metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-{5-[(2-carb­­oxy­phen­yl)sulfanylmeth­yl]-2,4-di­methyl­benzyl­sulfan­yl}benzoato-κ2O,O′)bis­­(pyridine-κN)iron(II)

aDepartment of Chemistry, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: yuminzaizher@126.com

(Received 20 December 2010; accepted 29 December 2010; online 12 January 2011)

The title compound, [Fe(C24H21O4S2)2(C5H5N)2], has 2 symmetry. The FeII cation is located on a twofold rotation axis and is O,O′-chelated by two 2-{5-[(2-carb­oxy­phen­yl)sulfanylmeth­yl]-2,4-dimethyl­benzyl­sulfan­yl}benzoate anions and further coordinated by two pyridine ligands in a distorted octa­hedral geometry. In the anion, the terminal benzene rings are oriented at dihedral angles of 63.81 (14) and 84.50 (14)° with respect to the central benzene ring. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of multithio­ether ligands in inorganic chemistry, see: Li et al. (2002[Li, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, o243-o244.]). For structures of related complexes with multithio­ether ligands, see: Bu et al. (2002[Bu, X.-H., Chen, W., Du, M., Kumar, B., Wang, W.-Z. & Zhang, R.-H. (2002). Inorg. Chem. 41, 437-439.]); Alcock et al. (1978[Alcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 394-399.]) and with carboxylate ligands, see: Dai et al. (2008[Dai, F., He, H., Gao, D., Ye, F., Qiu, X. & Sun, D. (2008). CrystEngComm, 11, 2516-2522]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C24H21O4S2)2(C5H5N)2]

  • Mr = 1089.10

  • Orthorhombic, P b c n

  • a = 16.987 (5) Å

  • b = 9.635 (3) Å

  • c = 31.982 (10) Å

  • V = 5234 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.951

  • 29090 measured reflections

  • 5950 independent reflections

  • 3431 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.00

  • 5950 reflections

  • 336 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O1 2.412 (2)
Fe1—O2 2.0400 (18)
Fe1—N1 2.100 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.96 (4) 1.77 (4) 2.702 (3) 162 (4)
C16—H16A⋯O3ii 0.93 2.54 3.421 (3) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multithioether ligands possess unusual potential for structure control in inorganic chemistry (Li et al., 2002). Some crystal structures of complexes with multithioether ligands have been reported previously (Bu et al., 2002; Alcock et al., 1978). The title compound with the flexible multithioether ligand was obtained in preparing of metal-organic framework (MOF) compounds.

In (I), the central Fe2+ ion is coordinated by four oxygen atoms from the carboxylate group of the ligand and two nitrogen atoms from the pyridine molecule in a distorted octahedron (Fig. 1).

The asymmetry unit contains one ligand, one pyridine molecule, and half Fe2+ ion sitting on the twofold axis, with the other part being generated by the symmetry operation of C<ι>2.

Strong H-bondings are observed between the O-H group of the carboxylate group and O2 in the crystal structure (Table 2).

Related literature top

For applications of multithioether ligands in inorganic chemistry, see: Li et al. (2002). For structures of related complexes with multithioether ligands, see: Bu et al. (2002); Alcock et al. (1978). For related literature [on what subject?], see: Dai et al. (2009).

Experimental top

2,4-Bis(2-(benzylacid)thiophenylmethyl)-1,5-dimethylbenze (2 mg, 4.6 mmol) and FeSO4 (4 mg, 26.3 mmol) were dissolved in 1 ml mixed solution of H2O, DMF and MeOH (5:3:2), then 1 drop pyridine was added. The mixed solution was sealed into a Pyrex glass tube. The mixed solution was heated at 363 K for 60 h, and then cooled down to room temperature over 17 h. Orange crystals were obtained from the reaction mixture.

Refinement top

The carboxyl H atom was located in a difference Fourier map and refined freely. Other H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined in riding mode, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 35% probability displacement ellipsoids. The atoms marked with A are derived from the reference atoms by the symmetry transformation of (-x, y, z).
Bis(2-{5-[(2-carboxyphenyl)sulfanylmethyl]-2,4-dimethylbenzylsulfanyl}benzoato-κ2O,O')bis(pyridine-κN)iron(II) top
Crystal data top
[Fe(C24H21O4S2)2(C5H5N)2]F(000) = 2272
Mr = 1089.10Dx = 1.382 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3184 reflections
a = 16.987 (5) Åθ = 2.4–20.3°
b = 9.635 (3) ŵ = 0.51 mm1
c = 31.982 (10) ÅT = 293 K
V = 5234 (3) Å3Prism, orange
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5950 independent reflections
Radiation source: fine-focus sealed tube3431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 27.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2218
Tmin = 0.928, Tmax = 0.951k = 1112
29090 measured reflectionsl = 4041
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
5950 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C24H21O4S2)2(C5H5N)2]V = 5234 (3) Å3
Mr = 1089.10Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.987 (5) ŵ = 0.51 mm1
b = 9.635 (3) ÅT = 293 K
c = 31.982 (10) Å0.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3431 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.951Rint = 0.073
29090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.29 e Å3
5950 reflectionsΔρmin = 0.24 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.74627 (6)0.25000.04331 (16)
S20.30599 (4)0.78127 (7)0.40440 (2)0.04618 (19)
S30.04300 (4)0.89147 (7)0.38414 (2)0.0475 (2)
N10.08272 (13)0.6062 (2)0.22545 (7)0.0479 (6)
O10.09558 (11)0.9313 (2)0.25198 (6)0.0540 (5)
O20.05286 (11)0.8060 (2)0.30437 (5)0.0499 (5)
O30.35938 (12)0.5896 (2)0.34618 (6)0.0610 (6)
O40.45225 (12)0.6383 (2)0.29905 (6)0.0617 (6)
C10.09241 (15)0.9076 (3)0.29042 (8)0.0417 (6)
C20.13707 (15)0.9951 (3)0.32090 (8)0.0396 (6)
C30.19723 (17)1.0779 (3)0.30537 (10)0.0575 (8)
H3A0.20791.07770.27680.069*
C40.2413 (2)1.1602 (4)0.33156 (11)0.0749 (10)
H4A0.28201.21430.32090.090*
C50.22487 (19)1.1615 (4)0.37331 (11)0.0755 (10)
H5A0.25461.21710.39110.091*
C60.16505 (17)1.0818 (3)0.38954 (10)0.0582 (8)
H6A0.15451.08560.41800.070*
C70.12002 (14)0.9957 (3)0.36411 (8)0.0401 (6)
C80.02048 (16)0.9718 (3)0.43415 (8)0.0519 (8)
H8A0.06580.96740.45250.062*
H8B0.00621.06840.43020.062*
C90.04780 (15)0.8916 (3)0.45280 (8)0.0409 (6)
C100.03712 (15)0.7868 (3)0.48216 (8)0.0426 (6)
C110.04427 (16)0.7410 (3)0.49569 (10)0.0642 (9)
H11A0.04030.65640.51140.096*
H11B0.06760.81180.51280.096*
H11C0.07640.72590.47140.096*
C120.10259 (15)0.7253 (3)0.49995 (8)0.0437 (7)
H12A0.09500.65740.52020.052*
C130.17944 (14)0.7601 (3)0.48894 (8)0.0400 (6)
C140.24754 (16)0.6930 (3)0.51124 (9)0.0556 (8)
H14A0.22860.61780.52820.083*
H14B0.28440.65800.49110.083*
H14C0.27310.76030.52870.083*
C150.19034 (15)0.8607 (3)0.45766 (8)0.0394 (6)
C160.12421 (15)0.9235 (3)0.44033 (8)0.0436 (7)
H16A0.13140.98960.41950.052*
C170.27102 (14)0.9053 (3)0.44325 (8)0.0452 (7)
H17A0.26840.99750.43110.054*
H17B0.30690.90800.46680.054*
C180.40055 (15)0.8453 (3)0.39068 (8)0.0393 (6)
C190.43241 (17)0.9630 (3)0.40961 (9)0.0493 (7)
H19A0.40361.00910.43010.059*
C200.50547 (18)1.0123 (3)0.39868 (9)0.0584 (8)
H20A0.52501.09160.41160.070*
C210.55010 (18)0.9458 (4)0.36882 (10)0.0642 (9)
H21A0.60020.97790.36220.077*
C220.51971 (17)0.8319 (3)0.34908 (9)0.0535 (8)
H22A0.54940.78760.32860.064*
C230.44520 (15)0.7808 (3)0.35894 (8)0.0400 (6)
C240.41396 (17)0.6604 (3)0.33493 (9)0.0453 (7)
C250.12280 (17)0.6396 (3)0.19087 (9)0.0557 (8)
H25A0.10640.71600.17540.067*
C260.18633 (19)0.5669 (4)0.17738 (11)0.0692 (9)
H26A0.21310.59470.15340.083*
C270.2106 (2)0.4539 (4)0.19880 (13)0.0750 (10)
H27A0.25450.40410.19010.090*
C280.1694 (2)0.4137 (4)0.23362 (13)0.0778 (11)
H28A0.18400.33500.24860.093*
C290.1056 (2)0.4935 (4)0.24592 (10)0.0650 (9)
H29A0.07760.46680.26960.078*
H40.428 (2)0.561 (4)0.2852 (12)0.124 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0466 (3)0.0494 (3)0.0340 (3)0.0000.0038 (3)0.000
S20.0433 (4)0.0469 (4)0.0484 (4)0.0056 (3)0.0105 (3)0.0091 (3)
S30.0501 (4)0.0531 (4)0.0393 (4)0.0149 (4)0.0100 (3)0.0041 (3)
N10.0503 (14)0.0503 (14)0.0429 (14)0.0007 (12)0.0031 (11)0.0009 (12)
O10.0674 (13)0.0589 (13)0.0357 (11)0.0015 (10)0.0065 (10)0.0067 (10)
O20.0601 (13)0.0514 (12)0.0382 (11)0.0130 (10)0.0019 (9)0.0003 (9)
O30.0561 (13)0.0642 (13)0.0627 (14)0.0133 (11)0.0122 (11)0.0187 (11)
O40.0714 (15)0.0633 (14)0.0503 (13)0.0041 (12)0.0190 (11)0.0164 (11)
C10.0415 (16)0.0433 (16)0.0403 (17)0.0086 (13)0.0076 (13)0.0033 (13)
C20.0367 (15)0.0372 (15)0.0447 (16)0.0035 (12)0.0043 (12)0.0057 (12)
C30.0578 (19)0.0573 (19)0.0572 (19)0.0092 (16)0.0151 (16)0.0032 (15)
C40.066 (2)0.080 (2)0.079 (3)0.0352 (19)0.021 (2)0.000 (2)
C50.064 (2)0.089 (3)0.074 (2)0.038 (2)0.0041 (18)0.015 (2)
C60.0551 (19)0.069 (2)0.0500 (18)0.0194 (16)0.0049 (15)0.0061 (16)
C70.0343 (15)0.0415 (15)0.0446 (16)0.0018 (12)0.0030 (12)0.0001 (12)
C80.0484 (18)0.0641 (19)0.0432 (17)0.0151 (15)0.0091 (13)0.0108 (15)
C90.0411 (16)0.0500 (16)0.0315 (14)0.0089 (13)0.0049 (12)0.0065 (13)
C100.0353 (15)0.0589 (17)0.0338 (15)0.0024 (13)0.0019 (12)0.0091 (13)
C110.0410 (17)0.092 (2)0.059 (2)0.0014 (17)0.0071 (15)0.0007 (18)
C120.0450 (16)0.0540 (17)0.0320 (14)0.0026 (13)0.0015 (12)0.0045 (12)
C130.0360 (15)0.0489 (16)0.0350 (15)0.0041 (12)0.0016 (11)0.0074 (13)
C140.0441 (17)0.073 (2)0.0497 (18)0.0077 (15)0.0059 (14)0.0017 (15)
C150.0391 (15)0.0421 (15)0.0369 (15)0.0007 (12)0.0028 (12)0.0064 (12)
C160.0495 (18)0.0441 (16)0.0373 (15)0.0046 (13)0.0004 (13)0.0020 (12)
C170.0403 (16)0.0495 (16)0.0459 (16)0.0013 (13)0.0059 (12)0.0063 (13)
C180.0406 (15)0.0393 (15)0.0379 (15)0.0016 (12)0.0013 (12)0.0030 (12)
C190.0554 (19)0.0470 (17)0.0455 (17)0.0052 (14)0.0052 (14)0.0060 (14)
C200.064 (2)0.0540 (18)0.058 (2)0.0218 (16)0.0026 (16)0.0052 (15)
C210.053 (2)0.070 (2)0.070 (2)0.0189 (17)0.0132 (17)0.0002 (18)
C220.0482 (18)0.0578 (19)0.0544 (19)0.0003 (15)0.0136 (14)0.0019 (16)
C230.0406 (15)0.0391 (15)0.0401 (15)0.0011 (12)0.0001 (12)0.0027 (12)
C240.0423 (17)0.0480 (17)0.0457 (18)0.0079 (14)0.0008 (14)0.0030 (14)
C250.0549 (19)0.062 (2)0.0505 (19)0.0042 (16)0.0085 (15)0.0024 (15)
C260.053 (2)0.087 (3)0.068 (2)0.001 (2)0.0125 (17)0.015 (2)
C270.055 (2)0.082 (3)0.088 (3)0.012 (2)0.004 (2)0.029 (2)
C280.075 (3)0.064 (2)0.095 (3)0.011 (2)0.028 (2)0.002 (2)
C290.070 (2)0.068 (2)0.057 (2)0.0068 (18)0.0022 (17)0.0139 (18)
Geometric parameters (Å, º) top
Fe1—O12.412 (2)C11—H11A0.9600
Fe1—O1i2.412 (2)C11—H11B0.9600
Fe1—O2i2.0400 (18)C11—H11C0.9600
Fe1—O22.0400 (18)C12—C131.393 (3)
Fe1—N1i2.100 (2)C12—H12A0.9300
Fe1—N12.100 (2)C13—C151.405 (3)
S2—C181.776 (3)C13—C141.505 (4)
S2—C171.823 (3)C14—H14A0.9600
S3—C71.769 (3)C14—H14B0.9600
S3—C81.818 (3)C14—H14C0.9600
N1—C291.327 (4)C15—C161.391 (3)
N1—C251.338 (3)C15—C171.508 (3)
O1—C11.252 (3)C16—H16A0.9300
O2—C11.268 (3)C17—H17A0.9700
O3—C241.206 (3)C17—H17B0.9700
O4—C241.336 (3)C18—C191.395 (4)
O4—H40.96 (4)C18—C231.411 (3)
C1—C21.496 (4)C19—C201.374 (4)
C2—C31.388 (4)C19—H19A0.9300
C2—C71.412 (4)C20—C211.377 (4)
C3—C41.375 (4)C20—H20A0.9300
C3—H3A0.9300C21—C221.367 (4)
C4—C51.365 (4)C21—H21A0.9300
C4—H4A0.9300C22—C231.394 (4)
C5—C61.375 (4)C22—H22A0.9300
C5—H5A0.9300C23—C241.489 (4)
C6—C71.391 (4)C25—C261.357 (4)
C6—H6A0.9300C25—H25A0.9300
C8—C91.516 (3)C26—C271.350 (5)
C8—H8A0.9700C26—H26A0.9300
C8—H8B0.9700C27—C281.370 (5)
C9—C161.392 (3)C27—H27A0.9300
C9—C101.391 (4)C28—C291.386 (5)
C10—C121.383 (4)C28—H28A0.9300
C10—C111.514 (4)C29—H29A0.9300
O2i—Fe1—O2147.21 (11)C12—C13—C14119.8 (2)
O2i—Fe1—N1i101.86 (8)C15—C13—C14122.2 (2)
O2—Fe1—N1i99.04 (8)C13—C14—H14A109.5
O2i—Fe1—N199.04 (8)C13—C14—H14B109.5
O2—Fe1—N1101.86 (8)H14A—C14—H14B109.5
N1i—Fe1—N1100.07 (13)C13—C14—H14C109.5
C18—S2—C17103.62 (12)H14A—C14—H14C109.5
C7—S3—C8103.45 (13)H14B—C14—H14C109.5
C29—N1—C25117.1 (3)C16—C15—C13118.5 (2)
C29—N1—Fe1122.5 (2)C16—C15—C17119.2 (2)
C25—N1—Fe1119.7 (2)C13—C15—C17122.2 (2)
C1—O2—Fe198.68 (16)C15—C16—C9122.9 (3)
C24—O4—H4108 (2)C15—C16—H16A118.5
O1—C1—O2120.6 (3)C9—C16—H16A118.5
O1—C1—C2121.0 (2)C15—C17—S2108.51 (18)
O2—C1—C2118.3 (2)C15—C17—H17A110.0
C3—C2—C7119.9 (3)S2—C17—H17A110.0
C3—C2—C1117.7 (2)C15—C17—H17B110.0
C7—C2—C1122.4 (2)S2—C17—H17B110.0
C4—C3—C2121.0 (3)H17A—C17—H17B108.4
C4—C3—H3A119.5C19—C18—C23117.5 (2)
C2—C3—H3A119.5C19—C18—S2121.7 (2)
C5—C4—C3119.3 (3)C23—C18—S2120.7 (2)
C5—C4—H4A120.3C20—C19—C18121.4 (3)
C3—C4—H4A120.3C20—C19—H19A119.3
C4—C5—C6121.0 (3)C18—C19—H19A119.3
C4—C5—H5A119.5C19—C20—C21120.9 (3)
C6—C5—H5A119.5C19—C20—H20A119.6
C5—C6—C7121.3 (3)C21—C20—H20A119.6
C5—C6—H6A119.4C22—C21—C20119.1 (3)
C7—C6—H6A119.4C22—C21—H21A120.5
C6—C7—C2117.5 (2)C20—C21—H21A120.5
C6—C7—S3122.3 (2)C21—C22—C23121.5 (3)
C2—C7—S3120.3 (2)C21—C22—H22A119.3
C9—C8—S3106.88 (18)C23—C22—H22A119.3
C9—C8—H8A110.3C22—C23—C18119.7 (2)
S3—C8—H8A110.3C22—C23—C24118.8 (2)
C9—C8—H8B110.3C18—C23—C24121.5 (2)
S3—C8—H8B110.3O3—C24—O4122.7 (3)
H8A—C8—H8B108.6O3—C24—C23124.1 (2)
C16—C9—C10118.3 (2)O4—C24—C23113.2 (3)
C16—C9—C8119.3 (3)N1—C25—C26122.9 (3)
C10—C9—C8122.4 (2)N1—C25—H25A118.5
C12—C10—C9119.0 (2)C26—C25—H25A118.5
C12—C10—C11119.5 (3)C27—C26—C25119.8 (3)
C9—C10—C11121.6 (3)C27—C26—H26A120.1
C10—C11—H11A109.5C25—C26—H26A120.1
C10—C11—H11B109.5C26—C27—C28119.0 (3)
H11A—C11—H11B109.5C26—C27—H27A120.5
C10—C11—H11C109.5C28—C27—H27A120.5
H11A—C11—H11C109.5C27—C28—C29118.2 (3)
H11B—C11—H11C109.5C27—C28—H28A120.9
C10—C12—C13123.1 (3)C29—C28—H28A120.9
C10—C12—H12A118.4N1—C29—C28122.9 (3)
C13—C12—H12A118.4N1—C29—H29A118.5
C12—C13—C15118.0 (2)C28—C29—H29A118.5
O2i—Fe1—N1—C29146.8 (2)C10—C12—C13—C14177.2 (2)
O2—Fe1—N1—C2958.7 (2)C12—C13—C15—C162.1 (4)
N1i—Fe1—N1—C2942.9 (2)C14—C13—C15—C16176.3 (2)
O2i—Fe1—N1—C2543.1 (2)C12—C13—C15—C17179.6 (2)
O2—Fe1—N1—C25111.5 (2)C14—C13—C15—C171.9 (4)
N1i—Fe1—N1—C25147.0 (2)C13—C15—C16—C90.4 (4)
O2i—Fe1—O2—C139.76 (14)C17—C15—C16—C9177.9 (2)
N1i—Fe1—O2—C1168.90 (15)C10—C9—C16—C153.8 (4)
N1—Fe1—O2—C188.73 (16)C8—C9—C16—C15176.1 (2)
Fe1—O2—C1—O17.3 (3)C16—C15—C17—S298.4 (2)
Fe1—O2—C1—C2174.59 (18)C13—C15—C17—S283.3 (3)
O1—C1—C2—C316.7 (4)C18—S2—C17—C15179.62 (18)
O2—C1—C2—C3161.4 (2)C17—S2—C18—C191.8 (3)
O1—C1—C2—C7163.4 (2)C17—S2—C18—C23176.1 (2)
O2—C1—C2—C718.5 (4)C23—C18—C19—C201.8 (4)
C7—C2—C3—C40.6 (4)S2—C18—C19—C20179.7 (2)
C1—C2—C3—C4179.4 (3)C18—C19—C20—C210.7 (5)
C2—C3—C4—C50.8 (5)C19—C20—C21—C222.0 (5)
C3—C4—C5—C60.1 (6)C20—C21—C22—C230.9 (5)
C4—C5—C6—C70.9 (6)C21—C22—C23—C181.6 (4)
C5—C6—C7—C21.2 (4)C21—C22—C23—C24177.2 (3)
C5—C6—C7—S3179.7 (3)C19—C18—C23—C222.9 (4)
C3—C2—C7—C60.4 (4)S2—C18—C23—C22179.2 (2)
C1—C2—C7—C6179.6 (2)C19—C18—C23—C24175.8 (2)
C3—C2—C7—S3179.5 (2)S2—C18—C23—C242.1 (3)
C1—C2—C7—S30.5 (3)C22—C23—C24—O3163.3 (3)
C8—S3—C7—C619.2 (3)C18—C23—C24—O318.0 (4)
C8—S3—C7—C2159.9 (2)C22—C23—C24—O417.1 (4)
C7—S3—C8—C9177.75 (19)C18—C23—C24—O4161.6 (2)
S3—C8—C9—C1682.8 (3)C29—N1—C25—C262.6 (4)
S3—C8—C9—C1097.3 (3)Fe1—N1—C25—C26168.0 (2)
C16—C9—C10—C124.5 (4)N1—C25—C26—C271.2 (5)
C8—C9—C10—C12175.4 (2)C25—C26—C27—C280.9 (5)
C16—C9—C10—C11176.8 (2)C26—C27—C28—C291.6 (5)
C8—C9—C10—C113.2 (4)C25—N1—C29—C281.9 (5)
C9—C10—C12—C132.1 (4)Fe1—N1—C29—C28168.5 (3)
C11—C10—C12—C13179.2 (3)C27—C28—C29—N10.2 (5)
C10—C12—C13—C151.3 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1ii0.96 (4)1.77 (4)2.702 (3)162 (4)
C16—H16A···O3iii0.932.543.421 (3)158
Symmetry codes: (ii) x1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C24H21O4S2)2(C5H5N)2]
Mr1089.10
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)16.987 (5), 9.635 (3), 31.982 (10)
V3)5234 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
29090, 5950, 3431
Rint0.073
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.00
No. of reflections5950
No. of parameters336
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—O12.412 (2)Fe1—N12.100 (2)
Fe1—O22.0400 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.96 (4)1.77 (4)2.702 (3)162 (4)
C16—H16A···O3ii0.932.543.421 (3)158
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The author is grateful for funding support from the Natural Science foundation of Shanxi province, China (2007011033).

References

First citationAlcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 394–399.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X.-H., Chen, W., Du, M., Kumar, B., Wang, W.-Z. & Zhang, R.-H. (2002). Inorg. Chem. 41, 437–439.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDai, F., He, H., Gao, D., Ye, F., Qiu, X. & Sun, D. (2008). CrystEngComm, 11, 2516–2522  Web of Science CSD CrossRef Google Scholar
First citationLi, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, o243–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds