Download citation
Download citation
link to html
The mol­ecule of the title compound, C8H11NO2, is nearly planar, possibly due to aromatic conjugation of the carboxyl­ate group with the aromatic pyrrole ring. The mol­ecules form infinite supra­molecular chains along the [101] direction via inter­molecular N—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705831X/xu2348sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705831X/xu2348Isup2.hkl
Contains datablock I

CCDC reference: 672993

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.124
  • Data-to-parameter ratio = 18.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT413_ALERT_2_C Short Inter XH3 .. XHn H52 .. H52 .. 2.13 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, C8H11NO2, was prepared as a tentative ligand for transition metal complexes.

The molecular structure is shown in Fig. 1. The molecule is nearly planar which might be due to aromatic conjugation of the carboxyl group with the aromatic pyrrol ring, and packing effects for the ethyl group (Fig. 2).

In the crystal structure, the molecules are connected to form supramolecular chains via N—H···O hydrogen bonds (Table 1).

For the structures of a series of imidazole-4,5-dicarboxylic-acid derivatives see Baures et al. (2002).

Related literature top

The title compound was prepared according to a synthesis described b Büchel et al. (1994). For the structure of a related compound, see: Baures et al. (2002).

For related literature, see: Cheng et al. (1976).

Experimental top

The title compound was prepared according to a synthesis described in Büchel et al. (1994). The title compound was obtained upon reaction of 4-methylphenylsulfonylmethylisocyanide with 2-butenoic acid ethyl ester in a mixture of dry ether and dimethylsulfoxide (2:1) under reductive conditions (NaH) at room temperature. After 30 minutes the excess sodium hydride was quenched by the addition of water. After another 30 minutes the reaction mixture was extracted with diethylether three times. The combined organic phases were combined yielding a yellow oil. After column chromatography on aluminium oxide with dichloromethane as solvent and removal of the solvent of the first fraction, light yellow crystals were obtained.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.95 (aromatic), 0.98(methyl), 0.99 Å (methylene) an N—H = 0.88 Å, and refined as riding on their parent atoms with one common isotropic displacement parameter.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Packing of two closest non-hydrogen-bonded neighbours of (I) in a normal view.
[Figure 3] Fig. 3. Hydrogen-bonded chains, view along [0 - 1 0], 0.0 < y < 0.5 only.
Ethyl 4-methyl-1H-pyrrole-3-carboxylate top
Crystal data top
C8H11NO2F(000) = 656
Mr = 153.18Dx = 1.239 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8547 reflections
a = 11.3757 (5) Åθ = 3.1–27.5°
b = 10.9074 (4) ŵ = 0.09 mm1
c = 14.1470 (4) ÅT = 200 K
β = 110.644 (2)°Block, light yellow
V = 1642.64 (11) Å30.23 × 0.12 × 0.08 mm
Z = 8
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1468 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.020
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.4°
ω scanh = 1414
3569 measured reflectionsk = 1414
1859 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124Only H-atom displacement parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.2343P]
where P = (Fo2 + 2Fc2)/3
1859 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H11NO2V = 1642.64 (11) Å3
Mr = 153.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.3757 (5) ŵ = 0.09 mm1
b = 10.9074 (4) ÅT = 200 K
c = 14.1470 (4) Å0.23 × 0.12 × 0.08 mm
β = 110.644 (2)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1468 reflections with I > 2σ(I)
3569 measured reflectionsRint = 0.020
1859 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124Only H-atom displacement parameters refined
S = 1.06Δρmax = 0.21 e Å3
1859 reflectionsΔρmin = 0.19 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17019 (10)0.42295 (10)0.01285 (8)0.0377 (3)
O20.02995 (10)0.26964 (12)0.03239 (8)0.0436 (3)
C30.18984 (13)0.26544 (14)0.12870 (10)0.0307 (3)
N10.33745 (12)0.23332 (12)0.27728 (9)0.0376 (3)
H1010.40690.24050.33020.0626 (18)*
C20.15334 (14)0.16238 (14)0.17421 (11)0.0332 (3)
C60.12186 (13)0.31647 (14)0.02949 (11)0.0316 (3)
C40.30409 (14)0.30630 (15)0.19499 (11)0.0350 (4)
H410.35090.37380.18450.0626 (18)*
C70.10894 (16)0.47856 (16)0.08579 (12)0.0399 (4)
H710.01940.49480.09700.0626 (18)*
H720.11360.42300.13970.0626 (18)*
C50.03638 (16)0.08732 (17)0.13147 (13)0.0460 (4)
H510.04170.01570.17460.0626 (18)*
H520.02740.06000.06330.0626 (18)*
H530.03660.13710.12850.0626 (18)*
C10.24662 (15)0.14637 (15)0.26568 (11)0.0371 (4)
H110.24830.08480.31360.0626 (18)*
C80.1760 (2)0.59605 (18)0.08746 (16)0.0552 (5)
H810.16960.65070.03450.0626 (18)*
H820.13770.63550.15350.0626 (18)*
H830.26470.57890.07550.0626 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0391 (6)0.0381 (6)0.0306 (6)0.0009 (5)0.0055 (5)0.0037 (4)
O20.0361 (6)0.0550 (7)0.0280 (6)0.0057 (5)0.0031 (4)0.0044 (5)
C30.0289 (7)0.0349 (8)0.0246 (7)0.0040 (6)0.0049 (6)0.0026 (6)
N10.0339 (7)0.0438 (8)0.0257 (6)0.0035 (6)0.0013 (5)0.0025 (5)
C20.0315 (7)0.0366 (8)0.0274 (7)0.0023 (6)0.0055 (6)0.0025 (6)
C60.0288 (7)0.0367 (8)0.0274 (7)0.0039 (6)0.0076 (6)0.0016 (6)
C40.0335 (8)0.0359 (8)0.0292 (7)0.0021 (6)0.0032 (6)0.0033 (6)
C70.0442 (9)0.0423 (9)0.0312 (8)0.0086 (7)0.0110 (7)0.0070 (6)
C50.0418 (9)0.0492 (10)0.0404 (9)0.0076 (8)0.0063 (7)0.0031 (7)
C10.0395 (8)0.0392 (9)0.0286 (8)0.0035 (7)0.0069 (6)0.0011 (6)
C80.0637 (13)0.0478 (11)0.0561 (12)0.0024 (9)0.0236 (10)0.0128 (9)
Geometric parameters (Å, º) top
O1—C61.3408 (18)C4—H410.9500
O1—C71.4544 (18)C7—C81.496 (3)
O2—C61.2145 (18)C7—H710.9900
C3—C41.381 (2)C7—H720.9900
C3—C21.428 (2)C5—H510.9800
C3—C61.453 (2)C5—H520.9800
N1—C41.350 (2)C5—H530.9800
N1—C11.369 (2)C1—H110.9500
N1—H1010.8800C8—H810.9800
C2—C11.365 (2)C8—H820.9800
C2—C51.496 (2)C8—H830.9800
C6—O1—C7116.25 (12)O1—C7—H72110.2
C4—C3—C2107.54 (13)C8—C7—H72110.2
C4—C3—C6125.81 (14)H71—C7—H72108.5
C2—C3—C6126.62 (13)C2—C5—H51109.5
C4—N1—C1109.53 (13)C2—C5—H52109.5
C4—N1—H101125.2H51—C5—H52109.5
C1—N1—H101125.2C2—C5—H53109.5
C1—C2—C3106.00 (13)H51—C5—H53109.5
C1—C2—C5126.62 (15)H52—C5—H53109.5
C3—C2—C5127.37 (13)C2—C1—N1109.07 (14)
O2—C6—O1122.68 (14)C2—C1—H11125.5
O2—C6—C3124.38 (15)N1—C1—H11125.5
O1—C6—C3112.94 (12)C7—C8—H81109.5
N1—C4—C3107.85 (14)C7—C8—H82109.5
N1—C4—H41126.1H81—C8—H82109.5
C3—C4—H41126.1C7—C8—H83109.5
O1—C7—C8107.33 (14)H81—C8—H83109.5
O1—C7—H71110.2H82—C8—H83109.5
C8—C7—H71110.2
C4—C3—C2—C10.30 (17)C2—C3—C6—O1171.47 (13)
C6—C3—C2—C1178.57 (14)C1—N1—C4—C30.30 (17)
C4—C3—C2—C5179.78 (15)C2—C3—C4—N10.00 (17)
C6—C3—C2—C52.0 (3)C6—C3—C4—N1178.29 (14)
C7—O1—C6—O22.1 (2)C6—O1—C7—C8179.17 (13)
C7—O1—C6—C3178.68 (12)C3—C2—C1—N10.48 (17)
C4—C3—C6—O2170.21 (15)C5—C2—C1—N1179.97 (15)
C2—C3—C6—O27.7 (2)C4—N1—C1—C20.50 (17)
C4—C3—C6—O110.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H101···O2i0.881.962.809 (2)163
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H11NO2
Mr153.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)11.3757 (5), 10.9074 (4), 14.1470 (4)
β (°) 110.644 (2)
V3)1642.64 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.12 × 0.08
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3569, 1859, 1468
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.06
No. of reflections1859
No. of parameters103
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: COLLECT (Nonius, 2004), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H101···O2i0.881.962.809 (2)163
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds