Download citation
Download citation
link to html
In the title mononuclear CuI complex, C38H33CuBrN4O4P or [CuBr(C18H15P)(C9H7NO2)2(C2H4N2)], the CuI ion is coordinated by two imine N atoms of a Schiff base ligand, a Br- anion and a PPh3 ligand in a distorted tetra­hedral geometry. The N-Cu-N angle is only 82.15 (7)°, but the Br-Cu-P angle is 114.54 (4)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704281X/xu2320sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704281X/xu2320Isup2.hkl
Contains datablock I

CCDC reference: 622724

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.027
  • wR factor = 0.059
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Br1 - Cu1 .. 13.28 su PLAT430_ALERT_2_B Short Inter D...A Contact O3 .. O3 .. 2.79 Ang.
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.99 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O3 - N4 .. 6.81 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C36 - C37 .. 5.27 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C3 .. 2.99 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.08
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The coordination chemistry of copper(I) complexes has received increased attention over the last decades. This is mainly due to the potential application of these complexes in catalytic processes (Striejewske, 1998) photosensitization reactions (Bren et al., 1991) and light harvesting studies (Horvath, 1994). The steric, electronic, and conformational effects imparted by the coordinated ligands play an important role in modifying the properties of the prepared metal complex. A thorough understanding of these effects will serve as the basis for a rational design of complexes with specific and predictable properties. Here we report the synthesis and characterization of a new complex, (I), as well as molecular structure from single-crystal X-ray analysis. Here, we reported the results of the reaction of Cu(I) with N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine and triphenylphosphine, which forms a copper Schiff base complex (Fig. 1).

The bond lengths and angles (Table 1) around the Cu in (I) are good agreement with the found in similar copper complexes. The Cu(1)—Br(1) bond lengths of 2.4411 (11) Å agree well with the same distance in other tetrahedral copper(I) complexes. The Cu(1)—P(1) distances are 2.2069 (13) Å which agree well with the same distances in other tetrahedral copper(I) phosphine complexes (Barron et al., 1988). While a tetrahedral geometry might be expected for a four coordinated copper(I) center the coordination sphere around copper(I) in this complex is distorted by the restricting bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is only 82.15 (7)°. The Br(1)—Cu(1)—P(1)angle is 114.54 (4)°, being somewhat larger than the values for a tetrahedron (Table 1). The single bond distance of C(3)—C(4), 1.446 (3) Å being slightly shorter than C(1)—C(2), 1.490 (3) Å indicates the existence of an extended electron delocalization in this complex.

Related literature top

For general background, see: Bren et al. (1991); Horvath (1994); Striejewske (1998). For related structures, see: Barron et al. (1988).

Experimental top

To a solution of 143 mg (1 mmol) CuBr in 5 ml acetonitril a solution of 261 mg (1 mmol) of PPh3 in 5 ml aetonitril was added. The mixture was stirred for 5 min and then 378 mg (1 mmol) of N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine in 5 ml acetonitril were added and stirred for an additional 60 min. The volume of the solvent was reduced under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the concentrated solution gave needle like red crystals suitable for X-ray studies. The crystals were collectedand dried in vacuo.

Refinement top

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 (aromatic) or 0.99 Å (methylene), Uiso(H) = 1.2 Ueq(C).

Structure description top

The coordination chemistry of copper(I) complexes has received increased attention over the last decades. This is mainly due to the potential application of these complexes in catalytic processes (Striejewske, 1998) photosensitization reactions (Bren et al., 1991) and light harvesting studies (Horvath, 1994). The steric, electronic, and conformational effects imparted by the coordinated ligands play an important role in modifying the properties of the prepared metal complex. A thorough understanding of these effects will serve as the basis for a rational design of complexes with specific and predictable properties. Here we report the synthesis and characterization of a new complex, (I), as well as molecular structure from single-crystal X-ray analysis. Here, we reported the results of the reaction of Cu(I) with N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine and triphenylphosphine, which forms a copper Schiff base complex (Fig. 1).

The bond lengths and angles (Table 1) around the Cu in (I) are good agreement with the found in similar copper complexes. The Cu(1)—Br(1) bond lengths of 2.4411 (11) Å agree well with the same distance in other tetrahedral copper(I) complexes. The Cu(1)—P(1) distances are 2.2069 (13) Å which agree well with the same distances in other tetrahedral copper(I) phosphine complexes (Barron et al., 1988). While a tetrahedral geometry might be expected for a four coordinated copper(I) center the coordination sphere around copper(I) in this complex is distorted by the restricting bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is only 82.15 (7)°. The Br(1)—Cu(1)—P(1)angle is 114.54 (4)°, being somewhat larger than the values for a tetrahedron (Table 1). The single bond distance of C(3)—C(4), 1.446 (3) Å being slightly shorter than C(1)—C(2), 1.490 (3) Å indicates the existence of an extended electron delocalization in this complex.

For general background, see: Bren et al. (1991); Horvath (1994); Striejewske (1998). For related structures, see: Barron et al. (1988).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, with atom labels and 50% probability displacement ellipsoids.
(Bromido)[N,N'-bis(2-nitrocinnamaldehyde)ethylenediamine] (triphenylphosphine)copper(I) top
Crystal data top
[CuBr(C18H15P)(C9H7NO2)2(C2H4N2)]F(000) = 3200
Mr = 784.10Dx = 1.464 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 17438 reflections
a = 31.288 (19) Åθ = 3.0–27.4°
b = 15.486 (9) ŵ = 1.83 mm1
c = 17.381 (10) ÅT = 200 K
β = 122.34 (2)°Block, red
V = 7116 (7) Å30.26 × 0.20 × 0.18 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8101 independent reflections
Radiation source: fine-focus sealed tube5147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 4040
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2019
Tmin = 0.635, Tmax = 0.720l = 2218
24792 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
8101 reflections(Δ/σ)max = 0.003
443 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[CuBr(C18H15P)(C9H7NO2)2(C2H4N2)]V = 7116 (7) Å3
Mr = 784.10Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.288 (19) ŵ = 1.83 mm1
b = 15.486 (9) ÅT = 200 K
c = 17.381 (10) Å0.26 × 0.20 × 0.18 mm
β = 122.34 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
8101 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5147 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.720Rint = 0.027
24792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
8101 reflectionsΔρmin = 0.36 e Å3
443 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.73895 (1)0.21194 (2)0.27023 (2)0.04174 (8)
Cu10.66984 (1)0.10741 (2)0.20239 (2)0.02458 (7)
P10.60586 (2)0.14022 (3)0.21692 (4)0.02312 (13)
O10.54777 (9)0.29990 (12)0.25066 (12)0.0780 (7)
O20.56141 (11)0.41867 (13)0.29544 (14)0.1012 (9)
O30.74427 (7)0.20459 (10)0.56309 (12)0.0417 (4)
O40.82159 (7)0.22703 (11)0.67454 (12)0.0562 (5)
N10.65620 (6)0.07940 (10)0.07370 (11)0.0241 (4)
N20.69483 (7)0.01979 (11)0.22714 (12)0.0292 (4)
N30.56248 (9)0.37427 (14)0.23709 (14)0.0498 (6)
N40.78663 (9)0.18000 (12)0.62149 (14)0.0357 (5)
C10.67318 (10)0.00878 (13)0.07142 (15)0.0370 (6)
H1A0.70820.00680.08490.044*
H1B0.65110.03340.00970.044*
C20.67151 (10)0.06515 (14)0.13921 (15)0.0428 (6)
H2A0.63600.07980.11740.051*
H2B0.69000.11960.14680.051*
C30.64364 (8)0.12863 (13)0.00597 (14)0.0276 (5)
H30.64360.10620.04490.033*
C40.62938 (8)0.21775 (13)0.00451 (14)0.0276 (5)
H40.62910.23960.05530.033*
C50.61667 (8)0.27048 (13)0.06515 (14)0.0283 (5)
H50.61570.24680.11650.034*
C60.60404 (8)0.36203 (14)0.06876 (15)0.0296 (5)
C70.58057 (9)0.41257 (13)0.14738 (15)0.0317 (5)
C80.57179 (10)0.49984 (15)0.14772 (18)0.0477 (7)
H80.55630.53170.20290.057*
C90.58561 (11)0.53990 (16)0.0676 (2)0.0589 (8)
H90.57940.59990.06680.071*
C100.60830 (13)0.49345 (17)0.0113 (2)0.0689 (9)
H100.61760.52120.06690.083*
C110.61791 (11)0.40660 (15)0.01102 (17)0.0487 (7)
H110.63450.37610.06710.058*
C120.72131 (9)0.06427 (14)0.29956 (15)0.0314 (5)
H120.72770.12340.29480.038*
C130.74164 (8)0.02660 (14)0.38822 (15)0.0302 (5)
H130.73850.03400.39200.036*
C140.76468 (8)0.07209 (14)0.46547 (14)0.0294 (5)
H140.76830.13250.46110.035*
C150.78476 (8)0.03598 (14)0.55608 (15)0.0288 (5)
C160.79624 (8)0.08569 (13)0.63139 (15)0.0290 (5)
C170.81345 (10)0.05208 (16)0.71668 (16)0.0470 (7)
H170.82090.08880.76610.056*
C180.81954 (11)0.03615 (17)0.72838 (17)0.0588 (8)
H180.83010.06110.78580.071*
C190.81029 (10)0.08818 (16)0.65625 (17)0.0476 (7)
H190.81520.14880.66470.057*
C200.79407 (9)0.05265 (15)0.57269 (16)0.0371 (6)
H200.78900.08930.52460.044*
C210.56473 (8)0.22662 (13)0.14153 (14)0.0259 (5)
C220.56463 (9)0.30877 (14)0.17307 (16)0.0374 (6)
H220.58430.32040.23660.045*
C230.53600 (10)0.37431 (15)0.11253 (17)0.0527 (8)
H230.53670.43060.13480.063*
C240.50679 (10)0.35815 (16)0.02082 (17)0.0441 (7)
H240.48690.40300.02030.053*
C250.50631 (9)0.27697 (15)0.01143 (16)0.0419 (6)
H250.48620.26560.07490.050*
C260.53508 (9)0.21187 (15)0.04829 (15)0.0347 (6)
H260.53460.15600.02530.042*
C270.56290 (8)0.04926 (13)0.19192 (14)0.0243 (5)
C280.51085 (9)0.05384 (16)0.14222 (16)0.0401 (6)
H280.49470.10790.11870.048*
C290.48189 (10)0.01954 (17)0.12612 (18)0.0493 (7)
H290.44600.01540.09140.059*
C300.50445 (10)0.09786 (16)0.15978 (17)0.0436 (7)
H300.48440.14800.14840.052*
C310.55592 (11)0.10335 (16)0.20979 (18)0.0493 (7)
H310.57180.15750.23360.059*
C320.58499 (9)0.03061 (14)0.22597 (16)0.0385 (6)
H320.62080.03530.26110.046*
C330.62006 (8)0.17584 (12)0.32871 (13)0.0232 (5)
C340.58210 (8)0.18790 (14)0.34743 (15)0.0322 (5)
H340.54800.17450.30220.039*
C350.59388 (9)0.21907 (14)0.43110 (15)0.0337 (6)
H350.56780.22800.44280.040*
C360.64343 (9)0.23719 (13)0.49750 (15)0.0318 (6)
H360.65140.25920.55470.038*
C370.68139 (9)0.22356 (13)0.48133 (14)0.0303 (5)
H370.71550.23510.52770.036*
C380.66975 (8)0.19283 (13)0.39707 (14)0.0264 (5)
H380.69610.18340.38620.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0467 (2)0.0473 (2)0.0391 (1)0.0234 (1)0.0282 (1)0.0204 (1)
Cu10.0291 (2)0.0222 (1)0.0232 (1)0.0003 (1)0.0145 (1)0.0010 (1)
P10.0246 (3)0.0226 (3)0.0205 (3)0.0019 (2)0.0110 (3)0.0027 (2)
O10.1120 (19)0.0389 (12)0.0386 (12)0.0062 (12)0.0105 (13)0.0057 (9)
O20.185 (3)0.0627 (15)0.0401 (14)0.0130 (16)0.0493 (16)0.0177 (11)
O30.0517 (12)0.0331 (10)0.0443 (11)0.0100 (9)0.0284 (10)0.0077 (8)
O40.0698 (14)0.0464 (11)0.0583 (13)0.0251 (10)0.0382 (12)0.0217 (10)
N10.0282 (11)0.0232 (9)0.0216 (10)0.0019 (8)0.0138 (9)0.0008 (8)
N20.0399 (12)0.0248 (10)0.0227 (11)0.0037 (9)0.0167 (10)0.0008 (8)
N30.0670 (17)0.0371 (13)0.0280 (13)0.0115 (12)0.0139 (12)0.0051 (11)
N40.0510 (15)0.0319 (11)0.0374 (13)0.0073 (11)0.0324 (13)0.0071 (10)
C10.0563 (18)0.0240 (12)0.0286 (14)0.0024 (12)0.0212 (14)0.0029 (10)
C20.0640 (19)0.0249 (13)0.0306 (14)0.0034 (13)0.0193 (14)0.0036 (11)
C30.0304 (14)0.0277 (13)0.0220 (12)0.0025 (10)0.0122 (11)0.0032 (10)
C40.0298 (13)0.0295 (12)0.0240 (12)0.0022 (10)0.0147 (11)0.0022 (10)
C50.0329 (14)0.0301 (13)0.0233 (12)0.0002 (10)0.0159 (12)0.0008 (10)
C60.0323 (14)0.0255 (12)0.0290 (13)0.0023 (10)0.0150 (12)0.0014 (10)
C70.0327 (14)0.0278 (13)0.0298 (14)0.0004 (11)0.0135 (12)0.0013 (10)
C80.0587 (19)0.0295 (14)0.0453 (17)0.0062 (13)0.0214 (16)0.0077 (12)
C90.078 (2)0.0256 (14)0.065 (2)0.0047 (15)0.0322 (19)0.0057 (14)
C100.113 (3)0.0371 (17)0.0447 (19)0.0046 (17)0.034 (2)0.0119 (14)
C110.077 (2)0.0341 (15)0.0359 (16)0.0030 (14)0.0309 (16)0.0019 (12)
C120.0428 (15)0.0213 (12)0.0295 (14)0.0063 (11)0.0190 (13)0.0019 (10)
C130.0361 (15)0.0245 (12)0.0310 (14)0.0040 (11)0.0186 (13)0.0008 (10)
C140.0345 (14)0.0243 (12)0.0290 (13)0.0017 (10)0.0166 (12)0.0018 (10)
C150.0238 (13)0.0300 (13)0.0269 (13)0.0004 (10)0.0099 (12)0.0017 (10)
C160.0323 (14)0.0296 (13)0.0281 (13)0.0008 (10)0.0181 (12)0.0010 (10)
C170.0655 (19)0.0460 (16)0.0254 (14)0.0055 (14)0.0215 (15)0.0030 (12)
C180.088 (2)0.0463 (17)0.0291 (16)0.0205 (16)0.0231 (17)0.0127 (13)
C190.0615 (19)0.0357 (15)0.0388 (16)0.0153 (13)0.0224 (15)0.0070 (12)
C200.0401 (16)0.0324 (14)0.0310 (14)0.0070 (12)0.0139 (13)0.0017 (11)
C210.0239 (13)0.0281 (12)0.0233 (12)0.0004 (10)0.0110 (11)0.0012 (10)
C220.0506 (17)0.0265 (13)0.0244 (13)0.0009 (12)0.0129 (13)0.0024 (11)
C230.079 (2)0.0283 (15)0.0369 (17)0.0120 (14)0.0212 (16)0.0005 (12)
C240.0541 (18)0.0396 (15)0.0339 (16)0.0157 (13)0.0204 (15)0.0114 (12)
C250.0453 (16)0.0479 (16)0.0220 (13)0.0089 (13)0.0110 (13)0.0013 (12)
C260.0417 (15)0.0331 (13)0.0259 (13)0.0055 (12)0.0159 (12)0.0039 (11)
C270.0282 (13)0.0251 (12)0.0251 (13)0.0057 (10)0.0180 (12)0.0079 (10)
C280.0323 (16)0.0351 (14)0.0455 (16)0.0053 (12)0.0159 (14)0.0054 (12)
C290.0287 (16)0.0554 (18)0.0514 (18)0.0173 (14)0.0131 (14)0.0148 (15)
C300.0582 (19)0.0388 (16)0.0444 (16)0.0257 (14)0.0346 (16)0.0168 (13)
C310.060 (2)0.0283 (14)0.0591 (19)0.0071 (14)0.0311 (17)0.0033 (13)
C320.0345 (15)0.0352 (14)0.0471 (16)0.0045 (12)0.0226 (14)0.0050 (12)
C330.0276 (13)0.0177 (11)0.0198 (12)0.0008 (9)0.0098 (11)0.0004 (9)
C340.0270 (14)0.0361 (13)0.0320 (14)0.0058 (11)0.0147 (12)0.0063 (11)
C350.0426 (16)0.0303 (13)0.0345 (14)0.0008 (12)0.0248 (13)0.0035 (11)
C360.0526 (17)0.0210 (12)0.0229 (13)0.0025 (11)0.0210 (13)0.0015 (10)
C370.0320 (14)0.0316 (13)0.0231 (12)0.0043 (11)0.0120 (12)0.0017 (10)
C380.0311 (14)0.0250 (12)0.0269 (13)0.0010 (10)0.0181 (12)0.0013 (10)
Geometric parameters (Å, º) top
Cu1—Br12.4411 (11)C15—C161.390 (3)
Cu1—N12.086 (2)C15—C201.401 (3)
Cu1—N22.078 (2)C16—C171.380 (3)
Cu1—P12.2069 (13)C17—C181.380 (3)
P1—C331.831 (2)C17—H170.9500
P1—C271.832 (2)C18—C191.384 (3)
P1—C211.833 (2)C18—H180.9500
O1—N31.216 (3)C19—C201.371 (3)
O2—N31.211 (3)C19—H190.9500
O3—N41.222 (2)C20—H200.9500
O4—N41.224 (2)C21—C221.386 (3)
N1—C31.275 (2)C21—C261.390 (3)
N1—C11.473 (3)C22—C231.390 (3)
N2—C121.277 (3)C22—H220.9500
N2—C21.473 (3)C23—C241.371 (3)
N3—C71.470 (3)C23—H230.9500
N4—C161.482 (3)C24—C251.373 (3)
C1—C21.490 (3)C24—H240.9500
C1—H1A0.9900C25—C261.380 (3)
C1—H1B0.9900C25—H250.9500
C2—H2A0.9900C26—H260.9500
C2—H2B0.9900C27—C281.378 (3)
C3—C41.446 (3)C27—C321.386 (3)
C3—H30.9500C28—C291.385 (3)
C4—C51.333 (3)C28—H280.9500
C4—H40.9500C29—C301.367 (3)
C5—C61.464 (3)C29—H290.9500
C5—H50.9500C30—C311.363 (4)
C6—C111.394 (3)C30—H300.9500
C6—C71.395 (3)C31—C321.379 (3)
C7—C81.379 (3)C31—H310.9500
C8—C91.367 (3)C32—H320.9500
C8—H80.9500C33—C381.386 (3)
C9—C101.363 (4)C33—C341.402 (3)
C9—H90.9500C34—C351.382 (3)
C10—C111.379 (3)C34—H340.9500
C10—H100.9500C35—C361.378 (3)
C11—H110.9500C35—H350.9500
C12—C131.439 (3)C36—C371.375 (3)
C12—H120.9500C36—H360.9500
C13—C141.335 (3)C37—C381.390 (3)
C13—H130.9500C37—H370.9500
C14—C151.459 (3)C38—H380.9500
C14—H140.9500
N2—Cu1—N182.15 (7)C16—C15—C20115.3 (2)
N2—Cu1—P1117.29 (5)C16—C15—C14123.3 (2)
N1—Cu1—P1119.52 (6)C20—C15—C14121.33 (19)
N2—Cu1—Br1113.00 (7)C17—C16—C15124.0 (2)
N1—Cu1—Br1106.03 (5)C17—C16—N4115.76 (19)
P1—Cu1—Br1114.54 (4)C15—C16—N4120.14 (19)
C33—P1—C27102.37 (9)C18—C17—C16118.4 (2)
C33—P1—C21102.58 (10)C18—C17—H17120.8
C27—P1—C21104.26 (11)C16—C17—H17120.8
C33—P1—Cu1118.08 (8)C17—C18—C19119.8 (2)
C27—P1—Cu1113.04 (7)C17—C18—H18120.1
C21—P1—Cu1114.78 (7)C19—C18—H18120.1
C3—N1—C1117.83 (17)C20—C19—C18120.3 (2)
C3—N1—Cu1130.59 (15)C20—C19—H19119.8
C1—N1—Cu1110.58 (12)C18—C19—H19119.8
C12—N2—C2117.77 (18)C19—C20—C15122.0 (2)
C12—N2—Cu1133.60 (15)C19—C20—H20119.0
C2—N2—Cu1108.34 (13)C15—C20—H20119.0
O2—N3—O1122.5 (2)C22—C21—C26118.1 (2)
O2—N3—C7118.8 (2)C22—C21—P1122.45 (17)
O1—N3—C7118.6 (2)C26—C21—P1119.29 (17)
O3—N4—O4125.1 (2)C21—C22—C23120.5 (2)
O3—N4—C16117.8 (2)C21—C22—H22119.7
O4—N4—C16117.0 (2)C23—C22—H22119.7
N1—C1—C2110.86 (17)C24—C23—C22120.4 (2)
N1—C1—H1A109.5C24—C23—H23119.8
C2—C1—H1A109.5C22—C23—H23119.8
N1—C1—H1B109.5C23—C24—C25119.8 (2)
C2—C1—H1B109.5C23—C24—H24120.1
H1A—C1—H1B108.1C25—C24—H24120.1
N2—C2—C1109.49 (19)C24—C25—C26120.1 (2)
N2—C2—H2A109.8C24—C25—H25120.0
C1—C2—H2A109.8C26—C25—H25120.0
N2—C2—H2B109.8C25—C26—C21121.1 (2)
C1—C2—H2B109.8C25—C26—H26119.4
H2A—C2—H2B108.2C21—C26—H26119.4
N1—C3—C4121.76 (19)C28—C27—C32117.8 (2)
N1—C3—H3119.1C28—C27—P1125.49 (18)
C4—C3—H3119.1C32—C27—P1116.74 (17)
C5—C4—C3122.67 (19)C27—C28—C29120.7 (2)
C5—C4—H4118.7C27—C28—H28119.6
C3—C4—H4118.7C29—C28—H28119.6
C4—C5—C6125.1 (2)C30—C29—C28120.6 (2)
C4—C5—H5117.5C30—C29—H29119.7
C6—C5—H5117.5C28—C29—H29119.7
C11—C6—C7114.7 (2)C31—C30—C29119.4 (2)
C11—C6—C5120.2 (2)C31—C30—H30120.3
C7—C6—C5125.0 (2)C29—C30—H30120.3
C8—C7—C6123.6 (2)C30—C31—C32120.3 (2)
C8—C7—N3115.4 (2)C30—C31—H31119.9
C6—C7—N3121.02 (19)C32—C31—H31119.9
C9—C8—C7119.1 (2)C31—C32—C27121.2 (2)
C9—C8—H8120.4C31—C32—H32119.4
C7—C8—H8120.4C27—C32—H32119.4
C10—C9—C8119.7 (2)C38—C33—C34118.48 (19)
C10—C9—H9120.1C38—C33—P1119.40 (15)
C8—C9—H9120.1C34—C33—P1122.11 (17)
C9—C10—C11120.6 (3)C35—C34—C33120.6 (2)
C9—C10—H10119.7C35—C34—H34119.7
C11—C10—H10119.7C33—C34—H34119.7
C10—C11—C6122.2 (2)C36—C35—C34120.0 (2)
C10—C11—H11118.9C36—C35—H35120.0
C6—C11—H11118.9C34—C35—H35120.0
N2—C12—C13121.3 (2)C37—C36—C35120.3 (2)
N2—C12—H12119.4C37—C36—H36119.8
C13—C12—H12119.4C35—C36—H36119.8
C14—C13—C12123.7 (2)C36—C37—C38120.0 (2)
C14—C13—H13118.2C36—C37—H37120.0
C12—C13—H13118.2C38—C37—H37120.0
C13—C14—C15124.9 (2)C33—C38—C37120.62 (19)
C13—C14—H14117.5C33—C38—H38119.7
C15—C14—H14117.5C37—C38—H38119.7
N2—Cu1—P1—C3389.94 (10)C20—C15—C16—N4178.3 (2)
N1—Cu1—P1—C33173.43 (9)C14—C15—C16—N42.1 (3)
Br1—Cu1—P1—C3346.02 (8)O3—N4—C16—C17123.0 (2)
N2—Cu1—P1—C2729.44 (10)O4—N4—C16—C1755.0 (3)
N1—Cu1—P1—C2767.19 (9)O3—N4—C16—C1552.8 (3)
Br1—Cu1—P1—C27165.40 (7)O4—N4—C16—C15129.3 (2)
N2—Cu1—P1—C21148.85 (9)C15—C16—C17—C180.2 (4)
N1—Cu1—P1—C2152.22 (10)N4—C16—C17—C18175.3 (2)
Br1—Cu1—P1—C2175.19 (9)C16—C17—C18—C192.5 (4)
N2—Cu1—N1—C3170.9 (2)C17—C18—C19—C201.4 (4)
P1—Cu1—N1—C372.10 (19)C18—C19—C20—C152.0 (4)
Br1—Cu1—N1—C359.15 (19)C16—C15—C20—C194.0 (3)
N2—Cu1—N1—C12.85 (14)C14—C15—C20—C19176.3 (2)
P1—Cu1—N1—C1119.84 (14)C33—P1—C21—C2222.2 (2)
Br1—Cu1—N1—C1108.90 (14)C27—P1—C21—C22128.66 (18)
N1—Cu1—N2—C12164.7 (2)Cu1—P1—C21—C22107.14 (18)
P1—Cu1—N2—C1276.1 (2)C33—P1—C21—C26162.58 (17)
Br1—Cu1—N2—C1260.5 (2)C27—P1—C21—C2656.14 (19)
N1—Cu1—N2—C221.89 (14)Cu1—P1—C21—C2668.06 (19)
P1—Cu1—N2—C297.35 (14)C26—C21—C22—C230.7 (3)
Br1—Cu1—N2—C2126.03 (13)P1—C21—C22—C23174.56 (19)
C3—N1—C1—C2163.0 (2)C21—C22—C23—C241.1 (4)
Cu1—N1—C1—C227.2 (2)C22—C23—C24—C250.8 (4)
C12—N2—C2—C1142.5 (2)C23—C24—C25—C260.1 (4)
Cu1—N2—C2—C142.9 (2)C24—C25—C26—C210.3 (4)
N1—C1—C2—N246.8 (3)C22—C21—C26—C250.0 (3)
C1—N1—C3—C4176.3 (2)P1—C21—C26—C25175.39 (18)
Cu1—N1—C3—C48.9 (3)C33—P1—C27—C2894.3 (2)
N1—C3—C4—C5179.2 (2)C21—P1—C27—C2812.3 (2)
C3—C4—C5—C6177.2 (2)Cu1—P1—C27—C28137.58 (18)
C4—C5—C6—C1118.0 (3)C33—P1—C27—C3285.85 (17)
C4—C5—C6—C7165.5 (2)C21—P1—C27—C32167.55 (16)
C11—C6—C7—C80.5 (4)Cu1—P1—C27—C3242.24 (18)
C5—C6—C7—C8176.1 (2)C32—C27—C28—C290.9 (3)
C11—C6—C7—N3178.3 (2)P1—C27—C28—C29178.95 (17)
C5—C6—C7—N35.1 (3)C27—C28—C29—C300.4 (4)
O2—N3—C7—C830.4 (4)C28—C29—C30—C310.2 (4)
O1—N3—C7—C8147.5 (3)C29—C30—C31—C320.3 (4)
O2—N3—C7—C6150.7 (3)C30—C31—C32—C270.2 (4)
O1—N3—C7—C631.4 (3)C28—C27—C32—C310.8 (3)
C6—C7—C8—C91.4 (4)P1—C27—C32—C31179.06 (18)
N3—C7—C8—C9177.4 (2)C27—P1—C33—C38133.75 (17)
C7—C8—C9—C100.8 (4)C21—P1—C33—C38118.36 (17)
C8—C9—C10—C110.7 (5)Cu1—P1—C33—C388.93 (19)
C9—C10—C11—C61.6 (5)C27—P1—C33—C3447.24 (19)
C7—C6—C11—C101.0 (4)C21—P1—C33—C3460.65 (19)
C5—C6—C11—C10177.8 (3)Cu1—P1—C33—C34172.06 (14)
C2—N2—C12—C13174.4 (2)C38—C33—C34—C352.4 (3)
Cu1—N2—C12—C131.4 (3)P1—C33—C34—C35176.67 (16)
N2—C12—C13—C14172.3 (2)C33—C34—C35—C361.1 (3)
C12—C13—C14—C15178.7 (2)C34—C35—C36—C370.7 (3)
C13—C14—C15—C16162.4 (2)C35—C36—C37—C381.2 (3)
C13—C14—C15—C2018.0 (3)C34—C33—C38—C371.9 (3)
C20—C15—C16—C172.9 (3)P1—C33—C38—C37177.19 (15)
C14—C15—C16—C17177.5 (2)C36—C37—C38—C330.1 (3)

Experimental details

Crystal data
Chemical formula[CuBr(C18H15P)(C9H7NO2)2(C2H4N2)]
Mr784.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)31.288 (19), 15.486 (9), 17.381 (10)
β (°) 122.34 (2)
V3)7116 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.635, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
24792, 8101, 5147
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 1.03
No. of reflections8101
No. of parameters443
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2007).

Selected geometric parameters (Å, º) top
Cu1—Br12.4411 (11)N2—C21.473 (3)
Cu1—N12.086 (2)N3—C71.470 (3)
Cu1—N22.078 (2)N4—C161.482 (3)
Cu1—P12.2069 (13)C1—C21.490 (3)
P1—C331.831 (2)C3—C41.446 (3)
P1—C271.832 (2)C4—C51.333 (3)
P1—C211.833 (2)C5—C61.464 (3)
N1—C31.275 (2)C12—C131.439 (3)
N1—C11.473 (3)C13—C141.335 (3)
N2—C121.277 (3)C14—C151.459 (3)
N2—Cu1—N182.15 (7)N2—Cu1—Br1113.00 (7)
N2—Cu1—P1117.29 (5)N1—Cu1—Br1106.03 (5)
N1—Cu1—P1119.52 (6)P1—Cu1—Br1114.54 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds