metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(isonicotinamide-κN1)bis­­[4-(methyl­amino)benzoato]zinc(II) monohydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 8 October 2009; accepted 9 October 2009; online 17 October 2009)

In the title ZnII complex, [Zn(C8H8NO2)2(C6H6N2O)2]·H2O, the Zn atom is coordinated by two 4-methyl­amino­benzoate (MAB) and two isonicotinamide (INA) ligands in a distorted trigonal-bipyramidal geometry; one of the MAB ions acts as a bidentate ligand while the other MAB and the two INA are monodentate ligands. The dihedral angles between the carboxyl groups and the adjacent benzene rings are 8.52 (22) and 5.10 (14)°. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonding links the mol­ecules into a supra­molecular structure. Weak inter­molecular C—H⋯O inter­actions are also present.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651-m652.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H8NO2)2(C6H6N2O)2]·H2O

  • Mr = 627.95

  • Monoclinic, P 21 /c

  • a = 8.1323 (8) Å

  • b = 13.2098 (12) Å

  • c = 27.219 (3) Å

  • β = 96.949 (6)°

  • V = 2902.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 294 K

  • 0.55 × 0.45 × 0.35 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.618, Tmax = 0.725

  • 27836 measured reflections

  • 7249 independent reflections

  • 5243 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.03

  • 7249 reflections

  • 389 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.051 (2)
Zn1—O2 2.296 (2)
Zn1—O3 1.9394 (17)
Zn1—N1 2.0569 (18)
Zn1—N2 2.0850 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 2.21 3.011 (3) 154
N3—H3B⋯O4ii 0.86 2.03 2.854 (3) 160
N4—H4A⋯O5iii 0.86 2.02 2.848 (3) 162
N5—H5A⋯O5iv 0.86 2.40 3.151 (3) 147
N6—H6A⋯O7v 0.86 2.22 3.047 (4) 162
O7—H71⋯O6v 0.88 (4) 1.94 (4) 2.799 (3) 165 (4)
O7—H72⋯O1 0.88 (5) 1.99 (6) 2.828 (4) 157 (7)
C15—H15⋯O6vi 0.93 2.45 3.332 (3) 157
C16—H16⋯O4ii 0.93 2.53 3.426 (3) 162
Symmetry codes: (i) -x, -y, -z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a monomeric complex, where the ZnII ion is surrounded by two methylaminobenzoate (MAB) and two isonicotinamide (INA) ligands. One of the MAB ions acts as a bidentate ligand, while the other MAB and two INA are monodentate ligands. The structures of similar complexes of ZnII ion, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, (II) (Hökelek & Necefoğlu, 1996) and [Zn(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009) have also been determined.

In the title compound (Fig. 1), the average Zn—O bond length (Table 1) is 2.095 (2) Å and the Zn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.0717 (3) Å and 0.2813 (3) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 8.52 (22)° and 5.10 (14)°, respectively, while those between rings A, B, C (N1/C15—C19) and D (N2/C20—C24) are A/B = 71.82 (7), A/C = 14.44 (6), A/D = 84.05 (8), B/C = 72.21 (7), B/D = 47.00 (8) and C/D = 74.92 (7) °. The intramolecular O—H···O hydrogen bond (Table 2) links the water molecule to the carboxylate group (O1/C1/O2). In (I), the O1—Zn1—O2 angle is 59.02 (8)°. The corresponding O—M—O (where M is a metal) angles are 58.3 (3)° in (II), 60.03 (6)° in (III) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(IV); Greenaway et al., 1984].

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.9 g, 5 mmol) in H2O (30 ml) and INA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-methylaminobenzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving yellow single crystals.

Refinement top

Atoms H71 and H72 (for H2O) were located in difference Fourier map and refined isotropically, with restrains of O7—H71 = 0.88 (4), O7—H72 = 0.88 (5) Å and H71—O7—H72 = 106 (4)°. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH and NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a monomeric complex, where the ZnII ion is surrounded by two methylaminobenzoate (MAB) and two isonicotinamide (INA) ligands. One of the MAB ions acts as a bidentate ligand, while the other MAB and two INA are monodentate ligands. The structures of similar complexes of ZnII ion, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, (II) (Hökelek & Necefoğlu, 1996) and [Zn(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009) have also been determined.

In the title compound (Fig. 1), the average Zn—O bond length (Table 1) is 2.095 (2) Å and the Zn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.0717 (3) Å and 0.2813 (3) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 8.52 (22)° and 5.10 (14)°, respectively, while those between rings A, B, C (N1/C15—C19) and D (N2/C20—C24) are A/B = 71.82 (7), A/C = 14.44 (6), A/D = 84.05 (8), B/C = 72.21 (7), B/D = 47.00 (8) and C/D = 74.92 (7) °. The intramolecular O—H···O hydrogen bond (Table 2) links the water molecule to the carboxylate group (O1/C1/O2). In (I), the O1—Zn1—O2 angle is 59.02 (8)°. The corresponding O—M—O (where M is a metal) angles are 58.3 (3)° in (II), 60.03 (6)° in (III) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(IV); Greenaway et al., 1984].

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed line indicates the hydrogen-bonding.
Bis(isonicotinamide-κN1)bis[4-(methylamino)benzoato]zinc(II) monohydrate top
Crystal data top
[Zn(C8H8NO2)2(C6H6N2O)2]·H2OF(000) = 1304
Mr = 627.95Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6603 reflections
a = 8.1323 (8) Åθ = 2.7–25.3°
b = 13.2098 (12) ŵ = 0.90 mm1
c = 27.219 (3) ÅT = 294 K
β = 96.949 (6)°Block, yellow
V = 2902.6 (5) Å30.55 × 0.45 × 0.35 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7249 independent reflections
Radiation source: fine-focus sealed tube5243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.618, Tmax = 0.725k = 1717
27836 measured reflectionsl = 2736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.046P)2 + 0.981P]
where P = (Fo2 + 2Fc2)/3
7249 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 0.62 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C8H8NO2)2(C6H6N2O)2]·H2OV = 2902.6 (5) Å3
Mr = 627.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1323 (8) ŵ = 0.90 mm1
b = 13.2098 (12) ÅT = 294 K
c = 27.219 (3) Å0.55 × 0.45 × 0.35 mm
β = 96.949 (6)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5243 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.725Rint = 0.047
27836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.62 e Å3
7249 reflectionsΔρmin = 0.32 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.38843 (3)0.14401 (2)0.382846 (9)0.03967 (9)
O10.6266 (3)0.19218 (15)0.37937 (9)0.0729 (6)
O20.4834 (3)0.29273 (19)0.41966 (8)0.0767 (6)
O30.3923 (2)0.00547 (13)0.35943 (7)0.0563 (5)
O40.5680 (2)0.04606 (13)0.42345 (6)0.0530 (4)
O50.1909 (2)0.20940 (16)0.54876 (6)0.0642 (5)
O60.0275 (3)0.41634 (17)0.17505 (9)0.0875 (7)
O70.7484 (4)0.0760 (2)0.30434 (10)0.0854 (7)
H710.817 (5)0.028 (3)0.3165 (17)0.138 (19)*
H720.739 (10)0.118 (4)0.3290 (18)0.29 (4)*
N10.2088 (2)0.13652 (13)0.42983 (6)0.0379 (4)
N20.2637 (2)0.20452 (15)0.31803 (7)0.0414 (4)
N30.3353 (3)0.09359 (16)0.50163 (7)0.0474 (5)
H3A0.41750.09710.51870.057*
H3B0.33930.05310.47680.057*
N40.0387 (3)0.2613 (2)0.14760 (8)0.0648 (6)
H4A0.08680.28370.11980.078*
H4B0.03500.19730.15340.078*
N51.1355 (3)0.5607 (2)0.42313 (12)0.0793 (8)
H5A1.11840.61590.43850.095*
N60.5279 (4)0.43347 (18)0.28178 (9)0.0701 (7)
H6A0.46080.44270.25520.084*
C10.6150 (4)0.2730 (2)0.40298 (10)0.0565 (7)
C20.7569 (3)0.34465 (18)0.40946 (9)0.0465 (6)
C30.8948 (3)0.3316 (2)0.38584 (11)0.0561 (7)
H30.90310.27430.36640.067*
C41.0221 (3)0.4018 (2)0.39029 (11)0.0596 (7)
H41.11430.39120.37380.072*
C51.0136 (3)0.4877 (2)0.41909 (11)0.0535 (6)
C60.8760 (3)0.4990 (2)0.44393 (10)0.0557 (6)
H60.86830.55500.46420.067*
C70.7507 (3)0.4289 (2)0.43909 (10)0.0523 (6)
H70.65960.43830.45620.063*
C80.4882 (3)0.06043 (17)0.38227 (8)0.0409 (5)
C90.4992 (3)0.15862 (16)0.35668 (8)0.0379 (5)
C100.6074 (3)0.23362 (18)0.37532 (8)0.0454 (6)
H100.67400.22260.40510.055*
C110.6197 (3)0.32501 (19)0.35091 (9)0.0492 (6)
H110.69430.37400.36420.059*
C120.5205 (3)0.34305 (18)0.30670 (9)0.0463 (6)
C130.4099 (3)0.2684 (2)0.28777 (9)0.0513 (6)
H130.34180.27970.25830.062*
C140.4007 (3)0.17839 (19)0.31230 (9)0.0451 (5)
H140.32670.12920.29890.054*
C150.0795 (3)0.07424 (17)0.41887 (8)0.0393 (5)
H150.08240.02850.39300.047*
C160.0571 (3)0.07462 (16)0.44399 (8)0.0377 (5)
H160.14500.03080.43490.045*
C170.0624 (3)0.14121 (16)0.48315 (7)0.0368 (5)
C180.0745 (3)0.20295 (19)0.49524 (9)0.0474 (6)
H180.07740.24710.52190.057*
C190.2050 (3)0.19921 (19)0.46815 (9)0.0467 (6)
H190.29480.24200.47670.056*
C200.1486 (3)0.1521 (2)0.29058 (10)0.0546 (7)
H200.12080.08840.30160.066*
C210.0679 (3)0.1870 (2)0.24650 (10)0.0562 (7)
H210.01320.14770.22860.067*
C220.1084 (3)0.28063 (18)0.22918 (8)0.0438 (5)
C230.2258 (4)0.3356 (2)0.25815 (10)0.0563 (7)
H230.25480.39980.24820.068*
C240.3005 (3)0.2961 (2)0.30173 (10)0.0538 (6)
H240.38000.33460.32080.065*
C250.0290 (3)0.3249 (2)0.18116 (10)0.0536 (6)
C260.2036 (3)0.15014 (18)0.51356 (8)0.0421 (5)
C271.2895 (4)0.5493 (3)0.40301 (19)0.1095 (15)
H27A1.35650.60840.41040.164*
H27B1.26820.54080.36780.164*
H27C1.34690.49090.41740.164*
C280.6406 (5)0.5118 (2)0.29771 (13)0.0799 (10)
H28A0.61760.57010.27690.120*
H28B0.62880.52940.33130.120*
H28C0.75170.48920.29570.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03984 (15)0.03946 (15)0.03854 (14)0.00064 (12)0.00003 (10)0.00057 (11)
O10.0594 (12)0.0508 (12)0.1023 (17)0.0087 (10)0.0158 (11)0.0037 (11)
O20.0548 (12)0.1030 (18)0.0720 (13)0.0330 (12)0.0069 (11)0.0000 (12)
O30.0581 (11)0.0415 (9)0.0678 (12)0.0058 (8)0.0019 (9)0.0055 (9)
O40.0616 (11)0.0534 (10)0.0436 (9)0.0119 (9)0.0054 (8)0.0142 (8)
O50.0619 (12)0.0890 (15)0.0424 (9)0.0183 (11)0.0093 (8)0.0312 (10)
O60.0969 (17)0.0636 (14)0.0910 (16)0.0088 (12)0.0338 (13)0.0343 (12)
O70.0896 (18)0.0896 (18)0.0740 (15)0.0117 (15)0.0021 (13)0.0119 (14)
N10.0399 (10)0.0368 (10)0.0360 (9)0.0024 (8)0.0005 (8)0.0004 (8)
N20.0444 (11)0.0430 (11)0.0362 (9)0.0032 (9)0.0022 (8)0.0038 (8)
N30.0493 (12)0.0569 (13)0.0367 (10)0.0133 (10)0.0086 (9)0.0088 (9)
N40.0757 (16)0.0712 (16)0.0428 (12)0.0031 (13)0.0126 (11)0.0135 (11)
N50.0610 (15)0.0601 (15)0.120 (2)0.0228 (13)0.0253 (16)0.0080 (15)
N60.099 (2)0.0504 (14)0.0573 (14)0.0041 (13)0.0066 (13)0.0171 (11)
C10.0561 (16)0.0532 (16)0.0541 (15)0.0097 (13)0.0185 (13)0.0166 (13)
C20.0429 (12)0.0447 (13)0.0494 (13)0.0023 (11)0.0047 (11)0.0112 (11)
C30.0574 (16)0.0388 (13)0.0714 (18)0.0053 (12)0.0052 (14)0.0010 (12)
C40.0484 (15)0.0549 (16)0.0784 (19)0.0017 (13)0.0194 (14)0.0010 (15)
C50.0462 (14)0.0456 (14)0.0680 (17)0.0064 (12)0.0038 (12)0.0059 (13)
C60.0540 (15)0.0538 (15)0.0583 (15)0.0052 (13)0.0026 (13)0.0087 (13)
C70.0421 (13)0.0636 (16)0.0512 (14)0.0058 (12)0.0058 (11)0.0014 (13)
C80.0411 (12)0.0401 (12)0.0434 (12)0.0090 (10)0.0124 (10)0.0036 (10)
C90.0391 (11)0.0383 (12)0.0363 (11)0.0043 (10)0.0049 (9)0.0004 (9)
C100.0498 (14)0.0471 (13)0.0372 (12)0.0017 (11)0.0037 (10)0.0028 (10)
C110.0554 (15)0.0437 (13)0.0471 (13)0.0074 (11)0.0007 (11)0.0014 (11)
C120.0565 (14)0.0412 (13)0.0416 (12)0.0066 (11)0.0070 (11)0.0027 (10)
C130.0555 (15)0.0549 (15)0.0408 (12)0.0049 (12)0.0058 (11)0.0071 (11)
C140.0478 (13)0.0459 (13)0.0400 (12)0.0020 (11)0.0011 (10)0.0005 (10)
C150.0476 (13)0.0364 (11)0.0327 (10)0.0043 (10)0.0000 (9)0.0051 (9)
C160.0425 (12)0.0356 (11)0.0332 (10)0.0059 (10)0.0027 (9)0.0021 (9)
C170.0423 (11)0.0380 (11)0.0281 (9)0.0024 (10)0.0034 (8)0.0026 (9)
C180.0518 (14)0.0511 (14)0.0380 (11)0.0115 (12)0.0005 (11)0.0147 (11)
C190.0454 (13)0.0498 (14)0.0438 (12)0.0127 (11)0.0016 (11)0.0120 (11)
C200.0638 (16)0.0461 (14)0.0501 (14)0.0102 (13)0.0092 (12)0.0121 (12)
C210.0577 (16)0.0540 (15)0.0519 (14)0.0137 (13)0.0137 (12)0.0094 (12)
C220.0408 (12)0.0489 (14)0.0410 (12)0.0050 (11)0.0017 (10)0.0080 (10)
C230.0637 (17)0.0475 (15)0.0547 (15)0.0075 (13)0.0042 (13)0.0120 (12)
C240.0596 (16)0.0493 (15)0.0490 (14)0.0086 (13)0.0081 (12)0.0054 (12)
C250.0438 (13)0.0593 (16)0.0553 (15)0.0013 (12)0.0036 (12)0.0173 (13)
C260.0459 (12)0.0500 (13)0.0290 (10)0.0034 (11)0.0005 (9)0.0014 (10)
C270.061 (2)0.091 (3)0.181 (5)0.025 (2)0.035 (3)0.004 (3)
C280.119 (3)0.0436 (16)0.078 (2)0.0090 (18)0.013 (2)0.0122 (15)
Geometric parameters (Å, º) top
Zn1—O12.051 (2)C8—C91.480 (3)
Zn1—O22.296 (2)C9—C101.380 (3)
Zn1—O31.9394 (17)C9—C141.391 (3)
Zn1—N12.0569 (18)C10—H100.9300
Zn1—N22.0850 (18)C11—C101.388 (3)
O1—C11.256 (4)C11—H110.9300
O3—C81.279 (3)C12—N61.379 (3)
O5—C261.232 (3)C12—C111.386 (3)
O6—C251.219 (3)C13—C121.391 (4)
O7—H710.88 (4)C13—H130.9300
O7—H720.88 (5)C14—C131.370 (3)
N1—C151.340 (3)C14—H140.9300
N1—C191.335 (3)C15—H150.9300
N2—C201.321 (3)C16—C151.373 (3)
N2—C241.335 (3)C16—H160.9300
N3—C261.314 (3)C17—C161.387 (3)
N3—H3A0.8600C17—C261.499 (3)
N3—H3B0.8600C18—C171.387 (3)
N4—H4A0.8600C18—H180.9300
N4—H4B0.8600C19—C181.365 (3)
N5—C271.434 (4)C19—H190.9300
N5—H5A0.8600C20—C211.376 (3)
N6—C281.415 (4)C20—H200.9300
N6—H6A0.8600C21—C221.378 (3)
C1—O21.240 (4)C21—H210.9300
C1—C21.486 (4)C22—C231.371 (3)
C2—C31.369 (4)C22—C251.504 (3)
C2—C71.378 (4)C23—C241.369 (3)
C3—C41.385 (4)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.386 (4)C25—N41.312 (4)
C4—H40.9300C27—H27A0.9600
C5—N51.377 (3)C27—H27B0.9600
C5—C61.384 (4)C27—H27C0.9600
C6—C71.372 (4)C28—H28A0.9600
C6—H60.9300C28—H28B0.9600
C7—H70.9300C28—H28C0.9600
C8—O41.240 (3)
O1—Zn1—O259.02 (8)C9—C10—C11121.9 (2)
O1—Zn1—N1142.08 (8)C9—C10—H10119.1
O1—Zn1—N2101.97 (8)C11—C10—H10119.1
O3—Zn1—O1102.97 (8)C10—C11—H11120.1
O3—Zn1—O2158.87 (8)C12—C11—C10119.8 (2)
O3—Zn1—N1101.54 (8)C12—C11—H11120.1
O3—Zn1—N296.27 (8)N6—C12—C11121.4 (2)
O3—Zn1—C1131.97 (9)N6—C12—C13119.8 (2)
N1—Zn1—O289.80 (7)C11—C12—C13118.8 (2)
N1—Zn1—N2103.61 (7)C12—C13—H13119.8
N1—Zn1—C1116.91 (9)C14—C13—C12120.4 (2)
N2—Zn1—O298.32 (8)C14—C13—H13119.8
N2—Zn1—C1101.11 (8)C9—C14—H14119.1
C1—O1—Zn196.36 (19)C13—C14—C9121.8 (2)
C1—O2—Zn185.43 (18)C13—C14—H14119.1
C8—O3—Zn1121.05 (16)N1—C15—C16123.2 (2)
H71—O7—H72106 (4)N1—C15—H15118.4
C15—N1—Zn1119.23 (14)C16—C15—H15118.4
C19—N1—Zn1122.76 (15)C15—C16—C17119.2 (2)
C19—N1—C15117.6 (2)C15—C16—H16120.4
C20—N2—Zn1121.09 (16)C17—C16—H16120.4
C20—N2—C24117.3 (2)C16—C17—C18117.2 (2)
C24—N2—Zn1121.55 (17)C16—C17—C26124.8 (2)
C26—N3—H3A120.0C18—C17—C26117.97 (19)
C26—N3—H3B120.0C17—C18—H18119.8
H3A—N3—H3B120.0C19—C18—C17120.3 (2)
C25—N4—H4A120.0C19—C18—H18119.8
C25—N4—H4B120.0N1—C19—C18122.5 (2)
H4A—N4—H4B120.0N1—C19—H19118.7
C5—N5—C27123.3 (3)C18—C19—H19118.7
C5—N5—H5A118.3N2—C20—C21123.3 (2)
C27—N5—H5A118.3N2—C20—H20118.4
C12—N6—C28123.3 (2)C21—C20—H20118.4
C12—N6—H6A118.4C20—C21—C22119.4 (2)
C28—N6—H6A118.4C20—C21—H21120.3
O1—C1—Zn153.97 (14)C22—C21—H21120.3
O1—C1—C2119.8 (3)C21—C22—C25123.5 (2)
O2—C1—Zn165.22 (15)C23—C22—C21117.2 (2)
O2—C1—O1119.2 (3)C23—C22—C25119.3 (2)
O2—C1—C2121.0 (3)C22—C23—H23119.9
C3—C2—C1122.2 (3)C24—C23—C22120.1 (2)
C3—C2—C7117.8 (2)C24—C23—H23119.9
C7—C2—C1120.0 (2)N2—C24—C23122.7 (2)
C2—C3—C4121.4 (3)N2—C24—H24118.7
C2—C3—H3119.3C23—C24—H24118.7
C4—C3—H3119.3O6—C25—N4122.9 (3)
C3—C4—C5120.7 (3)O6—C25—C22120.0 (3)
C3—C4—H4119.6N4—C25—C22117.1 (2)
C5—C4—H4119.6O5—C26—N3122.9 (2)
N5—C5—C4122.3 (3)O5—C26—C17118.8 (2)
N5—C5—C6120.2 (3)N3—C26—C17118.34 (19)
C6—C5—C4117.6 (2)N5—C27—H27A109.5
C5—C6—H6119.5N5—C27—H27B109.5
C7—C6—C5121.0 (3)N5—C27—H27C109.5
C7—C6—H6119.5H27A—C27—H27B109.5
C2—C7—H7119.2H27A—C27—H27C109.5
C6—C7—C2121.5 (2)H27B—C27—H27C109.5
C6—C7—H7119.2N6—C28—H28A109.5
O3—C8—C9115.8 (2)N6—C28—H28B109.5
O4—C8—O3123.8 (2)N6—C28—H28C109.5
O4—C8—C9120.3 (2)H28A—C28—H28B109.5
C10—C9—C8121.9 (2)H28A—C28—H28C109.5
C10—C9—C14117.3 (2)H28B—C28—H28C109.5
C14—C9—C8120.8 (2)
O2—Zn1—O1—C11.11 (15)O2—C1—C2—C77.5 (4)
O3—Zn1—O1—C1169.11 (16)C1—C2—C3—C4176.6 (2)
N1—Zn1—O1—C140.1 (2)C7—C2—C3—C41.8 (4)
N2—Zn1—O1—C191.48 (17)C1—C2—C7—C6176.8 (2)
O1—Zn1—O2—C11.12 (15)C3—C2—C7—C61.7 (4)
O3—Zn1—O2—C135.3 (3)C2—C3—C4—C50.2 (4)
N1—Zn1—O2—C1158.38 (16)C3—C4—C5—N5177.9 (3)
N2—Zn1—O2—C197.89 (16)C3—C4—C5—C61.6 (4)
O1—Zn1—O3—C860.91 (19)C4—C5—N5—C277.6 (5)
O2—Zn1—O3—C831.3 (3)C6—C5—N5—C27173.0 (3)
N1—Zn1—O3—C889.93 (18)N5—C5—C6—C7177.8 (3)
N2—Zn1—O3—C8164.76 (18)C4—C5—C6—C71.7 (4)
C1—Zn1—O3—C853.7 (2)C5—C6—C7—C20.1 (4)
O1—Zn1—N1—C15163.70 (16)O3—C8—C9—C10175.0 (2)
O1—Zn1—N1—C1924.0 (2)O3—C8—C9—C144.4 (3)
O2—Zn1—N1—C15163.68 (17)O4—C8—C9—C105.6 (3)
O2—Zn1—N1—C198.64 (19)O4—C8—C9—C14175.0 (2)
O3—Zn1—N1—C1534.28 (18)C8—C9—C10—C11178.9 (2)
O3—Zn1—N1—C19153.40 (18)C14—C9—C10—C110.5 (4)
N2—Zn1—N1—C1565.17 (17)C8—C9—C14—C13179.4 (2)
N2—Zn1—N1—C19107.15 (19)C10—C9—C14—C130.0 (4)
C1—Zn1—N1—C15175.36 (16)C12—C11—C10—C90.5 (4)
C1—Zn1—N1—C193.0 (2)C11—C12—N6—C283.0 (4)
O1—Zn1—N2—C20139.6 (2)C13—C12—N6—C28177.9 (3)
O1—Zn1—N2—C2438.2 (2)N6—C12—C11—C10179.2 (2)
O2—Zn1—N2—C20160.5 (2)C13—C12—C11—C100.1 (4)
O2—Zn1—N2—C2421.8 (2)C14—C13—C12—N6179.7 (2)
O3—Zn1—N2—C2034.9 (2)C14—C13—C12—C110.6 (4)
O3—Zn1—N2—C24142.9 (2)C9—C14—C13—C120.6 (4)
N1—Zn1—N2—C2068.7 (2)C17—C16—C15—N11.0 (3)
N1—Zn1—N2—C24113.6 (2)C18—C17—C16—C151.2 (3)
C1—Zn1—N2—C20169.9 (2)C26—C17—C16—C15179.7 (2)
C1—Zn1—N2—C247.9 (2)C16—C17—C26—O5177.1 (2)
Zn1—O1—C1—O22.0 (3)C16—C17—C26—N32.4 (3)
Zn1—O1—C1—C2176.46 (19)C18—C17—C26—O52.0 (3)
Zn1—O3—C8—O49.7 (3)C18—C17—C26—N3178.4 (2)
Zn1—O3—C8—C9170.82 (14)C19—C18—C17—C162.1 (3)
Zn1—N1—C15—C16170.49 (17)C19—C18—C17—C26178.7 (2)
C19—N1—C15—C162.2 (3)N1—C19—C18—C170.8 (4)
Zn1—N1—C19—C18171.13 (19)N2—C20—C21—C220.7 (5)
C15—N1—C19—C181.3 (4)C20—C21—C22—C231.7 (4)
Zn1—N2—C20—C21177.2 (2)C20—C21—C22—C25179.2 (3)
C24—N2—C20—C210.6 (4)C21—C22—C23—C241.5 (4)
Zn1—N2—C24—C23176.9 (2)C25—C22—C23—C24179.4 (3)
C20—N2—C24—C230.9 (4)C21—C22—C25—O6156.3 (3)
O1—C1—O2—Zn11.8 (2)C21—C22—C25—N422.6 (4)
C2—C1—O2—Zn1176.7 (2)C23—C22—C25—O622.7 (4)
O1—C1—C2—C37.5 (4)C23—C22—C25—N4158.3 (3)
O1—C1—C2—C7174.1 (2)C22—C23—C24—N20.2 (4)
O2—C1—C2—C3170.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.213.011 (3)154
N3—H3B···O4ii0.862.032.854 (3)160
N4—H4A···O5iii0.862.022.848 (3)162
N5—H5A···O5iv0.862.403.151 (3)147
N6—H6A···O7v0.862.223.047 (4)162
O7—H71···O6v0.88 (4)1.94 (4)2.799 (3)165 (4)
O7—H72···O10.88 (5)1.99 (6)2.828 (4)157 (7)
C15—H15···O6vi0.932.453.332 (3)157
C16—H16···O4ii0.932.533.426 (3)162
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H8NO2)2(C6H6N2O)2]·H2O
Mr627.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.1323 (8), 13.2098 (12), 27.219 (3)
β (°) 96.949 (6)
V3)2902.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.55 × 0.45 × 0.35
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.618, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
27836, 7249, 5243
Rint0.047
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.03
No. of reflections7249
No. of parameters389
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—O12.051 (2)Zn1—N12.0569 (18)
Zn1—O22.296 (2)Zn1—N22.0850 (18)
Zn1—O31.9394 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.86002.21003.011 (3)154.00
N3—H3B···O4ii0.86002.03002.854 (3)160.00
N4—H4A···O5iii0.86002.02002.848 (3)162.00
N5—H5A···O5iv0.86002.40003.151 (3)147.00
N6—H6A···O7v0.86002.22003.047 (4)162.00
O7—H71···O6v0.88 (4)1.94 (4)2.799 (3)165 (4)
O7—H72···O10.88 (5)1.99 (6)2.828 (4)157 (7)
C15—H15···O6vi0.93002.45003.332 (3)157.00
C16—H16···O4ii0.93002.53003.426 (3)162.00
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds