Download citation
Download citation
link to html
The title compound, C25H29NO4, (II), was prepared by the reaction of (9S,13R,14S)-7,8-dide­hydro-3,7-di­methoxy-4-hydroxy-17-methyl­morphinan-6-one, (I), with phenyl­magnesium bromide. Compound (II) is a tetracyclic alkaloid with four chiral centers. The piperidine ring adopts a chair conformation, while the other two aliphatic rings are in twisted chair conformations. Compound (II) is the exclusive product, which means that, because of the steric effect, the phenyl anion stereoselectively attacks the opposite side away from the original phenyl group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005646/ww6063sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005646/ww6063Isup2.hkl
Contains datablock I

CCDC reference: 209963

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.044
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.03 From the CIF: _reflns_number_total 3861 Count of symmetry unique reflns 2201 Completeness (_total/calc) 175.42% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1660 Fraction of Friedel pairs measured 0.754 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.

Comment top

(9S,13R,14S)-7,8-Didehydro-3,7-dimethoxy-4-hydroxy-17-methylmorphinan-6-one, (I), is an important natural product which was used to ease pain, to decrease blood pressure and to diminish inflammation. In order to study the stereochemistry of the reaction of (I) with phenylmagnesium bromide, the crystal structure of the title compound, (II), was determined by X-ray diffraction methods.

The results show that (II) is a tetracyclic alkaloid with four chiral centers. By comparing the structure of (II) with that of (I) (Iijima et al., 1978; Hitotsuyanagi et al., 1994), the newly formed chiral center of (II) was shown to be 6R. The N17/C9/C14/C13/C15/C16 piperidine ring adopts a chair conformation, while the C9–C14 and C5–C8/C14/C13 aliphatic rings adopt twisted chair conformations. Compound (II) is the exclusive product obtained, which means that the phenyl anion stereoselectively attack the opposite side away from the original benzene moiety because of its steric effect. The stereoselectivity of the phenyl anion is greater than that of the hydride anion on (I) (Li et al., 2002).

The C—C bonds within the benzene rings have normal aromatic values. The two methoxy groups are coplanar with the related benzene plane or the ethene plane. The bonds O1—C3 and O4—C7 of 1.390 (5) and 1.374 (4) Å, respectively, are shorter than those of common C—O single bonds [O1—C19 and O4—C18 are 1.402 (8) and 1.410 (4) Å, respectively]. These facts indicate that there exists p-π conjugation between O1 and the benzene ring, as well as O4 and the C7C8 double bond.

The bond angle of 125.9 (4)° for O1—C3—C2 is larger than that of 113.6 (4)° for O1—C3—C4. It was assumed that this conformation will minimize the van der Waals interaction between the H atom on C2 and the C19 methyl group. The C18 methoxy group presents the same phenomenon. This kind of angle-opened arrangement of methoxy group was also found in r-1,c-2,t-3,t-4–1,3-bis(4-methoxyphenyl)-2,4-bis[2-(5- methylbenzoxazolyl)]cyclobutane (Zhang et al., 2001) and r-1,c-2,t-3,t-4–1,3-bis(4-methoxyphenyl)-2,4-bis[2-(5-phenyl-1,3,4- oxadiazolyl)]cyclobutane (Zheng et al., 2001).

Experimental top

Under N2 protection, a solution of 0.66 g (2 mmol) of (I) in 20 ml of anhydrous THF was added to 8 ml of PhMgBr (1.0 mol l−1 in THF, 8 mmol) solution and stirred at room temperature for 12 h. The reaction mixture was poured into 50 ml of 1.0 mol l−1 NH4Cl solution and extracted with CHCl3. After drying over anhydrous Na2SO4, the solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with 8:0.15:0.05 EtOAc/CH3OH/Et3N to give 0.56 g of (II). Yield: 70%, m.p.: 496–498 K, [α]25D = −41.3° (CHCl3), IR (KBr): 3200 (m, br), 2929 (s), 1657 (s), 1606 (m), 1485 (s), 1279 (s), 1206 (s), 1153 (m), 1057 (s, br), 853 (m), 802 (m), 731 (m) cm−1; 1H NMR (CDCl3) δ: 7.37–7.24 (5H, m), 6.76 (1H, d, 8 Hz), 6.59 (1H, d, 8 Hz), 6.30 (1H, br), 4.71 (1H, s), 3.85 (3H, s), 3.80–3.60 (3H, m), 3.38 (3H, s), 3.20–2.95 (4H, m), 2.40 (1H, s, br), 2.70 (3H, s, br); 2.01–1.95 (3H, m) p.p.m.; 13C NMR: 158.02, 147.22, 145.09, 144.44, 130.06, 127.90, 126.40, 125.03, 124.95, 118.69, 108.90, 97.62, 74.94, 57.97, 55.94, 54.52, 50.15, 47.93, 44.40, 42.20, 35.87, 35.61, 24.47 p.p.m.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecular structure of compound (II), with ellipsoids at the 30% probability level.
(6R,9S,13R,14S)-7,8-didehydro-3,7-dimethoxy- 17-methyl-6-phenylmorphinan-4,6-diol top
Crystal data top
C25H29NO4F(000) = 872
Mr = 407.49Dx = 1.232 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 782 reflections
a = 11.710 (4) Åθ = 2.5–22.6°
b = 13.177 (4) ŵ = 0.08 mm1
c = 14.236 (5) ÅT = 293 K
V = 2196.6 (13) Å3Prism, colorless
Z = 40.28 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3861 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 139
Tmin = 0.976, Tmax = 1.000k = 1515
9147 measured reflectionsl = 1516
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0417P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.044(Δ/σ)max = 0.001
wR(F2) = 0.106Δρmax = 0.16 e Å3
S = 0.96Δρmin = 0.14 e Å3
3861 reflectionsAbsolute structure: Flack (1983)
275 parametersAbsolute structure parameter: 0.00 (5)
83 restraints
Crystal data top
C25H29NO4V = 2196.6 (13) Å3
Mr = 407.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.710 (4) ŵ = 0.08 mm1
b = 13.177 (4) ÅT = 293 K
c = 14.236 (5) Å0.28 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3861 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2017 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 1.000Rint = 0.049
9147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.16 e Å3
S = 0.96Δρmin = 0.14 e Å3
3861 reflectionsAbsolute structure: Flack (1983)
275 parametersAbsolute structure parameter: 0.00 (5)
83 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3717 (2)0.0639 (2)0.8426 (2)0.0854 (9)
O20.22427 (19)0.08576 (19)0.98279 (18)0.0631 (7)
H20.29520.09010.99840.076*
O30.0416 (2)0.05640 (18)0.89809 (16)0.0593 (7)
H30.09220.01160.89200.071*
O40.1773 (2)0.05356 (19)0.82172 (17)0.0671 (8)
C10.1483 (4)0.2160 (3)0.7274 (3)0.0626 (11)
H1A0.13260.24750.67040.075*
C20.2492 (4)0.1642 (3)0.7382 (3)0.0693 (12)
H2A0.30010.15900.68830.083*
C30.2746 (3)0.1205 (3)0.8224 (3)0.0612 (11)
C40.1975 (3)0.1274 (3)0.8981 (3)0.0496 (9)
C50.0178 (3)0.0729 (2)1.0138 (2)0.0448 (9)
H5A0.07560.08131.06190.054*
H5B0.05260.05321.04490.054*
C60.0550 (3)0.0141 (3)0.9477 (2)0.0447 (9)
C70.1394 (3)0.0253 (3)0.8766 (2)0.0517 (10)
C80.1695 (3)0.1214 (3)0.8682 (3)0.0548 (10)
H8A0.22550.13820.82460.066*
C90.1084 (3)0.3043 (3)0.8713 (3)0.0542 (10)
H9A0.18570.32210.85060.065*
C100.0373 (3)0.2857 (3)0.7832 (3)0.0641 (11)
H10A0.08460.25170.73700.077*
H10B0.01490.35070.75710.077*
C110.0695 (3)0.2223 (3)0.7998 (3)0.0527 (10)
C120.0904 (3)0.1740 (3)0.8851 (2)0.0457 (9)
C130.0011 (3)0.1753 (3)0.9651 (2)0.0413 (8)
C140.1173 (3)0.2049 (2)0.9262 (3)0.0472 (9)
H14A0.16770.21690.98000.057*
C150.0344 (3)0.2595 (2)1.0353 (2)0.0498 (10)
H15A0.02060.26131.08630.060*
H15B0.10880.24461.06190.060*
C160.0378 (3)0.3625 (2)0.9871 (3)0.0571 (10)
H16A0.05190.41471.03360.069*
H16B0.10040.36360.94250.069*
N170.0700 (2)0.3855 (2)0.9371 (2)0.0548 (8)
C170.0633 (4)0.4851 (3)0.8911 (3)0.0793 (14)
H17A0.03790.53500.93560.119*
H17B0.13730.50360.86770.119*
H17C0.01020.48170.83980.119*
C180.2516 (4)0.0313 (4)0.7467 (3)0.0975 (17)
H18A0.27060.09280.71400.146*
H18B0.21490.01490.70410.146*
H18C0.32010.00070.77070.146*
C190.4514 (13)0.055 (2)0.7696 (10)0.101 (3)0.46 (3)
H19A0.49280.11780.76350.152*0.46 (3)
H19B0.41230.04080.71190.152*0.46 (3)
H19C0.50380.00120.78350.152*0.46 (3)
C19'0.4234 (14)0.0118 (17)0.7662 (8)0.101 (3)0.54 (3)
H19D0.39170.05520.76140.152*0.54 (3)
H19E0.50420.00710.77650.152*0.54 (3)
H19F0.40920.04830.70900.152*0.54 (3)
C200.1060 (3)0.1018 (3)1.0047 (3)0.0527 (9)
C210.2216 (4)0.1079 (3)1.0232 (3)0.0740 (12)
H21A0.26980.05681.00170.089*
C220.2670 (5)0.1881 (4)1.0727 (4)0.1029 (17)
H22A0.34500.19011.08490.124*
C230.1995 (7)0.2637 (4)1.1035 (4)0.117 (2)
H23A0.23130.31871.13510.140*
C240.0833 (6)0.2597 (4)1.0885 (4)0.1162 (19)
H24A0.03610.31041.11200.139*
C250.0365 (4)0.1779 (3)1.0371 (3)0.0830 (14)
H25A0.04150.17561.02520.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0539 (18)0.114 (2)0.089 (2)0.0108 (18)0.0150 (16)0.0243 (19)
O20.0401 (14)0.0801 (19)0.0692 (19)0.0019 (13)0.0025 (13)0.0092 (16)
O30.0634 (16)0.0525 (14)0.0621 (17)0.0011 (13)0.0172 (14)0.0089 (14)
O40.088 (2)0.0581 (17)0.0555 (17)0.0117 (15)0.0199 (15)0.0076 (15)
C10.075 (3)0.065 (3)0.047 (2)0.011 (2)0.009 (2)0.001 (2)
C20.067 (3)0.081 (3)0.060 (3)0.013 (3)0.021 (2)0.010 (3)
C30.043 (2)0.067 (3)0.073 (3)0.003 (2)0.012 (2)0.016 (2)
C40.045 (2)0.052 (2)0.052 (3)0.0075 (19)0.002 (2)0.004 (2)
C50.046 (2)0.047 (2)0.042 (2)0.0004 (17)0.0034 (17)0.0023 (19)
C60.047 (2)0.043 (2)0.044 (2)0.0019 (18)0.0052 (18)0.0010 (18)
C70.055 (3)0.053 (3)0.047 (2)0.009 (2)0.0022 (19)0.002 (2)
C80.052 (2)0.057 (3)0.056 (3)0.003 (2)0.0111 (19)0.007 (2)
C90.051 (2)0.047 (2)0.065 (3)0.0010 (19)0.001 (2)0.007 (2)
C100.072 (3)0.058 (3)0.062 (3)0.002 (2)0.002 (2)0.012 (2)
C110.057 (3)0.055 (2)0.046 (2)0.0063 (19)0.005 (2)0.001 (2)
C120.044 (2)0.046 (2)0.047 (2)0.0061 (18)0.0023 (17)0.003 (2)
C130.035 (2)0.044 (2)0.044 (2)0.0052 (16)0.0009 (16)0.0010 (18)
C140.039 (2)0.048 (2)0.055 (2)0.0012 (18)0.0010 (17)0.0049 (19)
C150.044 (2)0.050 (2)0.055 (2)0.0028 (18)0.0013 (18)0.003 (2)
C160.051 (2)0.049 (2)0.071 (3)0.0078 (18)0.001 (2)0.006 (2)
N170.050 (2)0.0397 (18)0.075 (2)0.0008 (15)0.0004 (17)0.0038 (17)
C170.083 (3)0.049 (2)0.106 (4)0.001 (2)0.010 (3)0.013 (3)
C180.089 (4)0.093 (4)0.110 (4)0.008 (3)0.044 (3)0.023 (3)
C190.087 (4)0.101 (5)0.115 (3)0.010 (3)0.022 (3)0.009 (3)
C19'0.087 (4)0.101 (5)0.115 (3)0.010 (3)0.022 (3)0.009 (3)
C200.065 (3)0.047 (2)0.046 (2)0.0085 (19)0.0001 (19)0.0022 (19)
C210.074 (3)0.078 (3)0.070 (3)0.009 (2)0.018 (2)0.007 (2)
C220.109 (4)0.109 (4)0.091 (4)0.045 (4)0.023 (3)0.009 (3)
C230.167 (6)0.077 (4)0.106 (5)0.039 (4)0.035 (4)0.009 (3)
C240.161 (5)0.072 (3)0.116 (4)0.006 (4)0.022 (4)0.032 (3)
C250.098 (3)0.061 (3)0.089 (4)0.003 (3)0.008 (3)0.021 (3)
Geometric parameters (Å, º) top
O1—C31.390 (5)C13—C141.543 (4)
O1—C191.402 (8)C13—C151.544 (4)
O1—C19'1.423 (8)C14—H14A0.9800
O2—C41.361 (4)C15—C161.521 (4)
O2—H20.8611C15—H15A0.9700
O3—C61.445 (4)C15—H15B0.9700
O3—H30.8405C16—N171.480 (4)
O4—C71.374 (4)C16—H16A0.9700
O4—C181.410 (4)C16—H16B0.9700
C1—C21.373 (5)N17—C171.468 (4)
C1—C111.385 (5)C17—H17A0.9600
C1—H1A0.9300C17—H17B0.9600
C2—C31.363 (5)C17—H17C0.9600
C2—H2A0.9300C18—H18A0.9600
C3—C41.409 (5)C18—H18B0.9600
C4—C121.409 (5)C18—H18C0.9600
C5—C131.533 (4)C19—H19A0.9600
C5—C61.546 (4)C19—H19B0.9600
C5—H5A0.9700C19—H19C0.9600
C5—H5B0.9700C19'—H19D0.9600
C6—C71.508 (5)C19'—H19E0.9600
C6—C201.533 (5)C19'—H19F0.9600
C7—C81.319 (5)C20—C251.371 (5)
C8—C141.505 (5)C20—C211.382 (5)
C8—H8A0.9300C21—C221.378 (6)
C9—N171.492 (4)C21—H21A0.9300
C9—C101.525 (5)C22—C231.345 (7)
C9—C141.529 (4)C22—H22A0.9300
C9—H9A0.9800C23—C241.378 (8)
C10—C111.522 (5)C23—H23A0.9300
C10—H10A0.9700C24—C251.414 (6)
C10—H10B0.9700C24—H24A0.9300
C11—C121.393 (4)C25—H25A0.9300
C12—C131.546 (4)
C3—O1—C19115.8 (6)C8—C14—H14A107.6
C3—O1—C19'116.7 (6)C9—C14—H14A107.6
C19—O1—C19'27.1 (8)C13—C14—H14A107.6
C4—O2—H2115.1C16—C15—C13110.8 (3)
C6—O3—H3109.3C16—C15—H15A109.5
C7—O4—C18118.2 (3)C13—C15—H15A109.5
C2—C1—C11121.3 (4)C16—C15—H15B109.5
C2—C1—H1A119.3C13—C15—H15B109.5
C11—C1—H1A119.3H15A—C15—H15B108.1
C3—C2—C1119.7 (4)N17—C16—C15112.2 (3)
C2—C3—O1125.9 (4)N17—C16—H16A109.2
C2—C3—C4120.4 (4)C15—C16—H16A109.2
O1—C3—C4113.6 (4)N17—C16—H16B109.2
O2—C4—C12119.8 (3)C15—C16—H16B109.2
O2—C4—C3120.3 (3)H16A—C16—H16B107.9
C12—C4—C3119.8 (4)C17—N17—C16110.6 (3)
C13—C5—C6114.7 (3)C17—N17—C9112.1 (3)
C13—C5—H5A108.6C16—N17—C9114.3 (3)
C6—C5—H5A108.6N17—C17—H17A109.5
C13—C5—H5B108.6N17—C17—H17B109.5
C6—C5—H5B108.6H17A—C17—H17B109.5
H5A—C5—H5B107.6N17—C17—H17C109.5
O3—C6—C7108.5 (3)H17A—C17—H17C109.5
O3—C6—C20105.9 (3)H17B—C17—H17C109.5
C7—C6—C20111.1 (3)O4—C18—H18A109.5
O3—C6—C5111.3 (3)O4—C18—H18B109.5
C7—C6—C5109.7 (3)H18A—C18—H18B109.5
C20—C6—C5110.3 (3)O4—C18—H18C109.5
C8—C7—O4126.0 (3)H18A—C18—H18C109.5
C8—C7—C6124.5 (3)H18B—C18—H18C109.5
O4—C7—C6109.4 (3)O1—C19—H19A109.5
C7—C8—C14122.9 (3)O1—C19—H19B109.5
C7—C8—H8A118.5H19A—C19—H19B109.5
C14—C8—H8A118.5O1—C19—H19C109.5
N17—C9—C10117.9 (3)H19A—C19—H19C109.5
N17—C9—C14108.3 (3)H19B—C19—H19C109.5
C10—C9—C14108.6 (3)O1—C19'—H19D109.5
N17—C9—H9A107.2O1—C19'—H19E109.5
C10—C9—H9A107.2H19D—C19'—H19E109.5
C14—C9—H9A107.2O1—C19'—H19F109.5
C11—C10—C9114.2 (3)H19D—C19'—H19F109.5
C11—C10—H10A108.7H19E—C19'—H19F109.5
C9—C10—H10A108.7C25—C20—C21118.3 (4)
C11—C10—H10B108.7C25—C20—C6119.9 (4)
C9—C10—H10B108.7C21—C20—C6121.8 (4)
H10A—C10—H10B107.6C22—C21—C20121.4 (5)
C1—C11—C12120.3 (4)C22—C21—H21A119.3
C1—C11—C10117.7 (3)C20—C21—H21A119.3
C12—C11—C10122.0 (3)C23—C22—C21120.5 (5)
C11—C12—C4118.1 (3)C23—C22—H22A119.7
C11—C12—C13121.2 (3)C21—C22—H22A119.7
C4—C12—C13120.7 (3)C22—C23—C24120.1 (5)
C5—C13—C14104.8 (2)C22—C23—H23A120.0
C5—C13—C15112.1 (3)C24—C23—H23A120.0
C14—C13—C15106.1 (3)C23—C24—C25119.5 (6)
C5—C13—C12114.9 (3)C23—C24—H24A120.2
C14—C13—C12110.3 (3)C25—C24—H24A120.2
C15—C13—C12108.3 (3)C20—C25—C24120.1 (5)
C8—C14—C9111.9 (3)C20—C25—H25A119.9
C8—C14—C13112.1 (3)C24—C25—H25A119.9
C9—C14—C13109.8 (3)
C11—C1—C2—C32.0 (6)C4—C12—C13—C547.2 (4)
C1—C2—C3—O1178.2 (4)C11—C12—C13—C1417.3 (4)
C1—C2—C3—C40.6 (6)C4—C12—C13—C14165.4 (3)
C19—O1—C3—C22.5 (15)C11—C12—C13—C1598.4 (3)
C19'—O1—C3—C227.8 (13)C4—C12—C13—C1579.0 (4)
C19—O1—C3—C4179.7 (14)C7—C8—C14—C9146.2 (4)
C19'—O1—C3—C4150.1 (12)C7—C8—C14—C1322.2 (5)
C2—C3—C4—O2178.4 (3)N17—C9—C14—C8172.9 (3)
O1—C3—C4—O23.6 (5)C10—C9—C14—C858.0 (4)
C2—C3—C4—C124.1 (5)N17—C9—C14—C1361.9 (3)
O1—C3—C4—C12173.9 (3)C10—C9—C14—C1367.2 (4)
C13—C5—C6—O380.0 (3)C5—C13—C14—C852.1 (4)
C13—C5—C6—C740.1 (4)C15—C13—C14—C8170.9 (3)
C13—C5—C6—C20162.8 (3)C12—C13—C14—C872.1 (3)
C18—O4—C7—C82.8 (6)C5—C13—C14—C9177.2 (3)
C18—O4—C7—C6176.0 (3)C15—C13—C14—C964.0 (3)
O3—C6—C7—C8117.0 (4)C12—C13—C14—C953.0 (4)
C20—C6—C7—C8127.0 (4)C5—C13—C15—C16172.8 (3)
C5—C6—C7—C84.8 (5)C14—C13—C15—C1659.0 (3)
O3—C6—C7—O461.8 (3)C12—C13—C15—C1659.4 (3)
C20—C6—C7—O454.2 (4)C13—C15—C16—N1753.7 (4)
C5—C6—C7—O4176.4 (3)C15—C16—N17—C17179.7 (3)
O4—C7—C8—C14175.1 (3)C15—C16—N17—C952.0 (4)
C6—C7—C8—C143.5 (6)C10—C9—N17—C1758.5 (4)
N17—C9—C10—C1179.8 (4)C14—C9—N17—C17177.8 (3)
C14—C9—C10—C1143.8 (4)C10—C9—N17—C1668.4 (4)
C2—C1—C11—C121.3 (6)C14—C9—N17—C1655.3 (4)
C2—C1—C11—C10177.0 (4)O3—C6—C20—C2530.6 (4)
C9—C10—C11—C1169.5 (3)C7—C6—C20—C25148.3 (3)
C9—C10—C11—C128.8 (5)C5—C6—C20—C2589.9 (4)
C1—C11—C12—C45.8 (5)O3—C6—C20—C21148.0 (3)
C10—C11—C12—C4172.4 (3)C7—C6—C20—C2130.4 (5)
C1—C11—C12—C13176.8 (3)C5—C6—C20—C2191.5 (4)
C10—C11—C12—C135.0 (5)C25—C20—C21—C220.1 (6)
O2—C4—C12—C11175.3 (3)C6—C20—C21—C22178.6 (4)
C3—C4—C12—C117.2 (5)C20—C21—C22—C230.8 (8)
O2—C4—C12—C132.1 (5)C21—C22—C23—C242.2 (9)
C3—C4—C12—C13175.4 (3)C22—C23—C24—C252.6 (9)
C6—C5—C13—C1463.6 (3)C21—C20—C25—C240.4 (6)
C6—C5—C13—C15178.2 (3)C6—C20—C25—C24179.1 (4)
C6—C5—C13—C1257.6 (4)C23—C24—C25—C201.7 (8)
C11—C12—C13—C5135.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.393.088 (4)141
O2—H2···N17i0.861.852.692 (4)164
Symmetry code: (i) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC25H29NO4
Mr407.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.710 (4), 13.177 (4), 14.236 (5)
V3)2196.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9147, 3861, 2017
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 0.96
No. of reflections3861
No. of parameters275
No. of restraints83
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14
Absolute structureFlack (1983)
Absolute structure parameter0.00 (5)

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C31.390 (5)C7—C81.319 (5)
O1—C191.402 (8)C8—C141.505 (5)
O2—C41.361 (4)C9—N171.492 (4)
O3—C61.445 (4)C10—C111.522 (5)
O4—C71.374 (4)C12—C131.546 (4)
O4—C181.410 (4)C16—N171.480 (4)
C6—C71.508 (5)N17—C171.468 (4)
C3—O1—C19115.8 (6)O3—C6—C5111.3 (3)
C3—O1—C19'116.7 (6)C8—C7—O4126.0 (3)
C7—O4—C18118.2 (3)O4—C7—C6109.4 (3)
C2—C3—O1125.9 (4)N17—C9—C10117.9 (3)
O1—C3—C4113.6 (4)N17—C9—C14108.3 (3)
O2—C4—C12119.8 (3)C15—C13—C12108.3 (3)
O2—C4—C3120.3 (3)C16—N17—C9114.3 (3)
O3—C6—C7108.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.393.088 (4)141
O2—H2···N17i0.861.852.692 (4)164
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds