Download citation
Download citation
link to html
According to the crystal structure determination by Edstrand & Blomqvist [Ark. Kemi (1955), 8, 245–256], intercalate NH4Cl·As2O3·0.5H2O ({\bf Y_{{NH}_{4}Cl}}) is not isostructural with compound KCl·As2O3·0.5H2O. This is very unlikely because both NH4Br·2As2O3 and KBr·2As2O3 as well as NH4I·2As2O3 and KI·2As2O3 are isostructural. Hence, intercalate {\bf Y_{{NH}_{4}Cl}} has been studied using single-crystal X-ray diffraction in addition to attenuated total reflection Fourier transform infrared (ATR-FTIR) and 15N solid-state magic-angle spinning nuclear magnetic resonance (ssNMR) spectroscopies. These techniques indicate that revising the previous crystal structure model is necessary. Compound {\bf Y_{{NH}_{4}Cl}} crystallizes in space group P6/mmm with unit-cell parameters a = 5.25420 (10) Å and c = 12.6308 (3) Å and is isostructural with KCl·As2O3·0.5H2O. The presence of two symmetry-independent ammonium cations in the structure has been unequivocally confirmed using 15N ssNMR spectroscopy. The 15N ssNMR spectrum of intercalate {\bf Y_{{NH}_{4}Cl}} has been compared with analogous spectra of NH4Br·2As2O3 and NH4I·2As2O3 which allowed for a probable assignment of signals to ammonium cations occupying particular sites in the crystal structures. Thermogravimetry, differential scanning calorimetry and variable-temperature ATR-FTIR spectra have revealed that intercalate {\bf Y_{{NH}_{4}Cl}} is dehydrated between 320 and 475 K. Upon cooling or standing in moist air water is re-absorbed. Dehydration leads to significant shortening of the c unit-cell parameter as revealed by powder X-ray diffraction [c = 12.1552 (7) Å at 293 K]. Compound {\bf Y_{{NH}_{4}Cl}} decomposes on prolonged heating above 490 K to arsenic(III) oxide and ammonium chloride.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520623003086/xk5099sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520623003086/xk5099Isup2.hkl
Contains datablock I

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2052520623003086/xk5099Isup4.rtv
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520623003086/xk5099sup3.pdf
Figs. S1, S2 and S3

link

Link https://doi.org/10.5281/zenodo.7119208
raw experimental data including raw diffraction data

CCDC reference: 2202825

Computing details top

Data collection: CrysAlis PRO 1.171.42.88a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.88a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.88a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

(I) top
Crystal data top
2(As2O3)·2(H4N)·H2O·2(Cl)Dx = 2.863 Mg m3
Mr = 520.68Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6/mmmCell parameters from 10181 reflections
a = 5.2542 (1) Åθ = 4.5–32.3°
c = 12.6308 (3) ŵ = 11.43 mm1
V = 301.98 (1) Å3T = 293 K
Z = 1Plate, colourless
F(000) = 2460.16 × 0.13 × 0.03 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
282 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 10.3347 pixels mm-1θmax = 32.8°, θmin = 3.2°
ω scansh = 77
Absorption correction: analytical
CrysAlisPro 1.171.42.88a (Rigaku Oxford Diffraction, 2023) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
k = 78
Tmin = 0.258, Tmax = 0.756l = 1918
16612 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0247P)2 + 0.1074P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max < 0.001
S = 1.23Δρmax = 0.49 e Å3
282 reflectionsΔρmin = 0.51 e Å3
17 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.330 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
As10.3333330.6666670.21239 (2)0.01091 (15)
O10.0000000.5000000.13663 (13)0.0142 (3)
Cl20.0000000.0000000.32260 (11)0.0274 (3)
N10.0000000.0000000.0000000.0227 (11)
H1B0.0000000.0000000.0713410.034*0.5
H1A0.0000000.1616710.0237810.034*0.25
O20.5000000.0000000.5000000.089 (4)0.3334
H20.3510700.0000000.4561890.134*0.1667
N20.5000000.0000000.5000000.089 (4)0.3334
H2A0.3599900.0000000.4588200.134*0.1667
H2B0.5808400.1616710.5411810.134*0.1667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.00866 (16)0.00866 (16)0.01542 (19)0.00433 (8)0.0000.000
O10.0076 (7)0.0138 (5)0.0191 (7)0.0038 (3)0.0000.000
Cl20.0251 (4)0.0251 (4)0.0322 (6)0.01253 (18)0.0000.000
N10.0229 (16)0.0229 (16)0.022 (2)0.0114 (8)0.0000.000
O20.147 (9)0.056 (5)0.034 (3)0.028 (3)0.0000.000
N20.147 (9)0.056 (5)0.034 (3)0.028 (3)0.0000.000
Geometric parameters (Å, º) top
As1—O11.7934 (9)N1—H1Axiii0.9010 (1)
As1—O1i1.7934 (9)O2—H20.9584 (1)
As1—O1ii1.7934 (9)O2—H2Axiv0.9010 (1)
N1—H1B0.9011 (1)O2—H2Axv0.9010 (1)
N1—H1Biii0.9011 (1)O2—H2Axvi0.9010 (1)
N1—H1Aiv0.9010 (1)O2—H2Bxvi0.9010 (1)
N1—H1Av0.9010 (1)O2—H2Bxiv0.9010 (1)
N1—H1A0.9010 (1)O2—H2Bxv0.9010 (1)
N1—H1Avi0.9010 (1)N2—H2Axv0.9010 (1)
N1—H1Avii0.9010 (1)N2—H2Axiv0.9010 (1)
N1—H1Aviii0.9010 (1)N2—H2Axvi0.9010 (1)
N1—H1Aix0.9010 (1)N2—H2A0.9010 (1)
N1—H1Ax0.9010 (1)N2—H2Bxiv0.9010 (1)
N1—H1Aiii0.9010 (1)N2—H2Bxvi0.9010 (1)
N1—H1Axi0.9010 (1)N2—H2B0.9010 (1)
N1—H1Axii0.9010 (1)N2—H2Bxv0.9010 (1)
O1—As1—O1ii94.18 (6)H1Axii—N1—H1Axi123.8
O1ii—As1—O1i94.18 (6)H1A—N1—H1Aviii123.750 (1)
O1—As1—O1i94.18 (6)H1Aix—N1—H1Axi56.2
As1xvii—O1—As1115.50 (9)H1Aiii—N1—H1Aviii56.2
H1B—N1—H1Biii180.0H1Avii—N1—H1Axi141.051 (1)
H1Biii—N1—H1Aviii109.474 (1)H1Aix—N1—H1Aviii141.051 (1)
H1B—N1—H1Avi70.526 (1)H1Avi—N1—H1Axi109.468 (1)
H1B—N1—H1A109.474 (1)H1Avii—N1—H1Aviii56.250 (1)
H1Biii—N1—H1Axiii70.526 (1)H1Aviii—N1—H1Axi109.468 (1)
H1Biii—N1—H1Ax70.526 (1)H1Avi—N1—H1Aviii109.468 (1)
H1B—N1—H1Avii70.526 (1)H1Avii—N1—H1Avi56.250 (1)
H1B—N1—H1Aiv109.474 (1)H1Axii—N1—H1Av109.468 (1)
H1Biii—N1—H1Axi109.474 (1)H1Aiv—N1—H1Avi180.0
H1B—N1—H1Aiii70.526 (1)H1Aix—N1—H1Av70.532 (1)
H1Biii—N1—H1Avii109.474 (1)H1Avii—N1—H1Aiv123.750 (1)
H1Biii—N1—H1Aiii109.474 (1)H1Axii—N1—H1Axiii56.2
H1Biii—N1—H1Aiv70.526 (1)H1A—N1—H1Ax56.2
H1B—N1—H1Axii109.474 (1)H1Av—N1—H1Axiii141.051 (1)
H1B—N1—H1Ax109.474 (1)H1A—N1—H1Av109.5
H1Biii—N1—H1Axii70.526 (1)H1Aiv—N1—H1Axiii109.468 (1)
H1B—N1—H1Aviii70.526 (1)H1Aiii—N1—H1Ax123.8
H1B—N1—H1Aix70.526 (1)H1Ax—N1—H1Axiii109.468 (1)
H1B—N1—H1Axiii109.474 (1)H1Axii—N1—H1Ax141.051 (1)
H1Biii—N1—H1Aix109.474 (1)H1A—N1—H1Aiii180.0
H1B—N1—H1Axi70.526 (1)H1Aix—N1—H1Ax38.949 (1)
H1B—N1—H1Av109.474 (1)H1A—N1—H1Avii70.5
H1Biii—N1—H1Av70.526 (1)H1Av—N1—H1Ax56.250 (1)
H1Biii—N1—H1Avi109.474 (1)H1A—N1—H1Aix70.532 (1)
H1A—N1—H1Biii70.526 (1)H1Aiv—N1—H1Ax109.468 (1)
H1Aiii—N1—H1Avii109.468 (1)H1Av—N1—H1Axi38.949 (1)
H1Avii—N1—H1Axiii38.949 (1)H1Aiii—N1—H1Avi141.051 (1)
H1Aiii—N1—H1Av70.532 (1)H1Aiv—N1—H1Axi70.532 (1)
H1Axii—N1—H1Avii70.532 (1)H1Axii—N1—H1Avi123.8
H1Aix—N1—H1Avii109.468 (1)H1Ax—N1—H1Axi70.532 (1)
H1Aiii—N1—H1Axi56.250 (1)H1Aix—N1—H1Avi56.2
H1Av—N1—H1Avii180.0H1Axiii—N1—H1Axi180.0
H1Av—N1—H1Aviii123.8H1Av—N1—H1Avi123.750 (1)
H1A—N1—H1Axii109.468 (1)H1Avii—N1—H1Ax123.8
H1Aiii—N1—H1Axiii123.750 (1)H2—O2—H2Axv180.0
H1Ax—N1—H1Aviii180.0H2—O2—H2Axvi109.468 (1)
H1Aviii—N1—H1Axiii70.532 (1)H2—O2—H2Axiv70.532 (1)
H1Aiii—N1—H1Aix109.468 (1)H2—O2—H2Bxv70.525 (1)
H1Aiii—N1—H1Axii70.532 (1)H2—O2—H2Bxiv70.529 (1)
H1Aiii—N1—H1Aiv38.949 (1)H2—O2—H2Bxvi109.471 (1)
H1Axii—N1—H1Aviii38.949 (1)H2Axv—O2—H2Bxiv109.470 (1)
H1Axii—N1—H1Aiv56.2H2Axiv—O2—H2Bxiv109.474 (1)
H1Aiv—N1—H1Aviii70.532 (1)H2Axvi—O2—H2Bxiv70.526 (1)
H1Aix—N1—H1Aiv123.8H2Bxvi—O2—H2Bxiv180.0
H1A—N1—H1Aiv141.052 (1)H2Bxv—O2—H2Bxiv109.470 (2)
H1Av—N1—H1Aiv56.250 (1)H2A—N2—H2B109.471 (1)
H1Aix—N1—H1Axiii123.8H2Axvi—N2—H2Bxiv70.526 (1)
H1A—N1—H1Axiii56.2H2Axiv—N2—H2Bxiv109.474 (1)
H1Avi—N1—H1Axiii70.532 (1)H2A—N2—H2Bxiv70.532 (1)
H1Axii—N1—H1Aix180.0H2Axv—N2—H2Bxiv109.470 (1)
H1A—N1—H1Axi123.750 (1)H2Bxvi—N2—H2Bxiv180.0
H1A—N1—H1Avi38.948 (1)H2B—N2—H2Bxiv70.528 (1)
H1Avi—N1—H1Ax70.532 (1)H2Bxv—N2—H2Bxiv109.470 (2)
O1ii—As1—O1—As1xvii132.75 (3)O1i—As1—O1—As1xvii132.74 (3)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x, y, z; (iv) x, y, z; (v) x+y, x, z; (vi) x, y, z; (vii) xy, x, z; (viii) y, xy, z; (ix) y, x+y, z; (x) y, x+y, z; (xi) x+y, x, z; (xii) y, xy, z; (xiii) xy, x, z; (xiv) x, y, z+1; (xv) x+1, y, z+1; (xvi) x+1, y, z; (xvii) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds