., Li, G., Lu, H.-J. & Zhu, Y.-Y. (2010). Inorg. Chem. 49, 3776-3788.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H7N2O4)2(H2O)2]·3H2O

  • Mr = 521.74

  • Triclinic, [P \overline 1]

  • a = 7.229 (1) Å

  • b = 8.8959 (12) Å

  • c = 9.3541 (15) Å

  • α = 65.769 (1)°

  • β = 88.587 (2)°

  • γ = 70.676 (1)°

  • V = 513.31 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.24 × 0.22 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.776

  • 2676 measured reflections

  • 1774 independent reflections

  • 1532 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.09

  • 1774 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.104 (3)
Zn1—O1 2.164 (3)
Zn1—O5 2.116 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6i 0.86 1.95 2.778 (4) 161
O3—H3⋯O2 0.82 1.65 2.465 (4) 172
O5—H5C⋯O3ii 0.85 1.95 2.785 (4) 167
O5—H5D⋯O4iii 0.85 1.88 2.713 (4) 166
O6—H6E⋯O4iv 0.86 2.29 3.145 (5) 175
O6—H6F⋯O7v 0.85 2.09 2.664 (17) 125
O7—H7F⋯O1i 0.85 2.12 2.93 (3) 160
O7—H7G⋯O2ii 0.85 2.24 3.06 (3) 160
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+2, -z+1; (iii) x+1, y-1, z; (iv) -x, -y+2, -z+1; (v) x, y, z-1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly of supramolecular architectures based on imidazole carboxylate ligands has draw much attention during recent decades. To the best of our knowledge, coordination polymers based on 2-ethyl-4,5-imidazoledicarboxylate has been rarely reported so far (Wang et al., 2008; Zhang et al., 2010; Li et al., 2011). Herein we report the title compound by the reaction of zinc nitrate with 2-ethyl-4,5-imidazoledicarboxylate (H3EIDC) in an aqueous solution under hydrothermal condition.

The title compound, [Zn(C7H7N2O4)2(H2O)2].3H2O, depicted in Fig. 1, has two symmetrical coordination water molecules, three free water molecules and two 2-ethyl-4,5-imidazoledicarboxylate ligands. the ZnII ion, lying on a center of inversion, is surrounded by two terminal water molecules, two nitrogen atoms and two oxygen atoms from two different 2-ethyl-4,5-imidazoledicarboxylate ligands in a slightly distorted octahedral coordination environment. Three solvent water molecules exist via hydrogen bonding among the imidazole N atom, the carboxylate O atom and the O atom from water molecule, whose distances and angles are shown in Tab. 1, Each H2EIDC is bonded to ZnII ion in a µ2-mode. A three-dimensional supramolecular structure is consolidated by hydrogen-bonding interactions (N—H···O and O—H···O).

Related literature top

For coordination polymers built from 2-ethyl-4,5-imidazoledicarboxylate, see: Li et al. (2011); Wang et al. (2008); Zhang et al. (2010).

Experimental top

A mixture of Zn(NO3)2 (0.5 mmol, 0.110 g) and 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.95 g) in an aqueous solution (15 ml) was placed in a 23 ml Teflon-lined reactor, which was heated at 423 K for 2 d, and then cooled to room temperature at a rate of 10 K h-1. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Carboxy H atom was located in a difference map and refined with distance constraint of O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O). Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). H atoms of the O6 water molecule were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). The O7 atom is located close to an inversion center and is half-occupied in the crystal structure; its H atoms were placed in calculated positions and refined in a riding mode with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids [symmetry codes: i: 1 - x, 1 - y, 1 - z.]
Diaquabis(5-carboxy-2-ethyl-1H-imidazole-5-carboxylato- κ2N3,O4)zinc trihydrate top
Crystal data top
[Zn(C7H7N2O4)2(H2O)2]·3H2OZ = 1
Mr = 521.74F(000) = 270
Triclinic, P1Dx = 1.688 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.229 (1) ÅCell parameters from 1329 reflections
b = 8.8959 (12) Åθ = 2.4–26.5°
c = 9.3541 (15) ŵ = 1.27 mm1
α = 65.769 (1)°T = 298 K
β = 88.587 (2)°Block, colorless
γ = 70.676 (1)°0.24 × 0.22 × 0.21 mm
V = 513.31 (13) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1774 independent reflections
Radiation source: fine-focus sealed tube1532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.750, Tmax = 0.776k = 810
2676 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.7163P]
where P = (Fo2 + 2Fc2)/3
1774 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn(C7H7N2O4)2(H2O)2]·3H2Oγ = 70.676 (1)°
Mr = 521.74V = 513.31 (13) Å3
Triclinic, P1Z = 1
a = 7.229 (1) ÅMo Kα radiation
b = 8.8959 (12) ŵ = 1.27 mm1
c = 9.3541 (15) ÅT = 298 K
α = 65.769 (1)°0.24 × 0.22 × 0.21 mm
β = 88.587 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1774 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1532 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.776Rint = 0.015
2676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.09Δρmax = 0.45 e Å3
1774 reflectionsΔρmin = 0.71 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50000.50000.0323 (2)
N10.3641 (4)0.6476 (4)0.6256 (3)0.0279 (7)
N20.2272 (4)0.7940 (4)0.7637 (4)0.0323 (7)
H20.17980.81550.84130.039*
O10.4472 (4)0.7653 (3)0.3230 (3)0.0387 (6)
O20.3323 (5)1.0446 (4)0.2846 (3)0.0471 (8)
O30.1810 (4)1.2103 (3)0.4395 (3)0.0459 (7)
H30.24051.15010.39440.069*
O40.0686 (4)1.1604 (4)0.6715 (4)0.0461 (7)
O50.7784 (4)0.4784 (4)0.5890 (4)0.0511 (8)
H5C0.81090.56360.58480.061*
H5D0.88210.38720.61590.061*
O60.1656 (5)0.8359 (5)0.0415 (4)0.0734 (11)
H6E0.10630.83940.12120.088*
H6F0.17450.93760.00260.088*
O70.439 (3)0.987 (4)0.987 (3)0.169 (9)0.50
H7F0.46290.90371.07950.202*0.50
H7G0.51680.95160.92880.202*0.50
C10.3691 (5)0.8809 (5)0.3702 (4)0.0310 (8)
C20.3209 (5)0.8245 (4)0.5336 (4)0.0274 (8)
C30.2351 (5)0.9175 (5)0.6180 (4)0.0290 (8)
C40.1541 (6)1.1095 (5)0.5770 (5)0.0343 (9)
C50.3068 (5)0.6320 (5)0.7650 (4)0.0304 (8)
C60.3164 (6)0.4663 (5)0.9015 (5)0.0386 (9)
H6A0.29780.48740.99560.046*
H6B0.44660.37830.91880.046*
C70.1624 (8)0.3961 (7)0.8768 (6)0.0579 (13)
H7A0.18740.36490.78950.087*
H7B0.03360.48490.85440.087*
H7C0.16810.29380.97060.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0374 (4)0.0234 (3)0.0368 (4)0.0042 (3)0.0041 (3)0.0184 (3)
N10.0294 (16)0.0241 (15)0.0311 (16)0.0060 (12)0.0031 (12)0.0152 (13)
N20.0336 (17)0.0309 (17)0.0357 (17)0.0051 (14)0.0058 (13)0.0222 (14)
O10.0490 (17)0.0309 (14)0.0351 (15)0.0090 (12)0.0111 (12)0.0174 (12)
O20.072 (2)0.0276 (15)0.0381 (16)0.0160 (14)0.0135 (15)0.0120 (13)
O30.0598 (19)0.0240 (14)0.0548 (19)0.0083 (13)0.0056 (15)0.0226 (14)
O40.0492 (18)0.0328 (15)0.0566 (18)0.0010 (13)0.0059 (14)0.0298 (14)
O50.0344 (16)0.0329 (16)0.090 (2)0.0026 (12)0.0071 (15)0.0364 (17)
O60.073 (2)0.095 (3)0.055 (2)0.014 (2)0.0122 (18)0.047 (2)
O70.15 (2)0.154 (14)0.125 (11)0.022 (16)0.017 (16)0.013 (10)
C10.034 (2)0.0264 (19)0.034 (2)0.0091 (16)0.0034 (16)0.0152 (16)
C20.0266 (18)0.0230 (18)0.0333 (19)0.0067 (14)0.0006 (14)0.0139 (15)
C30.0283 (19)0.0248 (18)0.0352 (19)0.0064 (15)0.0006 (15)0.0162 (16)
C40.032 (2)0.0264 (19)0.046 (2)0.0056 (16)0.0028 (17)0.0206 (19)
C50.0291 (19)0.0295 (19)0.034 (2)0.0064 (15)0.0017 (15)0.0170 (16)
C60.045 (2)0.033 (2)0.033 (2)0.0097 (18)0.0042 (18)0.0130 (17)
C70.069 (3)0.058 (3)0.048 (3)0.034 (3)0.004 (2)0.014 (2)
Geometric parameters (Å, º) top
Zn1—N12.104 (3)O5—H5D0.8499
Zn1—N1i2.104 (3)O6—H6E0.8578
Zn1—O12.164 (3)O6—H6F0.8502
Zn1—O1i2.164 (3)O7—O7ii1.05 (3)
Zn1—O52.116 (3)O7—H7F0.8500
Zn1—O5i2.116 (3)O7—H7G0.8500
N1—C51.324 (5)C1—C21.473 (5)
N1—C21.375 (4)C2—C31.366 (5)
N2—C51.358 (5)C3—C41.490 (5)
N2—C31.369 (5)C5—C61.483 (5)
N2—H20.8600C6—C71.509 (6)
O1—C11.243 (4)C6—H6A0.9700
O2—C11.277 (4)C6—H6B0.9700
O3—C41.286 (5)C7—H7A0.9600
O3—H30.8200C7—H7B0.9600
O4—C41.218 (5)C7—H7C0.9600
O5—H5C0.8501
N1—Zn1—N1i180.0H7F—O7—H7G108.8
N1—Zn1—O588.97 (11)O1—C1—O2123.1 (3)
N1i—Zn1—O591.03 (11)O1—C1—C2118.0 (3)
N1—Zn1—O5i91.03 (11)O2—C1—C2118.9 (3)
N1i—Zn1—O5i88.97 (11)C3—C2—N1109.7 (3)
O5—Zn1—O5i180.00 (16)C3—C2—C1131.9 (3)
N1—Zn1—O178.99 (10)N1—C2—C1118.5 (3)
N1i—Zn1—O1101.01 (10)C2—C3—N2105.4 (3)
O5—Zn1—O191.97 (11)C2—C3—C4132.7 (4)
O5i—Zn1—O188.03 (11)N2—C3—C4121.8 (3)
N1—Zn1—O1i101.01 (10)O4—C4—O3124.9 (4)
N1i—Zn1—O1i78.99 (10)O4—C4—C3119.8 (4)
O5—Zn1—O1i88.03 (11)O3—C4—C3115.4 (3)
O5i—Zn1—O1i91.97 (11)N1—C5—N2109.7 (3)
O1—Zn1—O1i180.00 (11)N1—C5—C6126.4 (3)
C5—N1—C2106.7 (3)N2—C5—C6123.8 (3)
C5—N1—Zn1142.7 (3)C5—C6—C7112.4 (3)
C2—N1—Zn1110.7 (2)C5—C6—H6A109.1
C5—N2—C3108.6 (3)C7—C6—H6A109.1
C5—N2—H2125.7C5—C6—H6B109.1
C3—N2—H2125.7C7—C6—H6B109.1
C1—O1—Zn1113.8 (2)H6A—C6—H6B107.9
C4—O3—H3109.5C6—C7—H7A109.5
Zn1—O5—H5C125.6C6—C7—H7B109.5
Zn1—O5—H5D124.4H7A—C7—H7B109.5
H5C—O5—H5D108.7C6—C7—H7C109.5
H6E—O6—H6F102.5H7A—C7—H7C109.5
O7ii—O7—H7F88.8H7B—C7—H7C109.5
O7ii—O7—H7G79.9
N1i—Zn1—N1—C555 (100)O2—C1—C2—C31.8 (6)
O5—Zn1—N1—C587.4 (4)O1—C1—C2—N10.1 (5)
O5i—Zn1—N1—C592.6 (4)O2—C1—C2—N1178.9 (3)
O1—Zn1—N1—C5179.6 (4)N1—C2—C3—N20.2 (4)
O1i—Zn1—N1—C50.4 (4)C1—C2—C3—N2179.6 (4)
N1i—Zn1—N1—C2127 (100)N1—C2—C3—C4177.8 (4)
O5—Zn1—N1—C290.9 (2)C1—C2—C3—C41.5 (7)
O5i—Zn1—N1—C289.1 (2)C5—N2—C3—C20.0 (4)
O1—Zn1—N1—C21.3 (2)C5—N2—C3—C4178.3 (3)
O1i—Zn1—N1—C2178.7 (2)C2—C3—C4—O4173.7 (4)
N1—Zn1—O1—C11.4 (3)N2—C3—C4—O44.1 (5)
N1i—Zn1—O1—C1178.6 (3)C2—C3—C4—O35.9 (6)
O5—Zn1—O1—C187.2 (3)N2—C3—C4—O3176.3 (3)
O5i—Zn1—O1—C192.8 (3)C2—N1—C5—N20.4 (4)
O1i—Zn1—O1—C1168 (100)Zn1—N1—C5—N2178.7 (3)
Zn1—O1—C1—O2177.7 (3)C2—N1—C5—C6177.6 (3)
Zn1—O1—C1—C21.1 (4)Zn1—N1—C5—C64.1 (6)
C5—N1—C2—C30.4 (4)C3—N2—C5—N10.3 (4)
Zn1—N1—C2—C3179.3 (2)C3—N2—C5—C6177.5 (3)
C5—N1—C2—C1179.8 (3)N1—C5—C6—C773.4 (5)
Zn1—N1—C2—C11.3 (4)N2—C5—C6—C7103.4 (4)
O1—C1—C2—C3179.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6iii0.861.952.778 (4)161
O3—H3···O20.821.652.465 (4)172
O5—H5C···O3iv0.851.952.785 (4)167
O5—H5D···O4v0.851.882.713 (4)166
O6—H6E···O4vi0.862.293.145 (5)175
O6—H6F···O7vii0.852.092.664 (17)125
O7—H7F···O1iii0.852.122.93 (3)160
O7—H7G···O2iv0.852.243.06 (3)160
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y+2, z+1; (v) x+1, y1, z; (vi) x, y+2, z+1; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C7H7N2O4)2(H2O)2]·3H2O
Mr521.74
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.229 (1), 8.8959 (12), 9.3541 (15)
α, β, γ (°)65.769 (1), 88.587 (2), 70.676 (1)
V3)513.31 (13)
Z1
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.24 × 0.22 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.750, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
2676, 1774, 1532
Rint0.015
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.09
No. of reflections1774
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.71

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.104 (3)Zn1—O52.116 (3)
Zn1—O12.164 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.861.952.778 (4)161
O3—H3···O20.821.652.465 (4)172
O5—H5C···O3ii0.851.952.785 (4)167
O5—H5D···O4iii0.851.882.713 (4)166
O6—H6E···O4iv0.862.293.145 (5)175
O6—H6F···O7v0.852.092.664 (17)125
O7—H7F···O1i0.852.122.93 (3)160
O7—H7G···O2ii0.852.243.06 (3)160
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y1, z; (iv) x, y+2, z+1; (v) x, y, z1.
 

Acknowledgements

The author thanks Henan University of Urban Construction for supporting this work.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295–m296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Zhang, L.-R., Li, G.-H., Huo, Q.-S. & Liu, Y.-L. (2008). CrystEngComm, 10, 1662–1666.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F.-W., Li, Z.-F., Ge, T.-Z., Yao, H.-C., Li, G., Lu, H.-J. & Zhu, Y.-Y. (2010). Inorg. Chem. 49, 3776–3788.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds