organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(31E,32Z,71E,72Z)-4,8-Bis(3,5-di­chloro­phen­yl)-14,33,53,73-tetra­propyl-11H,32H,51H,72H-1,5(2,5),3,7(5,2)-tetra­pyrrola-2,6(2,5)-di­thiophena­cyclo­octa­phane

crossmark logo

aDivision of Material Science, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama City, Saitama 338-8570, Japan
*Correspondence e-mail: ishimaru@fms.saitama-u.ac.jp

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 August 2023; accepted 2 September 2023; online 8 September 2023)

Purple crystals of the title compound, C50H44Cl4N4S2 were obtained from the reaction of 2,5-bis­(4-propyl-1H-pyrrol-2-yl)thio­phene and 3,5-di­chloro­benzaldehyde in the presence of tri­fluoro­acetic acid for 3 h and subsequent addition of p-chloranil. The macrocycle in the title compound can be described as a highly planar structure wthe the average deviation of the 32 macrocyclic atoms from the least-squares plane being 0.0416 Å. Its mol­ecular conformation is stabilized by two intra­molecular N—H⋯N bonds and a three-dimensional network is formed by C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structures and electronic properties of hexa­pyrrolic expanded porphyrins with different numbers of π-electrons and meso-like positions have been studied extensively (Sessler et al., 1995[Sessler, J. L., Weghorn, S. J., Hiseada, Y. & Lynch, V. (1995). Chem. Eur. J. 1, 56-67.]; Saito & Osuka et al., 2011[Saito, S. & Osuka, A. (2011). Angew. Chem. Int. Ed. 50, 4342-4373.]; Setsune et al., 2015[Setsune, J., Toda, M., Yoshida, T., Imamura, K. & Watanabe, K. (2015). Chem. Eur. J. 21, 12715-12727.]). Furthermore, the crucial influence of a heteroatom on the macrocycle conformation of core-modified hexa­phyrins has been demonstrated (Narayanan et al., 1998[Narayanan, S. J., Sridevi, B., Srinivasan, A., Chandrashekar, T. K. & Roy, R. (1998). Tetrahedron Lett. 39, 7389-7392.], 1999[Narayanan, S. J., Sridevi, B., Chandrashekar, T. K., Vij, A. & Roy, R. (1999). J. Am. Chem. Soc. 121, 9053-9068.]). [24]Amethyrin is a hexa­pyrrolic expanded porphyrin that has recently been a focus of theoretical studies, and exploring the mol­ecular structures and electronic properties of its derivatives is highly desirable. Di­thia­amethyrin is a core-modified a­methyl­ine with Group-16 heterocycles and meso-di­chloro­phenyl groups (Alka et al., 2019[Alka, A., Shetti, V. S. & Ravikanth, M. (2019). Coord. Chem. Rev. 401, 213063-213131.]). In a continuation of our research on the synthesis and characterization of expanded porphyrin derivatives (Ishimaru et al., 2015[Ishimaru, Y., Shimoyama, N., Fujihara, T., Watanabe, K. & Setsune, J. (2015). Chem. Asian J. 10, 329-333.], 2022[Ishimaru, Y., Takahashi, F., Mochizuki, S., Hosoda, N. & Fujihara, T. (2022). Chem. Asian J. 17, e202200198.]), we synthesized the title compound, [24]di­thia­amethyrin(1.0.0.1.0.0), and elucidated its crystal structure. It has a highly planar macrocyclic core and its 1H NMR chemical shifts indicate strong anti­aromaticity. Its mol­ecular structure is shown in Fig. 1[link]. Its planarity is reinforced by two intra­molecular N1—H1⋯N2 hydrogen bonds (Table 1[link]) in the dipyrromethene moiety, as shown in Fig. 1[link]. All the bond lengths are consistent with those reported in a previous study on other di­thia­amethyrins (Ishimaru et al., 2015[Ishimaru, Y., Shimoyama, N., Fujihara, T., Watanabe, K. & Setsune, J. (2015). Chem. Asian J. 10, 329-333.]). The mean plane deviation (MPD) value of the 32 macrocyclic atoms is 0.0416 Å, and the meso-phenyl ring is twisted by 92.51° from the mean plane of [24]di­thia­amethyrin(1.0.0.1.0.0). Neighboring mol­ecules form dimers via inter­molecular C—H⋯Cl and C—H⋯π inter­actions owing to the H6⋯Cl1 (2.93 Å), H17A⋯Cl2 (3.34 Å), and C3—C11 (3.36 Å) distances, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the S2/C1–C4, N1/C5–C8 and C20–C25, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.86 (2) 1.92 (2) 2.6013 (19) 135.7 (18)
C14—H14ACg4 0.99 2.61 3.492 (2) 149
C14—H14BCg1i 0.99 2.83 3.522 (2) 128
C19—H19CCg2ii 0.99 2.90 3.713 (2) 141
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Non-labeled atoms are generated by symmetry operation −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
View of the mol­ecular arrangement of the title compound in the crystal. Dashed lines indicate the C—H⋯π inter­actions (ring centroids are shown as coloured spheres).

Synthesis and crystallization

The title compound was prepared by a modified previously reported method by Ishimaru et al. (2015[Ishimaru, Y., Shimoyama, N., Fujihara, T., Watanabe, K. & Setsune, J. (2015). Chem. Asian J. 10, 329-333.]). 2,5-Bis­(4-propyl-2-pyrrol­yl)thio­phene (200 mg) was dissolved in CH2Cl2 (ca 300 mL) under an Ar atmosphere, to which 3,5-di­chloro­benzaldehyde (68.4 µL) and tri­fluoro­acetic acid (160 µL) were added. The reaction mixture was stirred for 3 h, p-chloranil (544 mg) was added to it, and the mixture was stirred overnight at ambient temperature. Then, the mixture was neutralized with an aqueous NaHCO3 solution, and the crude products were passed through an alumina column. Finally, the products were purified by chromatography on a silica gel column using chloro­form as elute. The third blue (2%) fraction afforded the title compound. The compound was recrystallized from a mixture of hexane and chloro­form. Purple plates of suitable quality for diffraction were obtained by slow-diffusing hexane into chloro­form. 1H NMR (400 MHz, CDCl3): δ (ppm) 24.0 (br, 2H, pyrrole NH), 7.20– 6.87 (m, 6H, o, p-Ph), 5.05 (s, 4H, thio­phene β-H), 4.61 (s, 4H, pyrrole β-H), 0.76 (sextet, 8H, CH2CH2CH3), 0.52 (t, 8H,CH2CH2CH3), 0.32 (t, 12H, CH2CH2CH3); MALDI–TOF MS found = 904.254, monoisotopic mass = 904.176 calculated for C50H44Cl4N4S2. UV–vis (CH2Cl2): λ = 387, 500 nm.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C50H44Cl4N4S2
Mr 906.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.5016 (11), 10.1996 (16), 13.4724 (16)
α, β, γ (°) 104.368 (1), 91.416 (1), 99.030 (1)
V3) 1115.2 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.12 × 0.04 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 11997, 4534, 3696
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.22
No. of reflections 4534
No. of parameters 277
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.32
Computer programs: APEX2, SAINT, XPREP and XCIF (Bruker 2014[Bruker (2014). APEX2, SAINT, XPREP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), .

Structural data


Computing details top

Data collection: APEX2 (Bruker 2014); cell refinement: SAINT (Bruker 2014); data reduction: SAINT and XPREP (Bruker 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2014).

(31E,32Z,71E,72Z)-4,8-Bis(3,5-dichlorophenyl)-14,33,53,73-tetrapropyl-11H,32H,51H,72H-1,5(2,5),3,7(5,2)-tetrapyrrola-2,6(2,5)-dithiophenacyclooctaphane top
Crystal data top
C50H44Cl4N4S2Z = 1
Mr = 906.81F(000) = 472
Triclinic, P1Dx = 1.350 Mg m3
a = 8.5016 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1996 (16) ÅCell parameters from 3988 reflections
c = 13.4724 (16) Åθ = 2.4–27.9°
α = 104.368 (1)°µ = 0.40 mm1
β = 91.416 (1)°T = 200 K
γ = 99.030 (1)°Needle, purple
V = 1115.2 (3) Å30.12 × 0.04 × 0.02 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4534 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3696 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.025
Detector resolution: 8.333 pixels mm-1θmax = 26.4°, θmin = 1.6°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
l = 1616
11997 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
4534 reflectionsΔρmax = 0.25 e Å3
277 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.9622 (0.0034) x - 7.0043 (0.0050) y + 2.9660 (0.0089) z = 1.0352 (0.0023)

* 0.0014 (0.0011) C20 * 0.0028 (0.0011) C21 * -0.0041 (0.0011) C22 * 0.0009 (0.0012) C23 * 0.0033 (0.0012) C24 * -0.0044 (0.0012) C25

Rms deviation of fitted atoms = 0.0031

- 3.3824 (0.0012) x - 3.1159 (0.0024) y + 12.3311 (0.0021) z = 2.9131 (0.0011)

Angle to previous plane (with approximate esd) = 88.176 ( 0.038 )

* 0.0039 (0.0012) C1 * -0.0849 (0.0013) C2 * -0.0688 (0.0014) C3 * 0.0266 (0.0015) C4 * 0.0325 (0.0015) C5 * -0.0332 (0.0014) C6 * -0.0354 (0.0013) C7 * 0.0386 (0.0014) C8 * 0.0337 (0.0014) C9 * -0.0004 (0.0015) C10 * -0.0426 (0.0014) C11 * -0.0522 (0.0013) C12 * -0.0170 (0.0013) C13 * 0.1059 (0.0007) S1 * 0.0882 (0.0014) N1 * 0.0051 (0.0013) N2 3.1186 (0.0019) C1_$1 3.2074 (0.0020) C2_$1 3.1912 (0.0021) C3_$1 3.0959 (0.0021) C4_$1 3.0900 (0.0021) C5_$1 3.1557 (0.0021) C6_$1 3.1579 (0.0020) C7_$1 3.0839 (0.0020) C8_$1 3.0887 (0.0020) C9_$1 3.1228 (0.0021) C10_$1 3.1650 (0.0020) C11_$1 3.1746 (0.0020) C12_$1 3.1394 (0.0020) C13_$1 3.0165 (0.0016) S1_$1 3.0342 (0.0020) N1_$1 3.1173 (0.0020) N2_$1

Rms deviation of fitted atoms = 0.0516

average 3.12 (5)

Refinement. The N-bound H atom was located in a difference Fourier map and freely refined, whereas the C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95-0.99Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for aromatic H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83198 (19)0.42761 (16)0.57282 (12)0.0240 (3)
C20.89838 (19)0.31039 (15)0.55421 (12)0.0257 (4)
H21.00420.30830.57740.031*
C30.79371 (19)0.19374 (16)0.49733 (12)0.0267 (4)
H30.82160.10470.47840.032*
C40.64726 (19)0.22118 (15)0.47183 (12)0.0242 (4)
C50.51325 (19)0.12833 (15)0.41208 (12)0.0245 (3)
C60.49544 (19)0.01215 (16)0.36638 (12)0.0261 (4)
H60.57280.06890.37020.031*
C70.34564 (19)0.05549 (15)0.31416 (12)0.0249 (4)
C80.27007 (19)0.06199 (15)0.32911 (12)0.0239 (3)
C90.11941 (19)0.08440 (15)0.29306 (12)0.0235 (3)
C100.07289 (19)0.21206 (15)0.30979 (12)0.0242 (3)
C110.07339 (19)0.25311 (16)0.27662 (12)0.0241 (3)
C120.05427 (19)0.39144 (16)0.31603 (12)0.0264 (4)
H120.12870.44910.30810.032*
C130.09840 (19)0.43419 (15)0.37157 (12)0.0239 (3)
C140.2943 (2)0.20088 (15)0.24958 (12)0.0268 (4)
H14A0.17620.22150.24150.032*
H14B0.33090.26510.28590.032*
C150.3603 (2)0.22472 (17)0.14366 (13)0.0350 (4)
H15A0.31580.16660.10490.042*
H15B0.47770.19620.15160.042*
C160.3206 (3)0.3744 (2)0.08244 (16)0.0564 (6)
H16A0.36050.43280.12170.085*
H16B0.37100.38560.01690.085*
H16C0.20460.40100.06940.085*
C170.21765 (19)0.16697 (16)0.21235 (13)0.0277 (4)
H17A0.26720.09850.24800.033*
H17B0.18320.11630.14610.033*
C180.3418 (2)0.25029 (18)0.19110 (14)0.0345 (4)
H18A0.29220.31950.15610.041*
H18B0.37770.29990.25720.041*
C190.4859 (2)0.1619 (2)0.12488 (16)0.0460 (5)
H19A0.45190.11580.05810.069*
H19B0.56340.22000.11490.069*
H19C0.53540.09290.15900.069*
C200.00756 (19)0.04103 (15)0.23484 (12)0.0238 (3)
C210.09188 (19)0.11751 (15)0.28815 (13)0.0254 (4)
H210.09220.08790.36080.031*
C220.18983 (19)0.23646 (16)0.23485 (13)0.0268 (4)
C230.1916 (2)0.28359 (16)0.12933 (13)0.0314 (4)
H230.25900.36600.09350.038*
C240.0920 (2)0.20670 (17)0.07785 (13)0.0315 (4)
C250.00693 (19)0.08578 (16)0.12869 (12)0.0275 (4)
H250.07350.03420.09130.033*
Cl10.31419 (5)0.33119 (4)0.30225 (4)0.03638 (13)
Cl20.08880 (7)0.26370 (5)0.05468 (4)0.05066 (16)
H1N0.353 (2)0.252 (2)0.4028 (15)0.050 (6)*
N10.37688 (16)0.17056 (14)0.38987 (11)0.0262 (3)
N20.17494 (15)0.32997 (13)0.36802 (10)0.0255 (3)
S10.63866 (5)0.39334 (4)0.51941 (3)0.02906 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (8)0.0203 (8)0.0263 (8)0.0017 (6)0.0030 (7)0.0032 (7)
C20.0219 (8)0.0245 (8)0.0294 (9)0.0041 (7)0.0026 (7)0.0048 (7)
C30.0286 (9)0.0178 (8)0.0317 (9)0.0059 (7)0.0004 (7)0.0016 (7)
C40.0271 (9)0.0162 (7)0.0269 (8)0.0024 (6)0.0004 (7)0.0017 (6)
C50.0242 (8)0.0199 (8)0.0275 (8)0.0023 (6)0.0003 (7)0.0033 (7)
C60.0257 (9)0.0198 (8)0.0308 (9)0.0039 (6)0.0004 (7)0.0029 (7)
C70.0275 (9)0.0186 (8)0.0262 (8)0.0004 (7)0.0027 (7)0.0032 (7)
C80.0234 (8)0.0175 (8)0.0261 (8)0.0014 (6)0.0014 (7)0.0005 (6)
C90.0237 (8)0.0204 (8)0.0229 (8)0.0004 (6)0.0012 (7)0.0019 (6)
C100.0247 (8)0.0184 (8)0.0261 (8)0.0009 (6)0.0011 (7)0.0025 (6)
C110.0235 (8)0.0222 (8)0.0242 (8)0.0001 (6)0.0007 (7)0.0038 (7)
C120.0258 (9)0.0232 (8)0.0299 (9)0.0045 (7)0.0022 (7)0.0060 (7)
C130.0252 (8)0.0196 (8)0.0251 (8)0.0016 (6)0.0008 (7)0.0038 (7)
C140.0273 (9)0.0153 (8)0.0342 (9)0.0012 (6)0.0025 (7)0.0013 (7)
C150.0388 (11)0.0252 (9)0.0362 (10)0.0046 (8)0.0025 (8)0.0003 (8)
C160.0759 (16)0.0315 (11)0.0489 (13)0.0056 (11)0.0029 (12)0.0112 (10)
C170.0260 (9)0.0231 (8)0.0298 (9)0.0009 (7)0.0028 (7)0.0025 (7)
C180.0290 (10)0.0303 (9)0.0412 (10)0.0005 (7)0.0092 (8)0.0075 (8)
C190.0346 (11)0.0455 (12)0.0538 (13)0.0041 (9)0.0158 (9)0.0136 (10)
C200.0215 (8)0.0169 (7)0.0303 (9)0.0028 (6)0.0014 (7)0.0014 (7)
C210.0244 (9)0.0207 (8)0.0295 (9)0.0048 (6)0.0008 (7)0.0030 (7)
C220.0205 (8)0.0211 (8)0.0386 (10)0.0029 (6)0.0031 (7)0.0076 (7)
C230.0276 (9)0.0221 (8)0.0376 (10)0.0033 (7)0.0056 (8)0.0001 (7)
C240.0346 (10)0.0262 (9)0.0282 (9)0.0016 (7)0.0028 (8)0.0003 (7)
C250.0271 (9)0.0224 (8)0.0302 (9)0.0005 (7)0.0003 (7)0.0044 (7)
Cl10.0293 (2)0.0266 (2)0.0536 (3)0.00007 (17)0.0072 (2)0.0134 (2)
Cl20.0637 (4)0.0443 (3)0.0294 (3)0.0123 (2)0.0027 (2)0.0038 (2)
N10.0247 (7)0.0163 (7)0.0335 (8)0.0024 (6)0.0048 (6)0.0000 (6)
N20.0252 (7)0.0168 (6)0.0306 (7)0.0004 (5)0.0027 (6)0.0012 (6)
S10.0236 (2)0.0174 (2)0.0414 (3)0.00337 (16)0.00734 (18)0.00045 (17)
Geometric parameters (Å, º) top
C1—C21.371 (2)C14—H14B0.9900
C1—C13i1.446 (2)C15—C161.524 (2)
C1—S11.7256 (16)C15—H15A0.9900
C2—C31.406 (2)C15—H15B0.9900
C2—H20.9500C16—H16A0.9800
C3—C41.372 (2)C16—H16B0.9800
C3—H30.9500C16—H16C0.9800
C4—C51.442 (2)C17—C181.519 (2)
C4—S11.7274 (15)C17—H17A0.9900
C5—N11.350 (2)C17—H17B0.9900
C5—C61.394 (2)C18—C191.520 (2)
C6—C71.392 (2)C18—H18A0.9900
C6—H60.9500C18—H18B0.9900
C7—C81.420 (2)C19—H19A0.9800
C7—C141.511 (2)C19—H19B0.9800
C8—N11.3852 (19)C19—H19C0.9800
C8—C91.430 (2)C20—C251.389 (2)
C9—C101.387 (2)C20—C211.393 (2)
C9—C201.496 (2)C21—C221.379 (2)
C10—N21.4088 (18)C21—H210.9500
C10—C111.466 (2)C22—C231.382 (2)
C11—C121.360 (2)C22—Cl11.7431 (16)
C11—C171.502 (2)C23—C241.380 (2)
C12—C131.431 (2)C23—H230.9500
C12—H120.9500C24—C251.387 (2)
C13—N21.323 (2)C24—Cl21.7375 (18)
C13—C1i1.446 (2)C25—H250.9500
C14—C151.523 (2)N1—H1N0.86 (2)
C14—H14A0.9900
C2—C1—C13i129.06 (15)C14—C15—H15B109.1
C2—C1—S1110.85 (12)H15A—C15—H15B107.8
C13i—C1—S1120.09 (12)C15—C16—H16A109.5
C1—C2—C3113.04 (15)C15—C16—H16B109.5
C1—C2—H2123.5H16A—C16—H16B109.5
C3—C2—H2123.5C15—C16—H16C109.5
C4—C3—C2113.38 (14)H16A—C16—H16C109.5
C4—C3—H3123.3H16B—C16—H16C109.5
C2—C3—H3123.3C11—C17—C18113.31 (13)
C3—C4—C5128.64 (14)C11—C17—H17A108.9
C3—C4—S1110.58 (12)C18—C17—H17A108.9
C5—C4—S1120.77 (12)C11—C17—H17B108.9
N1—C5—C6107.54 (14)C18—C17—H17B108.9
N1—C5—C4122.37 (14)H17A—C17—H17B107.7
C6—C5—C4130.08 (15)C17—C18—C19112.65 (15)
C7—C6—C5108.72 (14)C17—C18—H18A109.1
C7—C6—H6125.6C19—C18—H18A109.1
C5—C6—H6125.6C17—C18—H18B109.1
C6—C7—C8106.71 (13)C19—C18—H18B109.1
C6—C7—C14121.77 (14)H18A—C18—H18B107.8
C8—C7—C14131.34 (15)C18—C19—H19A109.5
N1—C8—C7106.51 (14)C18—C19—H19B109.5
N1—C8—C9120.11 (14)H19A—C19—H19B109.5
C7—C8—C9133.36 (14)C18—C19—H19C109.5
C10—C9—C8124.29 (14)H19A—C19—H19C109.5
C10—C9—C20119.73 (14)H19B—C19—H19C109.5
C8—C9—C20115.98 (13)C25—C20—C21119.52 (14)
C9—C10—N2120.08 (14)C25—C20—C9120.83 (14)
C9—C10—C11131.21 (14)C21—C20—C9119.58 (14)
N2—C10—C11108.71 (13)C22—C21—C20119.60 (15)
C12—C11—C10105.56 (14)C22—C21—H21120.2
C12—C11—C17124.79 (15)C20—C21—H21120.2
C10—C11—C17129.65 (14)C21—C22—C23121.91 (15)
C11—C12—C13107.51 (14)C21—C22—Cl1119.24 (13)
C11—C12—H12126.2C23—C22—Cl1118.85 (12)
C13—C12—H12126.2C24—C23—C22117.68 (15)
N2—C13—C12112.01 (14)C24—C23—H23121.2
N2—C13—C1i121.23 (14)C22—C23—H23121.2
C12—C13—C1i126.76 (15)C23—C24—C25122.05 (16)
C7—C14—C15112.74 (13)C23—C24—Cl2119.06 (13)
C7—C14—H14A109.0C25—C24—Cl2118.88 (13)
C15—C14—H14A109.0C24—C25—C20119.23 (15)
C7—C14—H14B109.0C24—C25—H25120.4
C15—C14—H14B109.0C20—C25—H25120.4
H14A—C14—H14B107.8C5—N1—C8110.52 (13)
C16—C15—C14112.51 (15)C5—N1—H1N130.5 (14)
C16—C15—H15A109.1C8—N1—H1N118.7 (14)
C14—C15—H15A109.1C13—N2—C10106.20 (13)
C16—C15—H15B109.1C1—S1—C492.15 (8)
C13i—C1—C2—C3179.71 (16)C8—C7—C14—C1594.1 (2)
S1—C1—C2—C30.08 (18)C7—C14—C15—C16174.90 (16)
C1—C2—C3—C40.3 (2)C12—C11—C17—C182.1 (2)
C2—C3—C4—C5178.12 (15)C10—C11—C17—C18177.42 (16)
C2—C3—C4—S10.32 (18)C11—C17—C18—C19179.25 (15)
C3—C4—C5—N1177.74 (16)C10—C9—C20—C2589.16 (19)
S1—C4—C5—N10.6 (2)C8—C9—C20—C2591.51 (19)
C3—C4—C5—C61.2 (3)C10—C9—C20—C2193.89 (19)
S1—C4—C5—C6179.48 (14)C8—C9—C20—C2185.44 (18)
N1—C5—C6—C70.81 (19)C25—C20—C21—C220.1 (2)
C4—C5—C6—C7178.24 (16)C9—C20—C21—C22177.12 (14)
C5—C6—C7—C80.32 (18)C20—C21—C22—C230.7 (2)
C5—C6—C7—C14175.29 (14)C20—C21—C22—Cl1179.84 (12)
C6—C7—C8—N10.27 (18)C21—C22—C23—C240.5 (3)
C14—C7—C8—N1175.30 (16)Cl1—C22—C23—C24179.97 (13)
C6—C7—C8—C9177.90 (17)C22—C23—C24—C250.3 (3)
C14—C7—C8—C92.9 (3)C22—C23—C24—Cl2179.18 (13)
N1—C8—C9—C103.8 (2)C23—C24—C25—C200.8 (3)
C7—C8—C9—C10174.14 (17)Cl2—C24—C25—C20178.67 (13)
N1—C8—C9—C20175.46 (14)C21—C20—C25—C240.6 (2)
C7—C8—C9—C206.6 (3)C9—C20—C25—C24176.39 (15)
C8—C9—C10—N21.8 (2)C6—C5—N1—C81.00 (18)
C20—C9—C10—N2177.47 (13)C4—C5—N1—C8178.14 (14)
C8—C9—C10—C11178.31 (16)C7—C8—N1—C50.79 (18)
C20—C9—C10—C112.4 (3)C9—C8—N1—C5177.67 (14)
C9—C10—C11—C12179.53 (17)C12—C13—N2—C100.63 (18)
N2—C10—C11—C120.36 (17)C1i—C13—N2—C10179.02 (14)
C9—C10—C11—C170.9 (3)C9—C10—N2—C13179.30 (14)
N2—C10—C11—C17179.25 (15)C11—C10—N2—C130.61 (17)
C10—C11—C12—C130.01 (17)C2—C1—S1—C40.08 (13)
C17—C11—C12—C13179.65 (15)C13i—C1—S1—C4179.90 (13)
C11—C12—C13—N20.41 (19)C3—C4—S1—C10.23 (13)
C11—C12—C13—C1i179.21 (15)C5—C4—S1—C1178.35 (13)
C6—C7—C14—C1580.34 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the S2/C1–C4, N1/C5–C8 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.86 (2)1.92 (2)2.6013 (19)135.7 (18)
C14—H14A···Cg40.992.613.492 (2)149
C14—H14B···Cg1ii0.992.833.522 (2)128
C19—H19C···Cg2iii0.992.903.713 (2)141
Symmetry codes: (ii) x+1, y, z+1; (iii) x1, y, z.
 

References

First citationAlka, A., Shetti, V. S. & Ravikanth, M. (2019). Coord. Chem. Rev. 401, 213063–213131.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT, XPREP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshimaru, Y., Shimoyama, N., Fujihara, T., Watanabe, K. & Setsune, J. (2015). Chem. Asian J. 10, 329–333.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIshimaru, Y., Takahashi, F., Mochizuki, S., Hosoda, N. & Fujihara, T. (2022). Chem. Asian J. 17, e202200198.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNarayanan, S. J., Sridevi, B., Chandrashekar, T. K., Vij, A. & Roy, R. (1999). J. Am. Chem. Soc. 121, 9053–9068.  Web of Science CSD CrossRef CAS Google Scholar
First citationNarayanan, S. J., Sridevi, B., Srinivasan, A., Chandrashekar, T. K. & Roy, R. (1998). Tetrahedron Lett. 39, 7389–7392.  CAS Google Scholar
First citationSaito, S. & Osuka, A. (2011). Angew. Chem. Int. Ed. 50, 4342–4373.  Web of Science CrossRef CAS Google Scholar
First citationSessler, J. L., Weghorn, S. J., Hiseada, Y. & Lynch, V. (1995). Chem. Eur. J. 1, 56–67.  CSD CrossRef CAS Web of Science Google Scholar
First citationSetsune, J., Toda, M., Yoshida, T., Imamura, K. & Watanabe, K. (2015). Chem. Eur. J. 21, 12715–12727.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146