Download citation
Download citation
link to html
The title compound, [Zr2Cl8(C6H6ClN)2], is centrosymmetric. Each ZrIV ion has distorted octa­hedral coordination geometry, formed by one N atom from a 4-chloro­aniline ligand, three terminal Cl ions and two bridging Cl ions. The Zr—μ-Cl bond distances are much longer than the other Zr—Cl bond distances.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807007003/xu2203sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807007003/xu2203Isup2.hkl
Contains datablock I

CCDC reference: 622774

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.028
  • wR factor = 0.065
  • Data-to-parameter ratio = 17.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.90
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Di-µ-chloro-bis[trichloro(4-chloroaniline)zirconium(IV)] top
Crystal data top
[Zr2Cl8(C6H6ClN)2]F(000) = 696
Mr = 721.18Dx = 2.051 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3816 reflections
a = 7.8434 (14) Åθ = 3.1–25.3°
b = 9.4373 (14) ŵ = 2.04 mm1
c = 15.989 (3) ÅT = 153 K
β = 99.372 (5)°Block, colourless
V = 1167.7 (3) Å30.42 × 0.35 × 0.30 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
2134 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1111
Tmin = 0.385, Tmax = 0.543l = 1819
10883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.743P]
where P = (Fo2 + 2Fc2)/3
2134 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.13383 (3)0.15643 (3)0.567187 (17)0.01486 (10)
Cl10.18274 (9)0.08348 (7)0.50328 (4)0.01709 (16)
Cl20.43176 (9)0.19634 (8)0.59165 (5)0.02277 (18)
Cl30.03184 (11)0.38304 (8)0.59853 (5)0.02812 (19)
Cl40.10244 (9)0.04146 (8)0.69563 (4)0.02190 (17)
Cl50.75766 (9)0.32270 (8)0.27930 (5)0.02437 (18)
N10.1142 (3)0.2422 (3)0.42535 (15)0.0195 (5)
H1A0.04520.18030.39050.023*
H1B0.05690.32760.42250.023*
C10.2717 (4)0.2631 (3)0.38943 (18)0.0173 (6)
C20.3622 (4)0.3890 (3)0.40333 (19)0.0204 (6)
H20.32100.46260.43530.025*
C30.5139 (4)0.4067 (3)0.37018 (19)0.0199 (6)
H30.57770.49250.37930.024*
C40.5708 (4)0.2982 (3)0.32384 (18)0.0185 (6)
C50.4815 (4)0.1716 (3)0.30996 (19)0.0201 (6)
H50.52250.09790.27800.024*
C60.3309 (4)0.1548 (3)0.34367 (19)0.0198 (6)
H60.26820.06850.33530.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01379 (16)0.01531 (16)0.01537 (17)0.00013 (11)0.00206 (11)0.00130 (10)
Cl10.0125 (3)0.0179 (3)0.0209 (4)0.0020 (3)0.0027 (3)0.0034 (3)
Cl20.0149 (3)0.0293 (4)0.0233 (4)0.0025 (3)0.0004 (3)0.0005 (3)
Cl30.0316 (4)0.0197 (4)0.0327 (4)0.0062 (3)0.0042 (4)0.0056 (3)
Cl40.0228 (4)0.0260 (4)0.0173 (4)0.0009 (3)0.0047 (3)0.0008 (3)
Cl50.0164 (4)0.0292 (4)0.0279 (4)0.0025 (3)0.0047 (3)0.0074 (3)
N10.0180 (12)0.0203 (13)0.0206 (13)0.0013 (11)0.0046 (11)0.0012 (10)
C10.0177 (14)0.0203 (15)0.0142 (14)0.0024 (12)0.0035 (12)0.0039 (11)
C20.0240 (16)0.0168 (15)0.0203 (15)0.0004 (13)0.0028 (13)0.0002 (12)
C30.0237 (16)0.0142 (14)0.0203 (15)0.0076 (12)0.0010 (13)0.0008 (12)
C40.0135 (14)0.0257 (16)0.0160 (15)0.0015 (12)0.0018 (12)0.0068 (12)
C50.0218 (16)0.0190 (15)0.0198 (15)0.0005 (12)0.0039 (13)0.0015 (12)
C60.0217 (15)0.0190 (15)0.0184 (15)0.0028 (12)0.0028 (13)0.0012 (12)
Geometric parameters (Å, º) top
Zr1—Cl12.6186 (8)C1—C61.381 (4)
Zr1—Cl1i2.5852 (8)C1—C21.383 (4)
Zr1—Cl22.3362 (9)C2—C31.389 (4)
Zr1—Cl32.3655 (8)C2—H20.9500
Zr1—Cl42.3707 (8)C3—C41.380 (4)
Zr1—N12.389 (2)C3—H30.9500
Cl5—C41.746 (3)C4—C51.384 (4)
N1—C11.458 (4)C5—C61.384 (4)
N1—H1A0.9200C5—H50.9500
N1—H1B0.9200C6—H60.9500
Cl2—Zr1—Cl3100.51 (3)Zr1—N1—H1B107.5
Cl2—Zr1—Cl499.84 (3)H1A—N1—H1B107.0
Cl3—Zr1—Cl498.27 (3)C6—C1—C2120.8 (3)
Cl2—Zr1—N190.71 (6)C6—C1—N1119.3 (3)
Cl3—Zr1—N185.58 (7)C2—C1—N1119.9 (3)
Cl4—Zr1—N1167.85 (7)C1—C2—C3119.4 (3)
Cl2—Zr1—Cl1i89.93 (3)C1—C2—H2120.3
Cl3—Zr1—Cl1i164.45 (3)C3—C2—H2120.3
Cl4—Zr1—Cl1i91.17 (3)C4—C3—C2119.1 (3)
N1—Zr1—Cl1i82.78 (7)C4—C3—H3120.4
Cl2—Zr1—Cl1165.19 (3)C2—C3—H3120.4
Cl3—Zr1—Cl189.34 (3)C3—C4—C5121.8 (3)
Cl4—Zr1—Cl189.54 (3)C3—C4—Cl5119.1 (2)
N1—Zr1—Cl178.95 (6)C5—C4—Cl5119.0 (2)
Cl1i—Zr1—Cl178.36 (2)C4—C5—C6118.5 (3)
Zr1i—Cl1—Zr1101.64 (2)C4—C5—H5120.7
C1—N1—Zr1119.47 (17)C6—C5—H5120.7
C1—N1—H1A107.5C1—C6—C5120.2 (3)
Zr1—N1—H1A107.5C1—C6—H6119.9
C1—N1—H1B107.5C5—C6—H6119.9
Cl2—Zr1—Cl1—Zr1i38.39 (11)Zr1—N1—C1—C285.5 (3)
Cl3—Zr1—Cl1—Zr1i170.43 (3)C6—C1—C2—C30.5 (4)
Cl4—Zr1—Cl1—Zr1i91.29 (3)N1—C1—C2—C3178.8 (3)
N1—Zr1—Cl1—Zr1i84.80 (7)C1—C2—C3—C40.1 (4)
Cl1i—Zr1—Cl1—Zr1i0.0C2—C3—C4—C50.5 (4)
Cl2—Zr1—N1—C112.3 (2)C2—C3—C4—Cl5178.0 (2)
Cl3—Zr1—N1—C1112.8 (2)C3—C4—C5—C60.1 (4)
Cl4—Zr1—N1—C1138.1 (3)Cl5—C4—C5—C6178.3 (2)
Cl1i—Zr1—N1—C177.5 (2)C2—C1—C6—C50.9 (5)
Cl1—Zr1—N1—C1157.0 (2)N1—C1—C6—C5179.1 (3)
Zr1—N1—C1—C692.8 (3)C4—C5—C6—C10.5 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.922.663.567 (3)167
N1—H1B···Cl3ii0.922.823.718 (3)164
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds