metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6-Hy­droxy-2-{[2-(N-methyl­carbamo­thiol­yl)hydrazin-1-yl­­idene-κ2N1,S]meth­yl}­phenolato-κO1)(tri­phenyl­phosphane-κP)nickel(II) chloride

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 29 September 2010; accepted 1 October 2010; online 9 October 2010)

The deprotonated Schiff base ligand in the title salt, [Ni(C9H10N3O2S)(C18H15P)]Cl, functions as an N,O,S-chelating anion to the phosphine-coordinated nickel(II) atom, which exists in a distorted square-planar geometry. The hy­droxy group forms an intra­molecular O—H⋯O hydrogen bond. The two amino groups of the cation are hydrogen-bond donors to the chloride anion; the hydrogen bonds generate a chain structure running along the b axis.

Related literature

The only report of this Schiff base is that of a study of its organotin derivatives; see: Swesi et al. (2007[Swesi, A. T., Farina, Y. & Baba, I. (2007). Sains Malaysiana, 36, 21-26.]). For a related nickel Schiff-base adduct of triphenyl­phosphine, see: Shawish et al. (2010[Shawish, H. B., Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, m1074.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H10N3O2S)(C18H15P)]Cl

  • Mr = 580.69

  • Monoclinic, P 21 /n

  • a = 15.7781 (15) Å

  • b = 10.6306 (10) Å

  • c = 17.0020 (15) Å

  • β = 113.961 (1)°

  • V = 2606.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.951

  • 23696 measured reflections

  • 5971 independent reflections

  • 4428 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.177

  • S = 1.05

  • 5971 reflections

  • 338 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 1.895 (3)
Ni1—O1 1.849 (2)
Ni1—P1 2.216 (1)
Ni1—S1 2.150 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.84 (5) 2.10 (4) 2.640 (4) 122 (4)
N2—H2N⋯Cl1 0.86 (4) 2.19 (4) 3.046 (3) 172 (5)
N3—H3N⋯Cl1i 0.86 (4) 2.28 (4) 3.111 (3) 164 (5)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

The only report of the Schiff base is that of a study of its organotin derivatives; see: Swesi et al. (2007). For a related nickel Schiff-base adduct of triphenylphosphine, see: Shawish et al. (2010).

Experimental top

2,3-Dihydroxybenzaldehyde 4-methylthiosemicarbazone hemihydrate (Swesi et al., 2007) (0.22 g, 1 mmol), triphenylphosphine (0.26, 1 mmol) and nickel chloride (0.13 g, 1 mmol) were heated in a methanol/ethanol (50 ml) for an hour. The brown solution was then set aside for the growth of crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Structure description top

The only report of the Schiff base is that of a study of its organotin derivatives; see: Swesi et al. (2007). For a related nickel Schiff-base adduct of triphenylphosphine, see: Shawish et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ni(C9H10N3O2S)(C18H15P).Cl at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
(6-Hydroxy-2-{[2-(N-methylcarbamothiolyl)hydrazin-1-ylidene- κ2N1,S]methyl}phenolato-κO1)(triphenylphosphane- κP)nickel(II) chloride top
Crystal data top
[Ni(C9H10N3O2S)(C18H15P)]ClF(000) = 1200
Mr = 580.69Dx = 1.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3978 reflections
a = 15.7781 (15) Åθ = 2.3–27.6°
b = 10.6306 (10) ŵ = 1.02 mm1
c = 17.0020 (15) ÅT = 100 K
β = 113.961 (1)°Triangular block, brown
V = 2606.0 (4) Å30.25 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5971 independent reflections
Radiation source: fine-focus sealed tube4428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.785, Tmax = 0.951k = 1313
23696 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1036P)2 + 0.1986P]
where P = (Fo2 + 2Fc2)/3
5971 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 1.60 e Å3
3 restraintsΔρmin = 1.06 e Å3
Crystal data top
[Ni(C9H10N3O2S)(C18H15P)]ClV = 2606.0 (4) Å3
Mr = 580.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.7781 (15) ŵ = 1.02 mm1
b = 10.6306 (10) ÅT = 100 K
c = 17.0020 (15) Å0.25 × 0.15 × 0.05 mm
β = 113.961 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4428 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.951Rint = 0.096
23696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0613 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.60 e Å3
5971 reflectionsΔρmin = 1.06 e Å3
338 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.41946 (3)0.54484 (4)0.60995 (3)0.01585 (16)
Cl10.66145 (6)0.16147 (8)0.61950 (6)0.0205 (2)
S10.55028 (6)0.62917 (8)0.68921 (6)0.0200 (2)
P10.34464 (6)0.68668 (9)0.65317 (6)0.0162 (2)
O10.30452 (17)0.4812 (2)0.53950 (17)0.0194 (6)
O20.12753 (18)0.4272 (3)0.45169 (19)0.0268 (6)
H2O0.159 (3)0.481 (4)0.488 (3)0.047 (16)*
N10.4861 (2)0.4179 (3)0.58096 (19)0.0170 (6)
N20.5828 (2)0.4237 (3)0.6177 (2)0.0183 (6)
H2N0.609 (3)0.353 (3)0.616 (4)0.060 (18)*
N30.7127 (2)0.5302 (3)0.7092 (2)0.0194 (7)
H3N0.739 (3)0.577 (4)0.753 (2)0.042 (15)*
C10.2882 (2)0.3775 (3)0.4925 (2)0.0185 (7)
C20.1937 (2)0.3465 (3)0.4458 (2)0.0194 (8)
C30.1667 (3)0.2402 (4)0.3963 (3)0.0226 (8)
H30.10270.22110.36650.027*
C40.2342 (3)0.1597 (3)0.3899 (3)0.0230 (8)
H40.21560.08540.35610.028*
C50.3271 (3)0.1876 (3)0.4321 (2)0.0208 (8)
H50.37230.13400.42620.025*
C60.3553 (2)0.2978 (3)0.4851 (2)0.0178 (7)
C70.4516 (3)0.3234 (3)0.5293 (2)0.0187 (7)
H70.49380.26740.52050.022*
C80.6223 (2)0.5188 (3)0.6721 (2)0.0180 (7)
C90.7785 (3)0.4427 (4)0.6972 (3)0.0231 (8)
H9A0.84130.47750.72420.035*
H9B0.76180.43060.63560.035*
H9C0.77630.36170.72380.035*
C100.3352 (3)0.6414 (3)0.7521 (2)0.0197 (8)
C110.3826 (3)0.5350 (3)0.7982 (3)0.0236 (8)
H110.42010.48650.77780.028*
C120.3746 (3)0.5011 (4)0.8736 (3)0.0325 (10)
H120.40750.43000.90520.039*
C130.3190 (3)0.5697 (4)0.9031 (3)0.0342 (10)
H130.31300.54450.95420.041*
C140.2719 (3)0.6755 (4)0.8584 (3)0.0299 (9)
H140.23450.72330.87930.036*
C150.2798 (3)0.7105 (4)0.7838 (3)0.0242 (8)
H150.24730.78250.75320.029*
C160.3967 (2)0.8436 (3)0.6713 (2)0.0187 (7)
C170.4240 (2)0.8905 (4)0.6092 (2)0.0208 (8)
H170.41460.84160.55960.025*
C180.4653 (3)1.0087 (4)0.6187 (3)0.0229 (8)
H180.48271.04100.57530.028*
C190.4808 (3)1.0785 (4)0.6917 (3)0.0253 (8)
H190.50931.15880.69880.030*
C200.4549 (3)1.0321 (4)0.7544 (3)0.0249 (9)
H200.46551.08100.80430.030*
C210.4132 (2)0.9143 (4)0.7454 (2)0.0205 (8)
H210.39630.88240.78920.025*
C220.2247 (2)0.7088 (3)0.5762 (2)0.0186 (7)
C230.1512 (3)0.6499 (4)0.5882 (3)0.0219 (8)
H230.16360.59830.63730.026*
C240.0605 (3)0.6665 (4)0.5290 (3)0.0255 (9)
H240.01100.62770.53800.031*
C250.0422 (3)0.7399 (4)0.4563 (3)0.0250 (9)
H250.01990.75240.41590.030*
C260.1149 (3)0.7950 (4)0.4429 (3)0.0279 (9)
H260.10230.84350.39240.033*
C270.2057 (3)0.7801 (4)0.5021 (2)0.0218 (8)
H270.25490.81850.49220.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0167 (3)0.0092 (3)0.0194 (3)0.00037 (16)0.0050 (2)0.00177 (17)
Cl10.0221 (4)0.0127 (4)0.0235 (5)0.0019 (3)0.0060 (4)0.0012 (3)
S10.0185 (4)0.0130 (4)0.0248 (5)0.0006 (3)0.0051 (4)0.0051 (4)
P10.0178 (4)0.0110 (4)0.0183 (5)0.0007 (3)0.0058 (4)0.0012 (4)
O10.0177 (12)0.0122 (13)0.0250 (14)0.0008 (10)0.0054 (11)0.0056 (10)
O20.0198 (13)0.0210 (15)0.0362 (17)0.0019 (11)0.0080 (12)0.0132 (13)
N10.0157 (14)0.0116 (14)0.0200 (16)0.0006 (11)0.0034 (12)0.0024 (12)
N20.0172 (15)0.0120 (15)0.0227 (17)0.0010 (12)0.0049 (13)0.0024 (13)
N30.0180 (15)0.0152 (16)0.0213 (17)0.0026 (12)0.0041 (13)0.0000 (13)
C10.0243 (18)0.0105 (17)0.0180 (18)0.0020 (14)0.0057 (15)0.0001 (14)
C20.0174 (17)0.0165 (18)0.0221 (19)0.0011 (14)0.0058 (15)0.0016 (15)
C30.0205 (17)0.0198 (19)0.023 (2)0.0044 (15)0.0041 (15)0.0044 (16)
C40.029 (2)0.0123 (18)0.024 (2)0.0029 (15)0.0067 (16)0.0063 (15)
C50.0253 (19)0.0107 (17)0.024 (2)0.0030 (14)0.0070 (16)0.0024 (15)
C60.0205 (17)0.0145 (18)0.0170 (18)0.0014 (13)0.0063 (15)0.0001 (14)
C70.0236 (18)0.0126 (17)0.0176 (19)0.0026 (14)0.0058 (15)0.0006 (14)
C80.0203 (17)0.0131 (17)0.0186 (18)0.0006 (14)0.0057 (15)0.0047 (14)
C90.0187 (18)0.0173 (19)0.030 (2)0.0020 (14)0.0070 (16)0.0015 (16)
C100.0255 (18)0.0146 (18)0.0196 (19)0.0047 (14)0.0098 (16)0.0039 (15)
C110.031 (2)0.0152 (19)0.023 (2)0.0004 (15)0.0088 (17)0.0022 (15)
C120.046 (3)0.019 (2)0.031 (2)0.0069 (19)0.014 (2)0.0020 (18)
C130.052 (3)0.028 (2)0.027 (2)0.016 (2)0.021 (2)0.0039 (19)
C140.037 (2)0.030 (2)0.027 (2)0.0101 (18)0.0175 (19)0.0093 (18)
C150.0259 (19)0.019 (2)0.027 (2)0.0037 (15)0.0105 (17)0.0042 (16)
C160.0175 (17)0.0104 (17)0.024 (2)0.0028 (13)0.0037 (15)0.0021 (14)
C170.0222 (18)0.0151 (19)0.023 (2)0.0037 (14)0.0070 (16)0.0021 (15)
C180.0255 (19)0.0163 (19)0.026 (2)0.0020 (15)0.0091 (16)0.0058 (16)
C190.0246 (19)0.0144 (18)0.033 (2)0.0032 (15)0.0083 (17)0.0002 (17)
C200.027 (2)0.018 (2)0.027 (2)0.0009 (15)0.0078 (17)0.0056 (16)
C210.0233 (18)0.0164 (18)0.022 (2)0.0010 (14)0.0088 (15)0.0021 (15)
C220.0183 (17)0.0152 (18)0.0187 (19)0.0013 (14)0.0039 (14)0.0060 (14)
C230.0232 (18)0.0143 (18)0.028 (2)0.0011 (14)0.0107 (16)0.0017 (16)
C240.0212 (19)0.022 (2)0.033 (2)0.0039 (15)0.0106 (17)0.0085 (17)
C250.0175 (17)0.025 (2)0.025 (2)0.0038 (15)0.0007 (15)0.0066 (17)
C260.030 (2)0.022 (2)0.024 (2)0.0044 (16)0.0042 (17)0.0000 (17)
C270.0228 (18)0.021 (2)0.020 (2)0.0019 (15)0.0077 (15)0.0003 (15)
Geometric parameters (Å, º) top
Ni1—N11.895 (3)C10—C151.406 (5)
Ni1—O11.849 (2)C11—C121.385 (6)
Ni1—P12.216 (1)C11—H110.9500
Ni1—S12.150 (1)C12—C131.382 (7)
S1—C81.738 (4)C12—H120.9500
P1—C101.813 (4)C13—C141.391 (7)
P1—C221.826 (4)C13—H130.9500
P1—C161.830 (4)C14—C151.376 (6)
O1—C11.324 (4)C14—H140.9500
O2—C21.386 (4)C15—H150.9500
O2—H2O0.84 (5)C16—C171.385 (5)
N1—C71.299 (5)C16—C211.397 (5)
N1—N21.396 (4)C17—C181.394 (5)
N2—C81.341 (5)C17—H170.9500
N2—H2N0.86 (4)C18—C191.380 (6)
N3—C81.311 (5)C18—H180.9500
N3—C91.468 (5)C19—C201.378 (6)
N3—H3N0.86 (4)C19—H190.9500
C1—C61.401 (5)C20—C211.393 (5)
C1—C21.415 (5)C20—H200.9500
C2—C31.369 (5)C21—H210.9500
C3—C41.405 (5)C22—C271.395 (5)
C3—H30.9500C22—C231.405 (5)
C4—C51.377 (5)C23—C241.386 (5)
C4—H40.9500C23—H230.9500
C5—C61.434 (5)C24—C251.389 (6)
C5—H50.9500C24—H240.9500
C6—C71.422 (5)C25—C261.387 (6)
C7—H70.9500C25—H250.9500
C9—H9A0.9800C26—C271.385 (5)
C9—H9B0.9800C26—H260.9500
C9—H9C0.9800C27—H270.9500
C10—C111.406 (5)
O1—Ni1—N194.19 (12)C11—C10—C15118.6 (4)
O1—Ni1—S1176.80 (9)C11—C10—P1120.4 (3)
N1—Ni1—S188.09 (9)C15—C10—P1121.0 (3)
O1—Ni1—P187.10 (8)C12—C11—C10119.9 (4)
N1—Ni1—P1175.83 (10)C12—C11—H11120.1
S1—Ni1—P190.78 (4)C10—C11—H11120.1
C8—S1—Ni198.04 (13)C13—C12—C11120.5 (4)
C10—P1—C22104.30 (17)C13—C12—H12119.7
C10—P1—C16106.66 (18)C11—C12—H12119.7
C22—P1—C16105.45 (17)C12—C13—C14120.3 (4)
C10—P1—Ni1112.48 (13)C12—C13—H13119.8
C22—P1—Ni1112.74 (12)C14—C13—H13119.8
C16—P1—Ni1114.42 (12)C15—C14—C13119.6 (4)
C1—O1—Ni1126.5 (2)C15—C14—H14120.2
C2—O2—H2O104 (4)C13—C14—H14120.2
C7—N1—N2114.7 (3)C14—C15—C10121.0 (4)
C7—N1—Ni1127.0 (3)C14—C15—H15119.5
N2—N1—Ni1118.3 (2)C10—C15—H15119.5
C8—N2—N1117.3 (3)C17—C16—C21119.4 (3)
C8—N2—H2N125 (4)C17—C16—P1117.2 (3)
N1—N2—H2N114 (4)C21—C16—P1123.3 (3)
C8—N3—C9124.6 (3)C16—C17—C18120.8 (4)
C8—N3—H3N121 (3)C16—C17—H17119.6
C9—N3—H3N112 (3)C18—C17—H17119.6
O1—C1—C6126.1 (3)C19—C18—C17119.4 (4)
O1—C1—C2115.8 (3)C19—C18—H18120.3
C6—C1—C2118.1 (3)C17—C18—H18120.3
C3—C2—O2120.0 (3)C20—C19—C18120.3 (4)
C3—C2—C1122.1 (3)C20—C19—H19119.9
O2—C2—C1118.0 (3)C18—C19—H19119.9
C2—C3—C4119.6 (3)C19—C20—C21120.7 (4)
C2—C3—H3120.2C19—C20—H20119.6
C4—C3—H3120.2C21—C20—H20119.6
C5—C4—C3120.5 (3)C20—C21—C16119.3 (4)
C5—C4—H4119.7C20—C21—H21120.3
C3—C4—H4119.7C16—C21—H21120.3
C4—C5—C6119.8 (3)C27—C22—C23119.1 (3)
C4—C5—H5120.1C27—C22—P1119.8 (3)
C6—C5—H5120.1C23—C22—P1121.0 (3)
C1—C6—C7121.4 (3)C24—C23—C22120.5 (4)
C1—C6—C5119.8 (3)C24—C23—H23119.8
C7—C6—C5118.8 (3)C22—C23—H23119.8
N1—C7—C6124.8 (3)C23—C24—C25119.9 (4)
N1—C7—H7117.6C23—C24—H24120.0
C6—C7—H7117.6C25—C24—H24120.0
N3—C8—N2120.7 (3)C26—C25—C24119.7 (3)
N3—C8—S1121.0 (3)C26—C25—H25120.1
N2—C8—S1118.2 (3)C24—C25—H25120.1
N3—C9—H9A109.5C27—C26—C25120.8 (4)
N3—C9—H9B109.5C27—C26—H26119.6
H9A—C9—H9B109.5C25—C26—H26119.6
N3—C9—H9C109.5C26—C27—C22119.9 (4)
H9A—C9—H9C109.5C26—C27—H27120.0
H9B—C9—H9C109.5C22—C27—H27120.0
N1—Ni1—S1—C81.59 (15)C22—P1—C10—C11130.3 (3)
P1—Ni1—S1—C8174.39 (13)C16—P1—C10—C11118.5 (3)
O1—Ni1—P1—C1095.87 (15)Ni1—P1—C10—C117.8 (3)
S1—Ni1—P1—C1086.52 (13)C22—P1—C10—C1549.1 (3)
O1—Ni1—P1—C2221.73 (16)C16—P1—C10—C1562.2 (3)
S1—Ni1—P1—C22155.87 (14)Ni1—P1—C10—C15171.6 (3)
O1—Ni1—P1—C16142.22 (16)C15—C10—C11—C120.5 (6)
S1—Ni1—P1—C1635.38 (14)P1—C10—C11—C12179.8 (3)
N1—Ni1—O1—C12.5 (3)C10—C11—C12—C131.1 (6)
P1—Ni1—O1—C1173.5 (3)C11—C12—C13—C141.4 (7)
O1—Ni1—N1—C71.3 (3)C12—C13—C14—C151.0 (6)
S1—Ni1—N1—C7179.0 (3)C13—C14—C15—C100.3 (6)
O1—Ni1—N1—N2178.6 (3)C11—C10—C15—C140.1 (6)
S1—Ni1—N1—N20.8 (2)P1—C10—C15—C14179.4 (3)
C7—N1—N2—C8179.4 (3)C10—P1—C16—C17170.3 (3)
Ni1—N1—N2—C80.7 (4)C22—P1—C16—C1779.2 (3)
Ni1—O1—C1—C62.1 (5)Ni1—P1—C16—C1745.3 (3)
Ni1—O1—C1—C2178.1 (3)C10—P1—C16—C216.8 (4)
O1—C1—C2—C3178.3 (4)C22—P1—C16—C21103.7 (3)
C6—C1—C2—C32.0 (6)Ni1—P1—C16—C21131.9 (3)
O1—C1—C2—O21.3 (5)C21—C16—C17—C181.9 (5)
C6—C1—C2—O2178.5 (3)P1—C16—C17—C18179.2 (3)
O2—C2—C3—C4179.2 (4)C16—C17—C18—C191.4 (6)
C1—C2—C3—C41.2 (6)C17—C18—C19—C200.5 (6)
C2—C3—C4—C50.7 (6)C18—C19—C20—C210.3 (6)
C3—C4—C5—C61.8 (6)C19—C20—C21—C160.8 (6)
O1—C1—C6—C70.4 (6)C17—C16—C21—C201.6 (5)
C2—C1—C6—C7179.3 (3)P1—C16—C21—C20178.7 (3)
O1—C1—C6—C5179.4 (3)C10—P1—C22—C27160.2 (3)
C2—C1—C6—C50.9 (5)C16—P1—C22—C2748.1 (3)
C4—C5—C6—C10.9 (6)Ni1—P1—C22—C2777.4 (3)
C4—C5—C6—C7178.8 (4)C10—P1—C22—C2323.0 (3)
N2—N1—C7—C6179.6 (3)C16—P1—C22—C23135.1 (3)
Ni1—N1—C7—C60.6 (5)Ni1—P1—C22—C2399.4 (3)
C1—C6—C7—N11.8 (6)C27—C22—C23—C242.6 (5)
C5—C6—C7—N1178.0 (3)P1—C22—C23—C24179.4 (3)
C9—N3—C8—N21.2 (6)C22—C23—C24—C251.2 (6)
C9—N3—C8—S1178.9 (3)C23—C24—C25—C260.8 (6)
N1—N2—C8—N3179.9 (3)C24—C25—C26—C271.5 (6)
N1—N2—C8—S12.3 (4)C25—C26—C27—C220.1 (6)
Ni1—S1—C8—N3179.7 (3)C23—C22—C27—C261.9 (6)
Ni1—S1—C8—N22.5 (3)P1—C22—C27—C26178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.84 (5)2.10 (4)2.640 (4)122 (4)
N2—H2N···Cl10.86 (4)2.19 (4)3.046 (3)172 (5)
N3—H3N···Cl1i0.86 (4)2.28 (4)3.111 (3)164 (5)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H10N3O2S)(C18H15P)]Cl
Mr580.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.7781 (15), 10.6306 (10), 17.0020 (15)
β (°) 113.961 (1)
V3)2606.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
23696, 5971, 4428
Rint0.096
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.177, 1.05
No. of reflections5971
No. of parameters338
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.60, 1.06

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—N11.895 (3)Ni1—P12.216 (1)
Ni1—O11.849 (2)Ni1—S12.150 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.84 (5)2.10 (4)2.640 (4)122 (4)
N2—H2N···Cl10.86 (4)2.19 (4)3.046 (3)172 (5)
N3—H3N···Cl1i0.86 (4)2.28 (4)3.111 (3)164 (5)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the University of Malaya (PS354/2009) and MOHE (FRGS-FP001/2009) for supporting this study. HBS thanks the Libyan People's Bureau in Malaysia for a scholarship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShawish, H. B., Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, m1074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y. & Baba, I. (2007). Sains Malaysiana, 36, 21–26.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds