Download citation
Download citation
link to html
2-Imino­coumarin-3-carboxamide (2-imino-2 H-chromene-3-carb­oxy­lic acid) is a perspective compound for use in the pharmaceutical industry. This compound crystallized from several solvents as two concomitant polymorphic forms. The monoclinic polymorph, crystallized initially, is formed due to strong N—H...O hydrogen bonds, weak C—H...O and C—H...N(π) hydrogen bonds, and stacking interactions of `head-to-head' type. The triclinic polymorphic form obtained due to slow evaporation of the same solution is formed due to only strong intermolecular interactions, N—H...O hydrogen bonds of two types, and stacking interactions of two types. Analysis of pairwise interaction energies showed that the monoclinic structure is columnar while the triclinic one is layered. Calculations in a periodic approximation of their lattice energies confirmed that the monoclinic polymorphic crystals are metastable as compared to the stable triclinic polymorph. Further quantum chemical modeling of possible structure deformations proved that both concomitant polymorphs can not be transformed into a new polymorphic form under external influence.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520623010193/xk5104sup1.cif
Contains datablocks 1m, 1t

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520623010193/xk51041msup2.hkl
Contains datablock 1m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520623010193/xk51041tsup3.hkl
Contains datablock 1t

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520623010193/xk5104sup4.pdf
Figs S1-S5 and Tables S1 and S2

CCDC references: 2298428; 2298429

Computing details top

(1m) top
Crystal data top
C10H8N2O2F(000) = 392
Mr = 188.18Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.7332 (3) ÅCell parameters from 1318 reflections
b = 14.6353 (10) Åθ = 4.5–28.8°
c = 12.5289 (8) ŵ = 0.10 mm1
β = 94.037 (5)°T = 296 K
V = 865.75 (10) Å3Needle, colourless
Z = 40.2 × 0.05 × 0.05 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
1186 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.064
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 55
Tmin = 0.770, Tmax = 1.000k = 1717
5418 measured reflectionsl = 1414
1523 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.084P)2 + 0.0891P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1523 reflectionsΔρmax = 0.15 e Å3
138 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7329 (3)0.28954 (9)0.23738 (10)0.0471 (4)
O20.2571 (3)0.40696 (10)0.53312 (12)0.0564 (5)
N20.1336 (4)0.46744 (13)0.37184 (18)0.0522 (5)
H2A0.019 (6)0.5093 (18)0.399 (2)0.076 (8)*
H2B0.167 (5)0.4681 (16)0.303 (2)0.066 (7)*
N10.4119 (4)0.40271 (13)0.20494 (16)0.0538 (5)
H10.469 (5)0.3908 (16)0.138 (2)0.065*
C80.4909 (4)0.34895 (12)0.38711 (15)0.0362 (5)
C60.8335 (4)0.22509 (12)0.41197 (15)0.0385 (5)
C90.5376 (4)0.34987 (12)0.27331 (15)0.0392 (5)
C10.8784 (4)0.22807 (13)0.30390 (15)0.0390 (5)
C100.2839 (4)0.41142 (12)0.43620 (16)0.0404 (5)
C70.6344 (4)0.28893 (13)0.45161 (15)0.0392 (5)
H70.6041110.2886460.5241440.047*
C50.9822 (4)0.15972 (14)0.47483 (17)0.0468 (5)
H50.9571140.1558840.5476450.056*
C21.0656 (4)0.17065 (14)0.25750 (18)0.0489 (6)
H21.0938220.1748660.1849540.059*
C41.1661 (4)0.10095 (14)0.4289 (2)0.0524 (6)
H41.2621680.0567550.4706300.063*
C31.2085 (5)0.10741 (14)0.3208 (2)0.0541 (6)
H31.3359020.0681860.2908970.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0541 (9)0.0525 (9)0.0354 (8)0.0065 (6)0.0073 (6)0.0010 (6)
O20.0663 (10)0.0634 (10)0.0413 (10)0.0192 (7)0.0156 (7)0.0049 (7)
N20.0566 (11)0.0549 (12)0.0455 (12)0.0155 (9)0.0074 (9)0.0059 (9)
N10.0642 (12)0.0602 (12)0.0371 (11)0.0100 (9)0.0045 (9)0.0080 (9)
C80.0343 (9)0.0366 (10)0.0379 (11)0.0026 (7)0.0049 (8)0.0006 (8)
C60.0364 (10)0.0397 (11)0.0397 (11)0.0018 (8)0.0042 (8)0.0036 (8)
C90.0401 (10)0.0397 (11)0.0380 (11)0.0033 (8)0.0035 (8)0.0020 (8)
C10.0377 (10)0.0393 (10)0.0397 (11)0.0021 (8)0.0015 (8)0.0041 (8)
C100.0404 (10)0.0419 (11)0.0392 (12)0.0017 (8)0.0056 (8)0.0015 (8)
C70.0402 (10)0.0458 (11)0.0323 (10)0.0048 (8)0.0068 (8)0.0029 (8)
C50.0456 (11)0.0498 (12)0.0448 (12)0.0030 (9)0.0028 (9)0.0018 (9)
C20.0500 (12)0.0502 (12)0.0470 (12)0.0018 (9)0.0076 (9)0.0125 (10)
C40.0496 (12)0.0445 (12)0.0621 (15)0.0088 (9)0.0032 (10)0.0017 (10)
C30.0510 (12)0.0476 (13)0.0642 (16)0.0057 (10)0.0072 (10)0.0172 (11)
Geometric parameters (Å, º) top
O1—C91.377 (2)C6—C71.440 (3)
O1—C11.377 (2)C6—C51.398 (3)
O2—C101.232 (2)C1—C21.379 (3)
N2—H2A0.90 (3)C7—H70.9300
N2—H2B0.88 (3)C5—H50.9300
N2—C101.322 (3)C5—C41.378 (3)
N1—H10.92 (3)C2—H20.9300
N1—C91.270 (2)C2—C31.366 (3)
C8—C91.458 (3)C4—H40.9300
C8—C101.503 (3)C4—C31.387 (3)
C8—C71.345 (3)C3—H30.9300
C6—C11.386 (3)
C9—O1—C1122.66 (15)O2—C10—C8119.13 (17)
H2A—N2—H2B121 (2)N2—C10—C8117.77 (19)
C10—N2—H2A120.2 (18)C8—C7—C6122.12 (18)
C10—N2—H2B118.2 (16)C8—C7—H7118.9
C9—N1—H1110.5 (15)C6—C7—H7118.9
C9—C8—C10122.86 (17)C6—C5—H5120.0
C7—C8—C9119.25 (17)C4—C5—C6120.0 (2)
C7—C8—C10117.88 (17)C4—C5—H5120.0
C1—C6—C7117.75 (17)C1—C2—H2120.8
C1—C6—C5117.79 (17)C3—C2—C1118.3 (2)
C5—C6—C7124.46 (18)C3—C2—H2120.8
O1—C9—C8117.72 (16)C5—C4—H4119.9
N1—C9—O1117.60 (18)C5—C4—C3120.3 (2)
N1—C9—C8124.67 (18)C3—C4—H4119.9
O1—C1—C6120.47 (17)C2—C3—C4120.87 (19)
O1—C1—C2116.85 (17)C2—C3—H3119.6
C2—C1—C6122.68 (18)C4—C3—H3119.6
O2—C10—N2123.09 (19)
O1—C1—C2—C3178.51 (17)C10—C8—C9—N10.3 (3)
C6—C1—C2—C31.1 (3)C10—C8—C7—C6178.84 (16)
C6—C5—C4—C31.2 (3)C7—C8—C9—O11.2 (3)
C9—O1—C1—C60.4 (3)C7—C8—C9—N1179.17 (18)
C9—O1—C1—C2179.21 (15)C7—C8—C10—O21.5 (3)
C9—C8—C10—O2179.65 (17)C7—C8—C10—N2176.95 (17)
C9—C8—C10—N21.9 (3)C7—C6—C1—O10.9 (3)
C9—C8—C7—C60.1 (3)C7—C6—C1—C2179.51 (17)
C1—O1—C9—N1178.89 (16)C7—C6—C5—C4179.27 (18)
C1—O1—C9—C81.5 (2)C5—C6—C1—O1178.46 (15)
C1—C6—C7—C81.1 (3)C5—C6—C1—C21.1 (3)
C1—C6—C5—C40.0 (3)C5—C6—C7—C8178.18 (17)
C1—C2—C3—C40.1 (3)C5—C4—C3—C21.3 (3)
C10—C8—C9—O1179.95 (15)
(1t) top
Crystal data top
C10H8N2O2Z = 2
Mr = 188.18F(000) = 196
Triclinic, P1Dx = 1.406 Mg m3
a = 7.0199 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0720 (13) ÅCell parameters from 444 reflections
c = 9.6216 (12) Åθ = 3.6–24.3°
α = 91.482 (12)°µ = 0.10 mm1
β = 98.773 (14)°T = 296 K
γ = 109.115 (16)°Plate, colourless
V = 444.57 (13) Å30.16 × 0.15 × 0.04 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
649 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.092
ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 88
Tmin = 0.151, Tmax = 1.000k = 88
3405 measured reflectionsl = 1110
1564 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.086H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.273 w = 1/[σ2(Fo2) + (0.1091P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1564 reflectionsΔρmax = 0.30 e Å3
136 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2695 (4)0.2183 (5)0.5689 (3)0.0723 (10)
O20.9652 (4)0.4311 (5)0.8052 (3)0.0842 (12)
N20.7262 (6)0.4171 (6)0.9393 (4)0.0745 (12)
H2A0.831 (7)0.472 (7)1.016 (5)0.089*
H2B0.573 (7)0.388 (7)0.930 (4)0.089*
N10.3359 (5)0.3005 (6)0.8054 (4)0.0734 (12)
H10.192 (7)0.266 (7)0.791 (4)0.088*
C80.6208 (6)0.3245 (6)0.6886 (4)0.0518 (10)
C100.7856 (6)0.3963 (6)0.8177 (4)0.0633 (13)
C10.3319 (7)0.1966 (6)0.4438 (4)0.0615 (12)
C60.5360 (6)0.2367 (6)0.4348 (4)0.0585 (11)
C90.4055 (6)0.2817 (6)0.6942 (4)0.0577 (11)
C70.6813 (7)0.3053 (6)0.5654 (5)0.0615 (12)
H70.8201630.3367960.5632120.074*
C20.1793 (7)0.1268 (7)0.3265 (5)0.0763 (14)
H20.0423300.0969400.3342440.092*
C50.5898 (8)0.2138 (7)0.3044 (5)0.0759 (14)
H50.7267170.2454390.2957820.091*
C30.2359 (9)0.1031 (8)0.1989 (5)0.0880 (17)
H30.1356900.0588300.1188010.106*
C40.4376 (10)0.1432 (8)0.1868 (5)0.0900 (17)
H40.4722460.1230450.0994340.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0508 (18)0.093 (3)0.071 (2)0.0265 (16)0.0005 (15)0.0115 (17)
O20.0497 (19)0.112 (3)0.087 (2)0.0260 (16)0.0060 (16)0.0179 (19)
N20.056 (2)0.098 (3)0.066 (3)0.025 (2)0.0076 (19)0.019 (2)
N10.043 (2)0.099 (3)0.078 (3)0.023 (2)0.0165 (18)0.015 (2)
C80.051 (2)0.051 (3)0.055 (2)0.0190 (18)0.0090 (18)0.0050 (19)
C100.054 (3)0.065 (3)0.074 (3)0.026 (2)0.009 (2)0.007 (2)
C10.064 (3)0.059 (3)0.061 (3)0.024 (2)0.002 (2)0.007 (2)
C60.065 (3)0.050 (3)0.060 (3)0.017 (2)0.013 (2)0.004 (2)
C90.051 (2)0.062 (3)0.065 (3)0.0249 (19)0.013 (2)0.001 (2)
C70.056 (2)0.059 (3)0.071 (3)0.0194 (19)0.015 (2)0.003 (2)
C20.069 (3)0.077 (4)0.078 (3)0.027 (2)0.001 (2)0.004 (3)
C50.081 (3)0.072 (3)0.073 (3)0.022 (3)0.021 (3)0.001 (3)
C30.102 (5)0.083 (4)0.071 (4)0.031 (3)0.009 (3)0.004 (3)
C40.126 (5)0.080 (4)0.064 (3)0.034 (3)0.021 (3)0.007 (3)
Geometric parameters (Å, º) top
O1—C11.364 (5)C1—C21.386 (6)
O1—C91.381 (5)C6—C71.452 (6)
O2—C101.228 (5)C6—C51.385 (6)
N2—H2A0.93 (5)C7—H70.9300
N2—H2B1.02 (5)C2—H20.9300
N2—C101.321 (5)C2—C31.369 (6)
N1—H10.94 (5)C5—H50.9300
N1—C91.263 (5)C5—C41.387 (7)
C8—C101.511 (5)C3—H30.9300
C8—C91.451 (5)C3—C41.374 (7)
C8—C71.337 (5)C4—H40.9300
C1—C61.383 (6)
C1—O1—C9122.3 (3)N1—C9—O1118.5 (4)
H2A—N2—H2B131 (4)N1—C9—C8124.3 (4)
C10—N2—H2A116 (3)C8—C7—C6121.8 (4)
C10—N2—H2B113 (2)C8—C7—H7119.1
C9—N1—H1114 (3)C6—C7—H7119.1
C9—C8—C10122.7 (4)C1—C2—H2120.9
C7—C8—C10117.1 (4)C3—C2—C1118.2 (5)
C7—C8—C9120.2 (4)C3—C2—H2120.9
O2—C10—N2123.5 (4)C6—C5—H5120.3
O2—C10—C8119.3 (4)C6—C5—C4119.4 (5)
N2—C10—C8117.2 (4)C4—C5—H5120.3
O1—C1—C6121.9 (4)C2—C3—H3119.3
O1—C1—C2116.4 (4)C2—C3—C4121.4 (5)
C6—C1—C2121.6 (4)C4—C3—H3119.3
C1—C6—C7116.6 (4)C5—C4—H4119.9
C1—C6—C5119.2 (4)C3—C4—C5120.2 (5)
C5—C6—C7124.2 (4)C3—C4—H4119.9
O1—C9—C8117.3 (3)
O1—C1—C6—C70.6 (6)C9—O1—C1—C2178.3 (4)
O1—C1—C6—C5179.3 (4)C9—C8—C10—O2179.5 (4)
O1—C1—C2—C3180.0 (4)C9—C8—C10—N20.9 (6)
C10—C8—C9—O1179.6 (3)C9—C8—C7—C61.7 (6)
C10—C8—C9—N10.2 (7)C7—C8—C10—O21.0 (6)
C10—C8—C7—C6179.7 (3)C7—C8—C10—N2179.4 (4)
C1—O1—C9—N1179.1 (4)C7—C8—C9—O11.1 (6)
C1—O1—C9—C80.3 (6)C7—C8—C9—N1178.3 (4)
C1—C6—C7—C81.5 (6)C7—C6—C5—C4178.7 (4)
C1—C6—C5—C42.7 (7)C2—C1—C6—C7178.8 (4)
C1—C2—C3—C41.2 (8)C2—C1—C6—C52.5 (7)
C6—C1—C2—C31.7 (7)C2—C3—C4—C51.5 (8)
C6—C5—C4—C32.2 (8)C5—C6—C7—C8179.9 (4)
C9—O1—C1—C60.1 (7)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds