Download citation
Download citation
link to html
The crystal structure of pyrene-1-carbaldehyde (PA), a model polyaromatic hydrocarbon, highly luminescent in the solid state and crystallizing in the triclinic system, has been re-determined at several pressures ranging from atmospheric up to 3 GPa using a diamond anvil cell. A `multi-crystal' approach was used in crystal structure determination, significantly improving completeness of X-ray diffraction data attainable for such a low-symmetry system. The crystal structure consists of infinite π-stacks of PA molecules with discernible dimers, which resemble aggregates formed by pyrene derivatives in solution as well as in the solid state. A series of measurements showed that the average inter-planar distance between individual molecules within π-stacks decreases with pressure in the investigated range. This results in piezochromic properties of PA: a significant sample color change as well as a red-shift of fluorescence with pressure, as studied with UV–vis spectroscopy. Periodic DFT calculations allowed us to relate the variations in the crystal structure with pressure to the changes in the electronic structure of this material.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520619003354/xk5054sup1.cif
Contains datablocks 0kbar, 8kbar, 10kbar, 15kbar, 18kbar, 28kbar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619003354/xk50540kbarsup2.hkl
Contains datablock 0kbar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619003354/xk50548kbarsup3.hkl
Contains datablock 8kbar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619003354/xk505410kbarsup4.hkl
Contains datablock 10kbar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619003354/xk505415kbarsup5.hkl
Contains datablock 15kbar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619003354/xk505418kbarsup6.hkl
Contains datablock 18kbar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619003354/xk505428kbarsup7.hkl
Contains datablock 28kbar

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520619003354/xk5054sup8.pdf
Supplementary material

CCDC references: 1896189; 1896190; 1896191; 1896192; 1896193; 1896194

Computing details top

Data collection: CrysAlis PRO 1.171.38.43c (Rigaku OD, 2015) for 0kbar; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for 8kbar, 10kbar, 15kbar, 18kbar, 28kbar. Cell refinement: CrysAlis PRO 1.171.38.43c (Rigaku OD, 2015) for 0kbar; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for 8kbar, 10kbar, 15kbar, 18kbar, 28kbar. Data reduction: CrysAlis PRO 1.171.38.43c (Rigaku OD, 2015) for 0kbar; CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) for 8kbar, 10kbar, 15kbar, 18kbar, 28kbar. For all structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(0kbar) top
Crystal data top
C17H10OZ = 2
Mr = 230.25F(000) = 240
Triclinic, P1Dx = 1.410 Mg m3
a = 6.92715 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3336 (2) ÅCell parameters from 16541 reflections
c = 10.4706 (2) Åθ = 2.7–45.2°
α = 109.898 (2)°µ = 0.09 mm1
β = 98.9790 (19)°T = 279 K
γ = 100.773 (2)°Plate, clear yellow
V = 542.32 (2) Å30.36 × 0.29 × 0.11 mm
Data collection top
SuperNova, Single source at offset, Eos
diffractometer
9109 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source6621 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 16.0026 pixels mm-1θmax = 45.4°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
CrysAlisPro 1.171.38.43c (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1616
Tmin = 0.611, Tmax = 1.000l = 2020
54427 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.0851P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
9109 reflectionsΔρmax = 0.89 e Å3
163 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20750 (9)0.18858 (8)0.19284 (6)0.01593 (9)
C20.21120 (8)0.15559 (7)0.05025 (5)0.01358 (8)
C30.17281 (9)0.29310 (7)0.00324 (6)0.01658 (9)
H30.1457840.4104570.0571350.020*
C40.17538 (9)0.25433 (8)0.14066 (6)0.01776 (9)
H40.1499920.3460940.1722270.021*
C50.21607 (9)0.07624 (7)0.23796 (6)0.01599 (9)
C60.21344 (12)0.03576 (9)0.37899 (6)0.02297 (11)
H60.1862010.1264410.4115350.028*
C70.25114 (13)0.13856 (10)0.47053 (7)0.02605 (13)
H70.2471340.1637410.5635450.031*
C80.29492 (11)0.27580 (9)0.42368 (6)0.02163 (11)
H80.3211350.3920870.4860430.026*
C90.29994 (9)0.24078 (7)0.28383 (6)0.01582 (9)
C100.34275 (10)0.37971 (7)0.23270 (6)0.01838 (10)
H100.3709550.4967080.2940890.022*
C110.34271 (9)0.34299 (7)0.09629 (6)0.01787 (9)
H110.3716880.4354230.0658220.021*
C120.29884 (8)0.16433 (7)0.00213 (6)0.01442 (8)
C130.29658 (10)0.12659 (8)0.14327 (6)0.01798 (9)
H130.3247280.2181080.1748210.022*
C140.25241 (10)0.04709 (8)0.23586 (6)0.01872 (10)
H140.2525690.0704150.3292450.022*
C150.25650 (7)0.02308 (7)0.04502 (5)0.01246 (8)
C160.25829 (8)0.06261 (7)0.18899 (5)0.01343 (8)
C170.15400 (11)0.36462 (9)0.30593 (7)0.02265 (11)
H170.1638740.3662210.3938990.027*
O10.09873 (11)0.50771 (7)0.29909 (6)0.03302 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (2)0.01704 (19)0.01302 (17)0.00463 (15)0.00482 (14)0.00327 (15)
C20.01345 (18)0.01298 (17)0.01337 (17)0.00324 (13)0.00397 (13)0.00364 (14)
C30.0182 (2)0.01262 (17)0.0176 (2)0.00285 (15)0.00443 (16)0.00474 (15)
C40.0206 (2)0.01516 (19)0.0185 (2)0.00326 (16)0.00480 (17)0.00825 (16)
C50.0177 (2)0.01664 (19)0.01431 (18)0.00372 (15)0.00409 (15)0.00700 (15)
C60.0306 (3)0.0247 (3)0.0155 (2)0.0059 (2)0.0063 (2)0.01019 (19)
C70.0362 (4)0.0281 (3)0.0129 (2)0.0072 (3)0.0065 (2)0.0069 (2)
C80.0268 (3)0.0212 (2)0.01282 (19)0.0061 (2)0.00325 (18)0.00213 (17)
C90.0171 (2)0.01500 (18)0.01311 (17)0.00435 (15)0.00236 (14)0.00307 (14)
C100.0211 (2)0.01318 (18)0.0179 (2)0.00429 (16)0.00257 (17)0.00331 (15)
C110.0207 (2)0.01345 (18)0.0197 (2)0.00421 (16)0.00421 (17)0.00693 (16)
C120.01499 (18)0.01420 (18)0.01478 (18)0.00391 (14)0.00382 (14)0.00618 (14)
C130.0211 (2)0.0193 (2)0.0161 (2)0.00523 (17)0.00583 (17)0.00929 (17)
C140.0213 (2)0.0222 (2)0.01349 (18)0.00608 (18)0.00593 (16)0.00686 (17)
C150.01257 (17)0.01256 (16)0.01225 (16)0.00350 (13)0.00336 (13)0.00443 (13)
C160.01393 (18)0.01375 (17)0.01208 (17)0.00368 (14)0.00297 (13)0.00426 (14)
C170.0258 (3)0.0210 (2)0.0161 (2)0.0050 (2)0.00738 (19)0.00053 (18)
O10.0473 (4)0.0184 (2)0.0252 (2)0.0013 (2)0.0148 (2)0.00053 (17)
Geometric parameters (Å, º) top
C1—C21.4182 (7)C8—C91.3998 (8)
C1—C141.3994 (8)C9—C101.4347 (8)
C1—C171.4728 (8)C9—C161.4216 (7)
C2—C31.4377 (7)C10—C111.3550 (9)
C2—C151.4238 (7)C11—C121.4352 (8)
C3—C41.3596 (8)C12—C131.3992 (8)
C4—C51.4299 (8)C12—C151.4237 (7)
C5—C61.4023 (8)C13—C141.3838 (8)
C5—C161.4183 (7)C15—C161.4268 (7)
C6—C71.3890 (10)C17—O11.2123 (9)
C7—C81.3926 (10)
C2—C1—C17125.32 (5)C16—C9—C10118.90 (5)
C14—C1—C2119.91 (5)C11—C10—C9120.97 (5)
C14—C1—C17114.75 (5)C10—C11—C12121.33 (5)
C1—C2—C3123.42 (5)C13—C12—C11121.26 (5)
C1—C2—C15118.27 (5)C13—C12—C15119.51 (5)
C15—C2—C3118.31 (5)C15—C12—C11119.24 (5)
C4—C3—C2121.06 (5)C14—C13—C12119.92 (5)
C3—C4—C5121.76 (5)C13—C14—C1121.81 (5)
C6—C5—C4121.99 (5)C2—C15—C16120.26 (5)
C6—C5—C16119.46 (5)C12—C15—C2120.56 (5)
C16—C5—C4118.55 (5)C12—C15—C16119.18 (5)
C7—C6—C5120.60 (6)C5—C16—C9119.59 (5)
C6—C7—C8120.32 (6)C5—C16—C15120.03 (5)
C7—C8—C9120.77 (6)C9—C16—C15120.37 (5)
C8—C9—C10121.84 (5)O1—C17—C1128.33 (6)
C8—C9—C16119.25 (5)
(8kbar) top
Crystal data top
C17H10OV = 509.65 (16) Å3
Mr = 230.25Z = 2
Triclinic, P1F(000) = 240
a = 6.7049 (9) ÅDx = 1.500 Mg m3
b = 8.1989 (12) ÅSynchrotron radiation, λ = 0.4859 Å
c = 10.329 (2) ÅCell parameters from 850 reflections
α = 109.691 (17)°θ = 1.8–22.2°
β = 99.378 (15)°µ = 0.05 mm1
γ = 100.628 (12)°T = 293 K
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
2730 independent reflections
Radiation source: synchrotron1587 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.163
ω scansθmax = 22.7°, θmin = 1.5°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.275, Tmax = 1.000k = 1212
2730 measured reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.160H-atom parameters constrained
wR(F2) = 0.454 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.58(Δ/σ)max < 0.001
2730 reflectionsΔρmax = 0.92 e Å3
165 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C150.2422 (7)0.4762 (6)0.4564 (7)0.0178 (13)
C160.2369 (7)0.4352 (6)0.3101 (7)0.0199 (13)
O10.4063 (7)1.0152 (5)0.8057 (5)0.0456 (14)
C20.2893 (7)0.6567 (6)0.5522 (7)0.0189 (12)
C120.2001 (7)0.3313 (6)0.5047 (7)0.0191 (12)
C100.1523 (8)0.1137 (7)0.2657 (8)0.0262 (15)
H100.1222800.0049770.2033400.031*
C30.3264 (8)0.7960 (7)0.4964 (8)0.0241 (14)
H30.3554380.9152320.5573110.029*
C130.2067 (8)0.3702 (7)0.6476 (7)0.0240 (13)
H130.1808320.2774220.6801760.029*
C50.2785 (8)0.5775 (7)0.2599 (7)0.0222 (13)
C40.3199 (8)0.7573 (7)0.3587 (8)0.0248 (15)
H40.3431840.8506760.3264930.030*
C110.1548 (8)0.1513 (6)0.4040 (7)0.0225 (14)
H110.1262030.0570930.4347240.027*
C140.2514 (8)0.5448 (6)0.7404 (7)0.0228 (12)
H140.2530490.5680830.8352160.027*
C90.1956 (8)0.2557 (7)0.2149 (7)0.0238 (14)
C60.2769 (9)0.5355 (7)0.1168 (7)0.0309 (15)
H60.3009930.6272980.0829250.037*
C80.1967 (9)0.2193 (7)0.0718 (8)0.0293 (15)
H80.1685420.1014250.0082640.035*
C10.2946 (8)0.6892 (7)0.6965 (7)0.0211 (13)
C170.3516 (9)0.8684 (7)0.8114 (8)0.0316 (15)
H170.3445310.8690890.9007570.038*
C70.2402 (9)0.3608 (7)0.0253 (7)0.0358 (15)
H70.2443690.3361920.0687490.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C150.021 (3)0.017 (3)0.019 (3)0.0069 (19)0.010 (3)0.007 (3)
C160.020 (3)0.017 (3)0.023 (4)0.006 (2)0.008 (3)0.006 (3)
O10.072 (3)0.020 (2)0.028 (3)0.0000 (19)0.017 (3)0.008 (2)
C20.019 (3)0.015 (3)0.019 (3)0.0038 (18)0.005 (3)0.002 (3)
C120.024 (3)0.020 (3)0.017 (3)0.009 (2)0.008 (3)0.009 (3)
C100.028 (3)0.019 (3)0.027 (4)0.006 (2)0.001 (4)0.006 (3)
C30.022 (3)0.017 (3)0.029 (4)0.0028 (19)0.002 (3)0.006 (3)
C130.029 (3)0.029 (3)0.017 (3)0.007 (2)0.004 (3)0.013 (3)
C50.026 (3)0.020 (3)0.019 (3)0.006 (2)0.007 (3)0.006 (3)
C40.034 (3)0.018 (3)0.026 (4)0.007 (2)0.007 (4)0.011 (3)
C110.027 (3)0.016 (3)0.025 (4)0.007 (2)0.004 (3)0.009 (3)
C140.031 (3)0.028 (3)0.008 (3)0.008 (2)0.010 (3)0.003 (3)
C90.022 (3)0.020 (3)0.024 (4)0.005 (2)0.001 (3)0.003 (3)
C60.051 (4)0.030 (3)0.017 (3)0.012 (3)0.011 (4)0.014 (3)
C80.039 (3)0.023 (3)0.019 (3)0.009 (2)0.003 (4)0.001 (3)
C10.023 (3)0.022 (3)0.014 (3)0.007 (2)0.007 (3)0.001 (3)
C170.038 (3)0.027 (3)0.021 (4)0.006 (2)0.009 (4)0.001 (3)
C70.054 (4)0.040 (4)0.014 (3)0.013 (3)0.011 (4)0.011 (3)
Geometric parameters (Å, º) top
C15—C161.426 (9)C13—C141.372 (8)
C15—C21.418 (8)C5—C41.426 (8)
C15—C121.435 (6)C5—C61.399 (9)
C16—C51.430 (6)C4—H40.9300
C16—C91.413 (8)C11—H110.9300
O1—C171.216 (6)C14—H140.9300
C2—C31.444 (7)C14—C11.403 (7)
C2—C11.417 (9)C9—C81.407 (9)
C12—C131.392 (9)C6—H60.9300
C12—C111.431 (8)C6—C71.374 (8)
C10—H100.9300C8—H80.9300
C10—C111.352 (9)C8—C71.399 (7)
C10—C91.433 (7)C1—C171.478 (8)
C3—H30.9300C17—H170.9300
C3—C41.340 (9)C7—H70.9300
C13—H130.9300
C16—C15—C12118.8 (5)C5—C4—H4119.0
C2—C15—C16120.5 (4)C12—C11—H11118.9
C2—C15—C12120.8 (6)C10—C11—C12122.2 (5)
C15—C16—C5119.6 (5)C10—C11—H11118.9
C9—C16—C15120.8 (4)C13—C14—H14119.0
C9—C16—C5119.6 (6)C13—C14—C1121.9 (6)
C15—C2—C3118.0 (6)C1—C14—H14119.0
C1—C2—C15117.9 (4)C16—C9—C10119.3 (6)
C1—C2—C3124.1 (5)C8—C9—C16119.6 (5)
C13—C12—C15119.1 (5)C8—C9—C10121.2 (6)
C13—C12—C11122.2 (4)C5—C6—H6119.5
C11—C12—C15118.6 (6)C7—C6—C5121.0 (5)
C11—C10—H10119.8C7—C6—H6119.5
C11—C10—C9120.3 (6)C9—C8—H8120.1
C9—C10—H10119.8C7—C8—C9119.8 (6)
C2—C3—H3119.3C7—C8—H8120.1
C4—C3—C2121.5 (6)C2—C1—C17125.0 (5)
C4—C3—H3119.3C14—C1—C2120.0 (5)
C12—C13—H13119.9C14—C1—C17114.9 (6)
C14—C13—C12120.2 (5)O1—C17—C1129.2 (6)
C14—C13—H13119.9O1—C17—H17115.4
C4—C5—C16118.3 (6)C1—C17—H17115.4
C6—C5—C16119.0 (5)C6—C7—C8120.9 (6)
C6—C5—C4122.7 (5)C6—C7—H7119.5
C3—C4—C5122.1 (5)C8—C7—H7119.5
C3—C4—H4119.0
(10kbar) top
Crystal data top
C17H10OV = 506.95 (16) Å3
Mr = 230.25Z = 2
Triclinic, P1F(000) = 240
a = 6.6950 (8) ÅDx = 1.508 Mg m3
b = 8.1846 (11) ÅSynchrotron radiation, λ = 0.4859 Å
c = 10.306 (2) ÅCell parameters from 1136 reflections
α = 109.649 (18)°θ = 1.9–21.7°
β = 99.384 (16)°µ = 0.05 mm1
γ = 100.652 (11)°T = 293 K
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1830 independent reflections
Radiation source: synchrotron1190 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.093
ω scansθmax = 22.7°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.216, Tmax = 1.000k = 1212
1830 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.282 w = 1/[σ2(Fo2) + (0.1271P)2 + 0.3938P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1830 reflectionsΔρmax = 0.55 e Å3
164 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7115 (5)0.3447 (5)0.4477 (6)0.0176 (10)
C120.7998 (5)0.6699 (6)0.4963 (7)0.0187 (10)
C150.7566 (5)0.5235 (5)0.5442 (6)0.0164 (10)
C50.7214 (5)0.4225 (6)0.7409 (7)0.0239 (13)
C90.8057 (6)0.7446 (6)0.7857 (6)0.0197 (10)
C40.6793 (6)0.2425 (6)0.6409 (7)0.0217 (11)
H40.6552840.1489970.6730940.026*
C110.8457 (6)0.8496 (6)0.5962 (8)0.0261 (14)
H110.8746760.9436810.5650170.031*
O10.5931 (5)0.0149 (5)0.1943 (6)0.0517 (14)
C160.7645 (5)0.5661 (6)0.6914 (7)0.0197 (12)
C130.7932 (6)0.6304 (6)0.3531 (7)0.0245 (12)
H130.8193980.7238980.3209990.029*
C30.6727 (6)0.2021 (6)0.5014 (7)0.0232 (12)
H30.6433120.0828790.4399250.028*
C140.7486 (5)0.4549 (6)0.2574 (6)0.0241 (10)
H140.7483550.4328190.1627210.029*
C10.7032 (5)0.3085 (6)0.3012 (6)0.0180 (9)
C100.8485 (6)0.8877 (6)0.7337 (7)0.0232 (12)
H100.8780441.0066060.7957820.028*
C60.7235 (7)0.4631 (7)0.8823 (7)0.0303 (12)
H60.6995370.3707430.9157870.036*
C170.6499 (6)0.1337 (6)0.1894 (7)0.0307 (13)
H170.6601500.1334570.1004340.037*
C80.8035 (6)0.7811 (7)0.9278 (7)0.0295 (13)
H80.8303230.8993070.9908070.035*
C70.7607 (7)0.6396 (7)0.9756 (7)0.0359 (13)
H70.7573140.6642281.0700540.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0164 (14)0.018 (3)0.016 (3)0.0045 (15)0.002 (2)0.005 (3)
C120.0228 (16)0.018 (3)0.016 (3)0.0071 (16)0.004 (2)0.007 (3)
C150.0196 (15)0.016 (3)0.014 (3)0.0061 (16)0.004 (2)0.006 (3)
C50.0252 (17)0.023 (3)0.029 (4)0.0075 (17)0.007 (3)0.016 (4)
C90.0242 (16)0.022 (3)0.013 (3)0.0068 (17)0.004 (2)0.005 (3)
C40.0296 (18)0.016 (2)0.022 (3)0.0055 (17)0.008 (3)0.010 (3)
C110.0286 (18)0.019 (3)0.039 (4)0.0089 (17)0.011 (3)0.019 (4)
O10.072 (2)0.025 (2)0.053 (4)0.0049 (17)0.031 (3)0.005 (3)
C160.0190 (15)0.019 (3)0.022 (3)0.0047 (16)0.004 (2)0.010 (4)
C130.0299 (18)0.025 (3)0.025 (3)0.0095 (18)0.010 (3)0.014 (4)
C30.0285 (18)0.019 (3)0.027 (4)0.0077 (17)0.012 (3)0.012 (4)
C140.0320 (18)0.032 (3)0.014 (3)0.0096 (18)0.011 (2)0.013 (3)
C10.0266 (17)0.023 (3)0.006 (2)0.0100 (17)0.010 (2)0.004 (3)
C100.0315 (18)0.016 (3)0.020 (3)0.0060 (17)0.005 (3)0.006 (3)
C60.049 (2)0.034 (3)0.015 (3)0.009 (2)0.007 (3)0.019 (4)
C170.039 (2)0.035 (3)0.025 (3)0.013 (2)0.018 (3)0.013 (4)
C80.038 (2)0.024 (3)0.024 (4)0.010 (2)0.009 (3)0.004 (4)
C70.055 (3)0.041 (3)0.017 (3)0.013 (2)0.014 (3)0.016 (4)
Geometric parameters (Å, º) top
C2—C151.407 (7)C11—C101.340 (9)
C2—C31.451 (5)O1—C171.226 (5)
C2—C11.427 (8)C13—H130.9300
C12—C151.442 (5)C13—C141.385 (7)
C12—C111.425 (7)C3—H30.9300
C12—C131.392 (9)C14—H140.9300
C15—C161.427 (8)C14—C11.417 (5)
C5—C41.429 (7)C1—C171.439 (7)
C5—C161.432 (5)C10—H100.9300
C5—C61.379 (9)C6—H60.9300
C9—C161.401 (7)C6—C71.389 (7)
C9—C101.446 (5)C17—H170.9300
C9—C81.395 (9)C8—H80.9300
C4—H40.9300C8—C71.405 (6)
C4—C31.354 (9)C7—H70.9300
C11—H110.9300
C15—C2—C3118.3 (5)C14—C13—H13119.3
C15—C2—C1119.7 (4)C2—C3—H3120.0
C1—C2—C3122.0 (5)C4—C3—C2120.0 (5)
C11—C12—C15119.2 (5)C4—C3—H3120.0
C13—C12—C15118.6 (5)C13—C14—H14119.5
C13—C12—C11122.1 (4)C13—C14—C1121.1 (5)
C2—C15—C12120.3 (5)C1—C14—H14119.5
C2—C15—C16121.7 (4)C2—C1—C17126.1 (4)
C16—C15—C12118.0 (4)C14—C1—C2118.8 (4)
C4—C5—C16118.2 (5)C14—C1—C17115.1 (5)
C6—C5—C4122.8 (4)C9—C10—H10119.9
C6—C5—C16119.0 (5)C11—C10—C9120.3 (5)
C16—C9—C10119.2 (5)C11—C10—H10119.9
C8—C9—C16119.6 (4)C5—C6—H6119.4
C8—C9—C10121.2 (5)C5—C6—C7121.1 (4)
C5—C4—H4118.5C7—C6—H6119.4
C3—C4—C5122.9 (4)O1—C17—C1129.5 (6)
C3—C4—H4118.5O1—C17—H17115.3
C12—C11—H11118.9C1—C17—H17115.3
C10—C11—C12122.2 (4)C9—C8—H8120.0
C10—C11—H11118.9C9—C8—C7120.1 (5)
C15—C16—C5118.8 (5)C7—C8—H8120.0
C9—C16—C15121.1 (4)C6—C7—C8120.2 (5)
C9—C16—C5120.1 (5)C6—C7—H7119.9
C12—C13—H13119.3C8—C7—H7119.9
C14—C13—C12121.4 (4)
(15kbar) top
Crystal data top
C17H10OV = 495.3 (2) Å3
Mr = 230.25Z = 2
Triclinic, P1F(000) = 240
a = 6.6139 (17) ÅDx = 1.544 Mg m3
b = 8.1151 (16) ÅSynchrotron radiation, λ = 0.4859 Å
c = 10.272 (2) ÅCell parameters from 599 reflections
α = 109.439 (19)°θ = 1.9–21.4°
β = 99.563 (19)°µ = 0.05 mm1
γ = 100.637 (19)°T = 293 K
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1747 independent reflections
Radiation source: synchrotron912 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.082
ω scansθmax = 22.6°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.729, Tmax = 1.000k = 1212
1747 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.239 w = 1/[σ2(Fo2) + (0.1346P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1747 reflectionsΔρmax = 0.41 e Å3
164 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4089 (5)1.0167 (3)0.8073 (3)0.0489 (13)
C20.2906 (6)0.6581 (4)0.5544 (4)0.0235 (13)
C150.2410 (5)0.4741 (4)0.4568 (4)0.0230 (14)
C10.2956 (6)0.6902 (4)0.6994 (4)0.0236 (13)
C130.2052 (6)0.3672 (5)0.6494 (5)0.0273 (14)
H130.1785720.2734660.6823160.033*
C40.3216 (6)0.7594 (4)0.3578 (5)0.0279 (14)
H40.3474490.8533730.3251010.033*
C110.1521 (6)0.1462 (4)0.4046 (5)0.0279 (14)
H110.1224980.0508920.4354560.033*
C120.1995 (6)0.3290 (4)0.5052 (5)0.0232 (13)
C140.2508 (6)0.5452 (4)0.7427 (4)0.0319 (14)
H140.2515780.5686260.8378390.038*
C80.1958 (7)0.2180 (5)0.0708 (5)0.0321 (15)
H80.1692350.0992370.0074830.038*
C160.2367 (6)0.4347 (4)0.3098 (4)0.0215 (13)
C90.1920 (6)0.2515 (4)0.2127 (4)0.0260 (14)
C70.2381 (7)0.3574 (5)0.0225 (5)0.0384 (15)
H70.2410350.3316440.0723480.046*
C30.3265 (6)0.7982 (4)0.4980 (4)0.0245 (13)
H30.3538380.9183220.5587850.029*
C100.1497 (6)0.1103 (4)0.2658 (5)0.0288 (14)
H100.1196940.0093940.2034620.035*
C170.3530 (6)0.8689 (5)0.8154 (4)0.0378 (16)
H170.3460870.8695490.9052090.045*
C50.2771 (6)0.5764 (4)0.2596 (4)0.0228 (13)
C60.2764 (7)0.5362 (5)0.1147 (5)0.0346 (16)
H60.3013960.6292320.0808990.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.077 (2)0.0231 (14)0.038 (2)0.0025 (13)0.026 (2)0.0014 (13)
C20.024 (2)0.0228 (17)0.021 (3)0.0044 (13)0.007 (2)0.0044 (16)
C150.026 (2)0.0181 (16)0.024 (3)0.0049 (13)0.012 (2)0.0048 (15)
C10.025 (2)0.0240 (17)0.021 (3)0.0063 (14)0.007 (2)0.0067 (16)
C130.031 (2)0.0313 (18)0.023 (3)0.0067 (15)0.008 (3)0.0155 (17)
C40.037 (2)0.0196 (16)0.031 (3)0.0067 (14)0.012 (3)0.0127 (16)
C110.033 (2)0.0201 (17)0.033 (3)0.0050 (14)0.011 (3)0.0120 (17)
C120.027 (2)0.0207 (16)0.022 (3)0.0045 (13)0.008 (2)0.0090 (15)
C140.041 (2)0.030 (2)0.025 (3)0.0100 (16)0.015 (3)0.0074 (17)
C80.042 (3)0.0249 (19)0.025 (3)0.0064 (15)0.009 (3)0.0048 (18)
C160.027 (2)0.0201 (16)0.018 (3)0.0084 (14)0.006 (2)0.0073 (15)
C90.027 (2)0.0250 (18)0.022 (3)0.0061 (14)0.004 (2)0.0057 (16)
C70.060 (3)0.035 (2)0.019 (3)0.0095 (18)0.011 (3)0.0094 (18)
C30.032 (2)0.0164 (15)0.024 (3)0.0043 (13)0.006 (3)0.0086 (15)
C100.037 (2)0.0150 (15)0.031 (3)0.0078 (14)0.008 (3)0.0047 (15)
C170.049 (3)0.029 (2)0.032 (3)0.0071 (17)0.021 (3)0.0034 (18)
C50.026 (2)0.0231 (17)0.019 (3)0.0041 (13)0.004 (2)0.0092 (16)
C60.051 (3)0.031 (2)0.025 (3)0.0099 (17)0.011 (3)0.0142 (18)
Geometric parameters (Å, º) top
O1—C171.223 (4)C11—C101.354 (6)
C2—C151.434 (4)C14—H140.9300
C2—C11.418 (6)C8—H80.9300
C2—C31.439 (6)C8—C91.396 (6)
C15—C121.423 (6)C8—C71.382 (6)
C15—C161.430 (5)C16—C91.430 (4)
C1—C141.391 (5)C16—C51.408 (5)
C1—C171.470 (4)C9—C101.428 (6)
C13—H130.9300C7—H70.9300
C13—C121.402 (6)C7—C61.391 (4)
C13—C141.385 (4)C3—H30.9300
C4—H40.9300C10—H100.9300
C4—C31.361 (6)C17—H170.9300
C4—C51.433 (4)C5—C61.413 (6)
C11—H110.9300C6—H60.9300
C11—C121.438 (4)
C15—C2—C3117.8 (3)C7—C8—C9121.4 (3)
C1—C2—C15118.0 (4)C9—C16—C15120.3 (4)
C1—C2—C3124.2 (3)C5—C16—C15120.2 (3)
C12—C15—C2120.6 (3)C5—C16—C9119.5 (3)
C12—C15—C16119.3 (3)C8—C9—C16118.9 (4)
C16—C15—C2120.1 (4)C8—C9—C10122.6 (3)
C2—C1—C17125.6 (4)C10—C9—C16118.5 (3)
C14—C1—C2119.9 (3)C8—C7—H7119.8
C14—C1—C17114.4 (3)C8—C7—C6120.5 (4)
C12—C13—H13120.2C6—C7—H7119.8
C14—C13—H13120.2C2—C3—H3119.2
C14—C13—C12119.6 (4)C4—C3—C2121.6 (3)
C3—C4—H4119.4C4—C3—H3119.2
C3—C4—C5121.2 (4)C11—C10—C9121.6 (3)
C5—C4—H4119.4C11—C10—H10119.2
C12—C11—H11119.4C9—C10—H10119.2
C10—C11—H11119.4O1—C17—C1127.5 (4)
C10—C11—C12121.2 (4)O1—C17—H17116.3
C15—C12—C11119.1 (3)C1—C17—H17116.3
C13—C12—C15119.4 (3)C16—C5—C4119.1 (3)
C13—C12—C11121.5 (4)C16—C5—C6119.7 (3)
C1—C14—H14118.8C6—C5—C4121.2 (4)
C13—C14—C1122.4 (4)C7—C6—C5120.0 (4)
C13—C14—H14118.8C7—C6—H6120.0
C9—C8—H8119.3C5—C6—H6120.0
C7—C8—H8119.3
(18kbar) top
Crystal data top
C17H10OV = 492.5 (2) Å3
Mr = 230.25Z = 2
Triclinic, P1F(000) = 240
a = 6.6007 (14) ÅDx = 1.553 Mg m3
b = 8.1331 (19) ÅSynchrotron radiation, λ = 0.4859 Å
c = 10.232 (3) ÅCell parameters from 615 reflections
α = 109.52 (3)°θ = 1.9–22.0°
β = 99.88 (3)°µ = 0.05 mm1
γ = 100.617 (18)°T = 293 K
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1700 independent reflections
Radiation source: synchrotron1100 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.134
ω scansθmax = 22.7°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.364, Tmax = 1.000k = 1212
1700 measured reflectionsl = 1515
Refinement top
Refinement on F2162 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.224H-atom parameters constrained
wR(F2) = 0.502 w = 1/[σ2(Fo2) + (0.1062P)2 + 5.7717P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
1700 reflectionsΔρmax = 1.24 e Å3
164 parametersΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7116 (14)0.3460 (15)0.4505 (17)0.0104 (13)
O10.5880 (17)0.0193 (14)0.1877 (18)0.045 (3)
C40.6781 (19)0.2427 (16)0.6416 (19)0.022 (2)
H40.6515020.1486580.6738790.026*
C120.7987 (18)0.6692 (17)0.492 (2)0.0212 (19)
C110.8474 (17)0.8524 (16)0.5957 (19)0.0198 (19)
H110.8777510.9477710.5652120.024*
C150.7554 (17)0.5249 (16)0.5423 (19)0.0176 (18)
C50.7210 (16)0.4235 (16)0.7425 (18)0.0159 (17)
C90.8079 (19)0.7464 (17)0.7843 (19)0.022 (2)
C160.7672 (16)0.5644 (16)0.6889 (18)0.0165 (17)
C140.7491 (17)0.4552 (16)0.2544 (19)0.0205 (19)
H140.7494970.4352340.1595390.025*
C30.6741 (17)0.2026 (16)0.5067 (18)0.0183 (19)
H30.6474520.0824670.4458580.022*
C130.7950 (19)0.6338 (17)0.355 (2)0.022 (2)
H130.8235650.7294050.3250860.027*
C60.728 (2)0.4647 (19)0.8921 (19)0.027 (2)
H60.7079520.3732370.9277470.032*
C10.7028 (18)0.3072 (16)0.2966 (19)0.0188 (18)
C80.8037 (19)0.7803 (18)0.9246 (19)0.023 (2)
H80.8281120.8995280.9867030.027*
C100.8503 (17)0.8898 (17)0.7355 (19)0.0193 (18)
H100.8800471.0089230.7989760.023*
C70.763 (2)0.6404 (18)0.979 (2)0.031 (3)
H70.7615100.6697531.0751530.037*
C170.649 (2)0.1360 (18)0.191 (2)0.029 (2)
H170.6603740.1377640.1021360.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.004 (3)0.016 (2)0.012 (2)0.001 (2)0.002 (3)0.007 (2)
O10.076 (7)0.021 (3)0.041 (9)0.007 (4)0.034 (8)0.007 (4)
C40.037 (6)0.015 (3)0.012 (3)0.000 (3)0.007 (4)0.007 (3)
C120.032 (5)0.018 (2)0.021 (3)0.009 (3)0.012 (4)0.013 (3)
C110.029 (5)0.017 (2)0.022 (3)0.008 (3)0.012 (4)0.013 (3)
C150.025 (5)0.015 (2)0.012 (2)0.002 (2)0.001 (3)0.008 (2)
C50.020 (4)0.016 (2)0.010 (3)0.001 (3)0.000 (3)0.006 (3)
C90.036 (6)0.016 (2)0.012 (3)0.001 (3)0.005 (4)0.007 (2)
C160.020 (4)0.016 (2)0.011 (2)0.000 (3)0.001 (3)0.007 (2)
C140.028 (5)0.021 (2)0.021 (4)0.008 (3)0.014 (4)0.014 (3)
C30.028 (5)0.015 (3)0.012 (3)0.001 (3)0.005 (4)0.007 (3)
C130.034 (5)0.020 (3)0.021 (3)0.009 (3)0.013 (4)0.014 (3)
C60.045 (7)0.023 (3)0.011 (3)0.006 (4)0.006 (4)0.008 (3)
C10.027 (5)0.018 (2)0.013 (2)0.004 (3)0.006 (3)0.009 (2)
C80.033 (6)0.023 (3)0.012 (3)0.005 (4)0.005 (4)0.008 (3)
C100.024 (5)0.019 (3)0.021 (3)0.007 (3)0.011 (4)0.012 (3)
C70.059 (8)0.023 (3)0.012 (4)0.006 (4)0.010 (5)0.008 (3)
C170.040 (6)0.021 (2)0.021 (4)0.002 (3)0.007 (5)0.003 (3)
Geometric parameters (Å, º) top
C2—C151.386 (18)C9—C81.38 (2)
C2—C31.464 (15)C9—C101.416 (15)
C2—C11.49 (2)C14—H140.9300
O1—C171.240 (14)C14—C131.41 (2)
C4—H40.9300C14—C11.409 (14)
C4—C51.43 (2)C3—H30.9300
C4—C31.30 (2)C13—H130.9300
C12—C111.45 (2)C6—H60.9300
C12—C151.433 (15)C6—C71.36 (2)
C12—C131.33 (3)C1—C171.38 (2)
C11—H110.9300C8—H80.9300
C11—C101.35 (3)C8—C71.431 (17)
C15—C161.41 (2)C10—H100.9300
C5—C161.434 (15)C7—H70.9300
C5—C61.44 (2)C17—H170.9300
C9—C161.419 (19)
C15—C2—C3119.6 (14)C1—C14—C13120.4 (15)
C15—C2—C1118.1 (10)C2—C3—H3119.9
C3—C2—C1122.3 (12)C4—C3—C2120.2 (14)
C5—C4—H4118.2C4—C3—H3119.9
C3—C4—H4118.2C12—C13—C14122.1 (11)
C3—C4—C5123.5 (11)C12—C13—H13119.0
C15—C12—C11117.7 (15)C14—C13—H13119.0
C13—C12—C11122.0 (11)C5—C6—H6120.8
C13—C12—C15120.3 (15)C7—C6—C5118.3 (12)
C12—C11—H11118.8C7—C6—H6120.8
C10—C11—C12122.3 (10)C14—C1—C2117.8 (13)
C10—C11—H11118.8C17—C1—C2124.7 (10)
C2—C15—C12121.2 (15)C17—C1—C14117.4 (15)
C2—C15—C16118.9 (10)C9—C8—H8118.5
C16—C15—C12119.8 (13)C9—C8—C7122.9 (14)
C4—C5—C16116.3 (13)C7—C8—H8118.5
C4—C5—C6122.5 (10)C11—C10—C9119.6 (14)
C16—C5—C6121.2 (13)C11—C10—H10120.2
C8—C9—C16118.6 (11)C9—C10—H10120.2
C8—C9—C10120.8 (14)C6—C7—C8120.2 (15)
C10—C9—C16120.6 (15)C6—C7—H7119.9
C15—C16—C5121.3 (13)C8—C7—H7119.9
C15—C16—C9119.8 (10)O1—C17—C1134.6 (19)
C9—C16—C5118.6 (14)O1—C17—H17112.7
C13—C14—H14119.8C1—C17—H17112.7
C1—C14—H14119.8
(28kbar) top
Crystal data top
C17H10OV = 477.5 (3) Å3
Mr = 230.25Z = 2
Triclinic, P1F(000) = 240
a = 6.477 (2) ÅDx = 1.601 Mg m3
b = 8.041 (2) ÅSynchrotron radiation, λ = 0.4859 Å
c = 10.205 (3) ÅCell parameters from 460 reflections
α = 109.37 (3)°θ = 1.9–21.6°
β = 99.57 (3)°µ = 0.05 mm1
γ = 100.71 (3)°T = 293 K
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
2461 independent reflections
Radiation source: synchrotron1176 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.139
ω scansθmax = 22.6°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro 1.171.38.43c (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 99
Tmin = 0.074, Tmax = 1.000k = 1212
2461 measured reflectionsl = 1515
Refinement top
Refinement on F2162 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.169H-atom parameters constrained
wR(F2) = 0.434 w = 1/[σ2(Fo2) + (0.1308P)2 + 1.3113P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2461 reflectionsΔρmax = 0.88 e Å3
165 parametersΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4123 (13)1.0195 (7)0.8106 (7)0.051 (3)
C150.2386 (15)0.4739 (8)0.4567 (8)0.025 (2)
C20.2922 (15)0.6599 (8)0.5555 (9)0.024 (2)
C30.3270 (15)0.8004 (9)0.4982 (9)0.027 (2)
H30.3521280.9214790.5586940.032*
C140.2495 (17)0.5447 (10)0.7444 (10)0.038 (3)
H140.2476170.5678380.8397000.045*
C10.2971 (15)0.6893 (9)0.7015 (9)0.027 (2)
C120.1973 (13)0.3275 (9)0.5046 (9)0.0194 (17)
C90.1925 (15)0.2501 (10)0.2132 (9)0.027 (2)
C80.1963 (16)0.2154 (10)0.0695 (9)0.030 (3)
H80.1735630.0958180.0064980.036*
C50.2758 (16)0.5774 (9)0.2575 (9)0.029 (3)
C60.2769 (17)0.5366 (10)0.1135 (10)0.035 (3)
H60.3072390.6310260.0805070.042*
C70.2338 (17)0.3584 (11)0.0195 (9)0.034 (3)
H70.2296410.3330580.0767950.040*
C40.3241 (16)0.7606 (9)0.3577 (9)0.031 (3)
H40.3545450.8559180.3256300.037*
C160.2370 (15)0.4318 (9)0.3099 (9)0.025 (2)
C130.2043 (14)0.3656 (9)0.6500 (9)0.0214 (19)
H130.1787230.2706200.6829720.026*
C110.1480 (15)0.1434 (9)0.4033 (9)0.027 (2)
H110.1166430.0471360.4342290.032*
C170.3558 (17)0.8699 (9)0.8171 (9)0.038 (3)
H170.3490500.8700740.9074860.045*
C100.1461 (17)0.1070 (10)0.2636 (10)0.036 (3)
H100.1139700.0134190.2001660.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.091 (6)0.017 (2)0.036 (4)0.002 (3)0.029 (5)0.001 (2)
C150.039 (6)0.012 (3)0.022 (4)0.002 (3)0.012 (4)0.004 (2)
C20.035 (5)0.013 (3)0.024 (4)0.004 (3)0.011 (4)0.008 (2)
C30.038 (6)0.017 (3)0.026 (4)0.002 (3)0.011 (4)0.011 (3)
C140.058 (7)0.024 (3)0.031 (5)0.004 (4)0.023 (5)0.008 (3)
C10.040 (6)0.018 (3)0.027 (4)0.009 (3)0.019 (4)0.008 (2)
C120.018 (4)0.022 (2)0.021 (3)0.009 (2)0.000 (3)0.012 (2)
C90.034 (6)0.025 (3)0.024 (4)0.007 (3)0.008 (4)0.010 (3)
C80.045 (6)0.022 (3)0.025 (4)0.008 (3)0.015 (5)0.009 (3)
C50.046 (6)0.017 (3)0.026 (4)0.005 (3)0.018 (5)0.006 (2)
C60.053 (7)0.028 (4)0.026 (5)0.008 (4)0.011 (5)0.013 (3)
C70.055 (7)0.037 (4)0.009 (4)0.011 (4)0.004 (5)0.009 (3)
C40.050 (7)0.017 (3)0.030 (4)0.003 (3)0.021 (5)0.010 (3)
C160.037 (6)0.017 (3)0.022 (4)0.006 (3)0.010 (4)0.008 (2)
C130.029 (5)0.021 (3)0.024 (4)0.014 (3)0.003 (4)0.018 (3)
C110.043 (6)0.012 (3)0.035 (5)0.008 (3)0.015 (5)0.017 (3)
C170.068 (7)0.017 (3)0.029 (5)0.010 (3)0.028 (6)0.004 (3)
C100.065 (7)0.014 (3)0.031 (5)0.009 (3)0.022 (5)0.007 (3)
Geometric parameters (Å, º) top
O1—C171.218 (10)C9—C101.412 (13)
C15—C21.437 (8)C8—H80.9300
C15—C121.416 (12)C8—C71.402 (14)
C15—C161.420 (11)C5—C61.397 (12)
C2—C31.434 (12)C5—C41.427 (8)
C2—C11.423 (12)C5—C161.439 (13)
C3—H30.9300C6—H60.9300
C3—C41.358 (11)C6—C71.379 (10)
C14—H140.9300C7—H70.9300
C14—C11.374 (13)C4—H40.9300
C14—C131.385 (9)C13—H130.9300
C1—C171.468 (8)C11—H110.9300
C12—C131.403 (12)C11—C101.355 (12)
C12—C111.436 (8)C17—H170.9300
C9—C81.405 (12)C10—H100.9300
C9—C161.409 (8)
C12—C15—C2120.8 (7)C4—C5—C16118.2 (7)
C12—C15—C16118.1 (6)C5—C6—H6119.5
C16—C15—C2121.0 (7)C7—C6—C5121.0 (9)
C3—C2—C15117.5 (7)C7—C6—H6119.5
C1—C2—C15117.2 (7)C8—C7—H7120.1
C1—C2—C3125.3 (6)C6—C7—C8119.9 (8)
C2—C3—H3119.2C6—C7—H7120.1
C4—C3—C2121.5 (6)C3—C4—C5122.2 (8)
C4—C3—H3119.2C3—C4—H4118.9
C1—C14—H14119.0C5—C4—H4118.9
C1—C14—C13122.0 (7)C15—C16—C5119.4 (6)
C13—C14—H14119.0C9—C16—C15121.5 (8)
C2—C1—C17124.3 (7)C9—C16—C5119.1 (7)
C14—C1—C2120.8 (6)C14—C13—C12119.9 (8)
C14—C1—C17114.8 (7)C14—C13—H13120.1
C15—C12—C11119.3 (7)C12—C13—H13120.1
C13—C12—C15119.3 (6)C12—C11—H11119.3
C13—C12—C11121.4 (8)C10—C11—C12121.4 (8)
C8—C9—C16119.4 (8)C10—C11—H11119.3
C8—C9—C10121.6 (6)O1—C17—C1128.7 (8)
C16—C9—C10119.1 (7)O1—C17—H17115.7
C9—C8—H8119.5C1—C17—H17115.7
C7—C8—C9120.9 (6)C9—C10—H10119.7
C7—C8—H8119.5C11—C10—C9120.7 (6)
C6—C5—C4122.2 (8)C11—C10—H10119.7
C6—C5—C16119.5 (6)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds