Download citation
Download citation
link to html
Germanate compounds, CaMGeO4 with M2+ = Ca, Mg, Co and Mn, were synthesized as single crystals by slow cooling from the melt or by flux growth techniques. All the compositions investigated exhibit Pnma symmetry at 298 K and adopt the olivine structure. The M2 site is exclusively occupied by Ca2+, while on M1 both Ca2+ and M2+ cations are found. The amount of Ca2+ on M1 increases with the size of the M1 cation, with the smallest amount in the Mg compound (0.1 atoms per formula unit) and the largest in the Mn compound (0.20 atoms per formula unit), while in Ca2GeO4, also with olivine structure, both sites are completely filled with Ca2+. When compared with those of Ca silicate olivine, the lattice parameters a and c are distinctly larger in the analogous germanate compounds, while b has essentially the same values, regardless of the tetrahedral cation, meaning that b is independent of the tetrahedral cation. Structural variations on the octahedrally coordinated M1 site are largely determined by the size of the M1 cation, the average M1-O bond lengths being identical in Ca silicate and Ca germanate olivine. Increasing the size of the M1 cation induces an increasing polyhedral distortion, expressed by the parameters bond-length distortion, octahedral angle variance and octahedral quadratic elongation. However, the Ca germanate olivine compounds generally have more regular octahedra than the analogous silicates. The octahedrally coordinated M2 site does not exhibit large variations in structural parameters as a consequence of the constant chemical composition; the same is valid for the tetrahedral site.
Keywords: olivine; germanates.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108010434/ws5059sup1.cif
Contains datablocks global, Ca2Co_2, cfg_rot, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059Ca2Co_2sup2.hkl
Contains datablock ca2co_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059cfg_rotsup3.hkl
Contains datablock cfg_rot

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059cazn_bsup4.hkl
Contains datablock cazn_b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059camn_a5sup5.hkl
Contains datablock camn_a5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059camn_a2sup6.hkl
Contains datablock camn_a2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059camg_a1sup7.hkl
Contains datablock camg_a1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059caco_a2sup8.hkl
Contains datablock caco_a2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059caco_a1sup9.hkl
Contains datablock caco_a1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059ca2mn_1sup10.hkl
Contains datablock ca2mn_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059ca2mg_1sup11.hkl
Contains datablock ca2mg_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768108010434/ws5059ca2ge_1sup12.hkl
Contains datablock ca2ge_1

Comment top

# Insert blank lines between paragraphs ?

Computing details top

Data collection: Bruker SMART+ (Bruker, 2001) for Ca2Co_2, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1. Cell refinement: Bruker SAINT+ (Bruker, 2001) for Ca2Co_2, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1. Data reduction: Bruker SAINT+ (Bruker, 2001) for Ca2Co_2, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for Ca2Co_2, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: Diamonds 3.0 (Pennington,1999) for Ca2Co_2, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1. Software used to prepare material for publication: WinGX v1.70.01 (Farrugia 1999) for Ca2Co_2, cazn_b, camn_a5, camn_a2, camg_a1, caco_a2, caco_a1, ca2mn_1, ca2mg_1, ca2ge_1.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
Figure 1. View of (I) (50% probability displacement ellipsoids)
(Ca2Co_2) top
Crystal data top
Ca1.17Co0.83GeO4Dx = 4.188 Mg m3
Mr = 232.4Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1351 reflections
a = 11.3021 (7) Åθ = 3.6–28.7°
b = 6.4657 (4) ŵ = 13.40 mm1
c = 5.0435 (3) ÅT = 295 K
V = 368.56 (4) Å3Cuboid, pink
Z = 40.18 × 0.16 × 0.13 mm
F(000) = 439.2
Data collection top
SMART APEX
diffractometer
504 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.062
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 28.7°, θmin = 3.6°
Tmin = 0.10, Tmax = 0.18h = 1414
4087 measured reflectionsk = 88
507 independent reflectionsl = 66
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0368P)2 + 0.3685P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.070Δρmax = 0.98 e Å3
S = 1.36Δρmin = 1.68 e Å3
507 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 parametersExtinction coefficient: 0.066 (5)
Crystal data top
Ca1.17Co0.83GeO4V = 368.56 (4) Å3
Mr = 232.4Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3021 (7) ŵ = 13.40 mm1
b = 6.4657 (4) ÅT = 295 K
c = 5.0435 (3) Å0.18 × 0.16 × 0.13 mm
Data collection top
SMART APEX
diffractometer
507 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
504 reflections with I > 2σ(I)
Tmin = 0.10, Tmax = 0.18Rint = 0.062
4087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02945 parameters
wR(F2) = 0.0702 restraints
S = 1.36Δρmax = 0.98 e Å3
507 reflectionsΔρmin = 1.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41693 (4)0.250.07614 (9)0.0109 (2)
Co10.500.50.0108 (2)0.81
Ca10.500.50.0108 (2)0.19
Ca20.22504 (7)0.250.51158 (18)0.0115 (3)0.98
Co20.22504 (7)0.250.51158 (18)0.0115 (3)0.02
O10.4176 (3)0.250.2700 (7)0.0144 (6)
O20.5554 (3)0.250.2437 (7)0.0145 (6)
O30.34885 (18)0.0354 (3)0.2281 (5)0.0141 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0094 (3)0.0145 (3)0.0087 (3)00.00037 (14)0
Co10.0097 (4)0.0126 (4)0.0101 (4)0.0019 (2)0.0005 (2)0.0018 (2)
Ca10.0097 (4)0.0126 (4)0.0101 (4)0.0019 (2)0.0005 (2)0.0018 (2)
Ca20.0088 (4)0.0131 (4)0.0125 (5)00.0001 (3)0
Co20.0088 (4)0.0131 (4)0.0125 (5)00.0001 (3)0
O10.0131 (14)0.0231 (16)0.0070 (14)00.0007 (10)0
O20.0091 (12)0.0220 (15)0.0125 (14)00.0004 (11)0
O30.0140 (9)0.0135 (9)0.0147 (11)0.0023 (8)0.0016 (8)0.0003 (8)
Geometric parameters (Å, º) top
Ge1—O11.746 (4)Ca2—O3v2.301 (2)
Ge1—O3i1.762 (2)Ca2—O3vi2.301 (2)
Ge1—O31.762 (2)Ca2—O2vii2.310 (3)
Ge1—O21.778 (3)Ca2—O32.435 (2)
Co1—O2ii2.162 (2)Ca2—O3i2.435 (2)
Co1—O22.162 (2)Ca2—O1iii2.439 (3)
Co1—O1iii2.197 (2)Ca2—Ca1viii3.5033 (7)
Co1—O1iv2.197 (2)Ca2—Co1viii3.5033 (7)
Co1—O32.203 (2)Ca2—Ge1vii3.5104 (10)
Co1—O3ii2.203 (2)
O1—Ge1—O3i115.90 (9)O1iii—Co1—O3ii94.39 (10)
O1—Ge1—O3115.90 (9)O1iv—Co1—O3ii85.61 (10)
O3i—Ge1—O3103.91 (14)O3—Co1—O3ii180
O1—Ge1—O2118.13 (14)O3v—Ca2—O3vi106.62 (12)
O3i—Ge1—O2100.22 (9)O3v—Ca2—O2vii87.89 (7)
O3—Ge1—O2100.22 (9)O3vi—Ca2—O2vii87.89 (7)
O2ii—Co1—O2180O3v—Ca2—O391.73 (5)
O2ii—Co1—O1iii96.41 (9)O3vi—Ca2—O3160.79 (9)
O2—Co1—O1iii83.59 (9)O2vii—Ca2—O398.61 (9)
O2ii—Co1—O1iv83.59 (9)O3v—Ca2—O3i160.79 (9)
O2—Co1—O1iv96.41 (9)O3vi—Ca2—O3i91.73 (5)
O1iii—Co1—O1iv180O2vii—Ca2—O3i98.61 (9)
O2ii—Co1—O3103.02 (10)O3—Ca2—O3i69.50 (10)
O2—Co1—O376.98 (10)O3v—Ca2—O1iii96.29 (8)
O1iii—Co1—O385.61 (10)O3vi—Ca2—O1iii96.29 (8)
O1iv—Co1—O394.39 (10)O2vii—Ca2—O1iii172.97 (12)
O2ii—Co1—O3ii76.98 (10)O3—Ca2—O1iii75.67 (9)
O2—Co1—O3ii103.02 (10)O3i—Ca2—O1iii75.67 (9)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y, z+1/2; (viii) x+1, y+1/2, z+1.
(cfg_rot) top
Crystal data top
Ca2GeO4F(000) = 416
Mr = 216.75Dx = 3.556 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
a = 11.3919 (7) ŵ = 9.97 mm1
b = 6.7800 (4) ÅT = 293 K
c = 5.2424 (3) ÅCuboid, colourless
V = 404.91 (4) Å30.16 × 0.14 × 0.13 mm
Z = 4
Data collection top
4592 measured reflectionsθmax = 28.7°, θmin = 3.6°
551 independent reflectionsh = 1515
544 reflections with I > 2σ(I)k = 99
Rint = 0.057l = 77
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0136P)2 + 0.4447P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.042Δρmax = 0.83 e Å3
S = 1.25Δρmin = 0.39 e Å3
551 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
41 parametersExtinction coefficient: 0.063 (3)
Crystal data top
Ca2GeO4V = 404.91 (4) Å3
Mr = 216.75Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3919 (7) ŵ = 9.97 mm1
b = 6.7800 (4) ÅT = 293 K
c = 5.2424 (3) Å0.16 × 0.14 × 0.13 mm
Data collection top
4592 measured reflections544 reflections with I > 2σ(I)
551 independent reflectionsRint = 0.057
Refinement top
R[F2 > 2σ(F2)] = 0.01941 parameters
wR(F2) = 0.0420 restraints
S = 1.25Δρmax = 0.83 e Å3
551 reflectionsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.40390 (3)0.250.06928 (5)0.00632 (14)
Ca10.500.50.00852 (16)
Ca20.22011 (5)0.250.50770 (11)0.00785 (16)
O10.40739 (17)0.250.2630 (4)0.0090 (4)
O20.54566 (17)0.250.2119 (4)0.0084 (4)
O30.33625 (12)0.0447 (2)0.2146 (3)0.0093 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0064 (2)0.00650 (18)0.00606 (19)00.00010 (10)0
Ca10.0102 (3)0.0069 (3)0.0084 (3)0.0018 (2)0.0002 (2)0.00047 (19)
Ca20.0062 (3)0.0078 (3)0.0096 (3)00.0002 (2)0
O10.0120 (10)0.0092 (9)0.0059 (9)00.0002 (7)0
O20.0066 (9)0.0092 (9)0.0095 (9)00.0002 (7)0
O30.0093 (6)0.0083 (6)0.0102 (7)0.0017 (5)0.0004 (5)0.0003 (5)
Geometric parameters (Å, º) top
Ge1—O11.742 (2)Ca1—Ca1ii3.3900 (2)
Ge1—O31.7642 (14)Ca1—Ge1viii3.6025 (3)
Ge1—O3i1.7642 (14)Ca1—Ge1ix3.6025 (3)
Ge1—O21.780 (2)Ca2—O2xi2.297 (2)
Ge1—Ca1ii3.0282 (3)Ca2—O3xii2.3621 (15)
Ge1—Ca13.0282 (3)Ca2—O3xiii2.3621 (15)
Ge1—Ca23.1090 (6)Ca2—O1ix2.449 (2)
Ge1—Ca1iii3.6025 (3)Ca2—O3i2.4597 (15)
Ge1—Ca1iv3.6025 (3)Ca2—O32.4597 (15)
Ge1—Ca2iii3.6125 (7)Ca2—Ca1ii3.6112 (5)
Ge1—Ca2v3.6248 (7)Ca2—Ge1ix3.6125 (7)
Ge1—Ca2vi3.6868 (3)Ca2—Ge1xi3.6248 (7)
Ca1—O22.3293 (14)Ca2—Ge1xiii3.6868 (3)
Ca1—O2vii2.3293 (14)O1—Ca1iii2.3515 (14)
Ca1—O1viii2.3515 (14)O1—Ca1iv2.3515 (14)
Ca1—O1ix2.3515 (14)O1—Ca2iii2.449 (2)
Ca1—O3vii2.4105 (14)O2—Ca2v2.297 (2)
Ca1—O32.4105 (14)O2—Ca1ii2.3293 (14)
Ca1—Ge1vii3.0282 (3)O3—Ca2vi2.3621 (15)
Ca1—Ca1x3.3900 (2)
O1—Ge1—O3116.21 (6)Ge1—Ca1—Ca1ii55.963 (4)
O1—Ge1—O3i116.21 (6)Ge1vii—Ca1—Ca1ii124.037 (4)
O3—Ge1—O3i104.21 (9)Ca1x—Ca1—Ca1ii180
O1—Ge1—O2113.53 (9)O2—Ca1—Ge1viii74.77 (4)
O3—Ge1—O2102.42 (6)O2vii—Ca1—Ge1viii105.23 (4)
O3i—Ge1—O2102.42 (6)O1viii—Ca1—Ge1viii24.05 (5)
O1—Ge1—Ca1ii137.49 (4)O1ix—Ca1—Ge1viii155.95 (5)
O3—Ge1—Ca1ii106.12 (5)O3vii—Ca1—Ge1viii102.71 (3)
O3i—Ge1—Ca1ii52.72 (5)O3—Ca1—Ge1viii77.29 (3)
O2—Ge1—Ca1ii50.11 (4)Ge1—Ca1—Ge1viii75.848 (6)
O1—Ge1—Ca1137.49 (4)Ge1vii—Ca1—Ge1viii104.152 (6)
O3—Ge1—Ca152.72 (5)Ca1x—Ca1—Ge1viii61.933 (3)
O3i—Ge1—Ca1106.12 (5)Ca1ii—Ca1—Ge1viii118.067 (3)
O2—Ge1—Ca150.11 (4)O2—Ca1—Ge1ix105.23 (4)
Ca1ii—Ge1—Ca168.074 (7)O2vii—Ca1—Ge1ix74.77 (4)
O1—Ge1—Ca2138.98 (7)O1viii—Ca1—Ge1ix155.95 (5)
O3—Ge1—Ca252.17 (5)O1ix—Ca1—Ge1ix24.05 (5)
O3i—Ge1—Ca252.17 (5)O3vii—Ca1—Ge1ix77.29 (3)
O2—Ge1—Ca2107.49 (7)O3—Ca1—Ge1ix102.71 (3)
Ca1ii—Ge1—Ca272.074 (11)Ge1—Ca1—Ge1ix104.152 (6)
Ca1—Ge1—Ca272.074 (11)Ge1vii—Ca1—Ge1ix75.848 (6)
O1—Ge1—Ca1iii33.37 (3)Ca1x—Ca1—Ge1ix118.067 (3)
O3—Ge1—Ca1iii96.84 (5)Ca1ii—Ca1—Ge1ix61.933 (3)
O3i—Ge1—Ca1iii149.51 (5)Ge1viii—Ca1—Ge1ix180.000 (10)
O2—Ge1—Ca1iii94.14 (6)O2xi—Ca2—O3xii89.71 (5)
Ca1ii—Ge1—Ca1iii140.463 (10)O2xi—Ca2—O3xiii89.71 (5)
Ca1—Ge1—Ca1iii104.152 (6)O3xii—Ca2—O3xiii115.51 (8)
Ca2—Ge1—Ca1iii144.792 (9)O2xi—Ca2—O1ix179.32 (7)
O1—Ge1—Ca1iv33.37 (3)O3xii—Ca2—O1ix90.66 (5)
O3—Ge1—Ca1iv149.51 (5)O3xiii—Ca2—O1ix90.66 (5)
O3i—Ge1—Ca1iv96.84 (5)O2xi—Ca2—O3i98.76 (6)
O2—Ge1—Ca1iv94.14 (6)O3xii—Ca2—O3i87.38 (3)
Ca1ii—Ge1—Ca1iv104.152 (6)O3xiii—Ca2—O3i155.75 (6)
Ca1—Ge1—Ca1iv140.463 (10)O1ix—Ca2—O3i80.68 (5)
Ca2—Ge1—Ca1iv144.792 (9)O2xi—Ca2—O398.76 (6)
Ca1iii—Ge1—Ca1iv56.134 (6)O3xii—Ca2—O3155.75 (6)
O1—Ge1—Ca2iii36.73 (7)O3xiii—Ca2—O387.38 (3)
O3—Ge1—Ca2iii95.66 (5)O1ix—Ca2—O380.68 (5)
O3i—Ge1—Ca2iii95.66 (5)O3i—Ca2—O368.94 (7)
O2—Ge1—Ca2iii150.26 (7)O2xi—Ca2—Ge1102.25 (5)
Ca1ii—Ge1—Ca2iii144.804 (5)O3xii—Ca2—Ge1121.50 (4)
Ca1—Ge1—Ca2iii144.804 (5)O3xiii—Ca2—Ge1121.50 (4)
Ca2—Ge1—Ca2iii102.250 (18)O1ix—Ca2—Ge177.07 (5)
Ca1iii—Ge1—Ca2iii60.067 (9)O3i—Ca2—Ge134.50 (3)
Ca1iv—Ge1—Ca2iii60.067 (9)O3—Ca2—Ge134.50 (3)
O1—Ge1—Ca2v82.30 (7)O2xi—Ca2—Ca1ii139.33 (4)
O3—Ge1—Ca2v118.83 (5)O3xii—Ca2—Ca1ii81.27 (4)
O3i—Ge1—Ca2v118.83 (5)O3xiii—Ca2—Ca1ii129.95 (4)
O2—Ge1—Ca2v31.23 (7)O1ix—Ca2—Ca1ii40.21 (3)
Ca1ii—Ge1—Ca2v73.963 (9)O3i—Ca2—Ca1ii41.62 (3)
Ca1—Ge1—Ca2v73.963 (9)O3—Ca2—Ca1ii77.51 (4)
Ca2—Ge1—Ca2v138.723 (13)Ge1—Ca2—Ca1ii52.926 (10)
Ca1iii—Ge1—Ca2v66.782 (9)O2xi—Ca2—Ca1139.33 (4)
Ca1iv—Ge1—Ca2v66.782 (9)O3xii—Ca2—Ca1129.95 (4)
Ca2iii—Ge1—Ca2v119.027 (11)O3xiii—Ca2—Ca181.27 (4)
O1—Ge1—Ca2vi85.48 (3)O1ix—Ca2—Ca140.21 (3)
O3—Ge1—Ca2vi31.21 (5)O3i—Ca2—Ca177.51 (4)
O3i—Ge1—Ca2vi126.59 (5)O3—Ca2—Ca141.62 (3)
O2—Ge1—Ca2vi112.615 (11)Ge1—Ca2—Ca152.926 (9)
Ca1ii—Ge1—Ca2vi135.930 (12)Ca1ii—Ca2—Ca155.987 (9)
Ca1—Ge1—Ca2vi71.889 (9)O2xi—Ca2—Ge1ix155.50 (5)
Ca2—Ge1—Ca2vi78.853 (7)O3xii—Ca2—Ge1ix77.49 (4)
Ca1iii—Ge1—Ca2vi67.126 (9)O3xiii—Ca2—Ge1ix77.49 (4)
Ca1iv—Ge1—Ca2vi118.461 (11)O1ix—Ca2—Ge1ix25.18 (5)
Ca2iii—Ge1—Ca2vi72.937 (8)O3i—Ca2—Ge1ix101.39 (4)
Ca2v—Ge1—Ca2vi111.781 (9)O3—Ca2—Ge1ix101.39 (4)
O2—Ca1—O2vii180Ge1—Ca2—Ge1ix102.250 (18)
O2—Ca1—O1viii94.69 (5)Ca1ii—Ca2—Ge1ix59.828 (10)
O2vii—Ca1—O1viii85.31 (5)Ca1—Ca2—Ge1ix59.828 (10)
O2—Ca1—O1ix85.31 (5)O2xi—Ca2—Ge1xi23.69 (5)
O2vii—Ca1—O1ix94.69 (5)O3xii—Ca2—Ge1xi77.35 (4)
O1viii—Ca1—O1ix180.00 (12)O3xiii—Ca2—Ge1xi77.35 (4)
O2—Ca1—O3vii108.73 (6)O1ix—Ca2—Ge1xi156.99 (5)
O2vii—Ca1—O3vii71.27 (6)O3i—Ca2—Ge1xi117.71 (4)
O1viii—Ca1—O3vii83.70 (6)O3—Ca2—Ge1xi117.71 (4)
O1ix—Ca1—O3vii96.30 (6)Ge1—Ca2—Ge1xi125.939 (18)
O2—Ca1—O371.27 (6)Ca1ii—Ca2—Ge1xi151.187 (6)
O2vii—Ca1—O3108.73 (6)Ca1—Ca2—Ge1xi151.187 (6)
O1viii—Ca1—O396.30 (6)Ge1ix—Ca2—Ge1xi131.811 (17)
O1ix—Ca1—O383.70 (6)O2xi—Ca2—Ge1xiii73.279 (17)
O3vii—Ca1—O3180O3xii—Ca2—Ge1xiii129.30 (4)
O2—Ca1—Ge135.89 (5)O3xiii—Ca2—Ge1xiii22.77 (3)
O2vii—Ca1—Ge1144.11 (5)O1ix—Ca2—Ge1xiii106.910 (17)
O1viii—Ca1—Ge199.89 (5)O3i—Ca2—Ge1xiii141.38 (4)
O1ix—Ca1—Ge180.11 (5)O3—Ca2—Ge1xiii74.95 (3)
O3vii—Ca1—Ge1144.39 (3)Ge1—Ca2—Ge1xiii108.831 (11)
O3—Ca1—Ge135.61 (3)Ca1ii—Ca2—Ge1xiii140.435 (13)
O2—Ca1—Ge1vii144.11 (5)Ca1—Ca2—Ge1xiii84.705 (7)
O2vii—Ca1—Ge1vii35.89 (5)Ge1ix—Ca2—Ge1xiii98.670 (11)
O1viii—Ca1—Ge1vii80.11 (5)Ge1xi—Ca2—Ge1xiii68.219 (9)
O1ix—Ca1—Ge1vii99.89 (5)Ge1—O1—Ca1iii122.58 (6)
O3vii—Ca1—Ge1vii35.61 (3)Ge1—O1—Ca1iv122.58 (6)
O3—Ca1—Ge1vii144.39 (3)Ca1iii—O1—Ca1iv92.24 (7)
Ge1—Ca1—Ge1vii180Ge1—O1—Ca2iii118.09 (10)
O2—Ca1—Ca1x136.69 (4)Ca1iii—O1—Ca2iii97.56 (6)
O2vii—Ca1—Ca1x43.31 (4)Ca1iv—O1—Ca2iii97.56 (6)
O1viii—Ca1—Ca1x43.88 (4)Ge1—O2—Ca2v125.09 (10)
O1ix—Ca1—Ca1x136.12 (4)Ge1—O2—Ca1ii94.00 (7)
O3vii—Ca1—Ca1x82.78 (3)Ca2v—O2—Ca1ii121.22 (6)
O3—Ca1—Ca1x97.22 (3)Ge1—O2—Ca194.00 (7)
Ge1—Ca1—Ca1x124.037 (4)Ca2v—O2—Ca1121.22 (6)
Ge1vii—Ca1—Ca1x55.963 (4)Ca1ii—O2—Ca193.39 (7)
O2—Ca1—Ca1ii43.31 (4)Ge1—O3—Ca2vi126.01 (7)
O2vii—Ca1—Ca1ii136.69 (4)Ge1—O3—Ca191.67 (6)
O1viii—Ca1—Ca1ii136.12 (4)Ca2vi—O3—Ca1112.90 (6)
O1ix—Ca1—Ca1ii43.88 (4)Ge1—O3—Ca293.33 (6)
O3vii—Ca1—Ca1ii97.22 (3)Ca2vi—O3—Ca2128.27 (6)
O3—Ca1—Ca1ii82.78 (3)Ca1—O3—Ca295.71 (5)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x, y, z1; (iv) x+1, y+1/2, z; (v) x+1/2, y, z+1/2; (vi) x+1/2, y, z1/2; (vii) x+1, y, z+1; (viii) x+1, y, z; (ix) x, y, z+1; (x) x+1, y1/2, z+1; (xi) x1/2, y, z+1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y, z+1/2.
(cazn_b) top
Crystal data top
GeO4·1.99(Ca)Dx = 3.55 Mg m3
Mr = 216.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1351 reflections
a = 11.3919 (7) Åθ = 3.6–28.7°
b = 6.7800 (4) ŵ = 9.96 mm1
c = 5.2424 (3) ÅT = 295 K
V = 404.91 (4) Å3Cuboid, colourless
Z = 40.13 × 0.12 × 0.09 mm
F(000) = 415.2
Data collection top
SMART APEX
diffractometer
588 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.039
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 29.4°, θmin = 3.6°
Tmin = 0.29, Tmax = 0.42h = 1515
4870 measured reflectionsk = 99
595 independent reflectionsl = 77
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.019P)2 + 0.4001P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.044Δρmax = 0.69 e Å3
S = 1.24Δρmin = 0.45 e Å3
595 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
41 parametersExtinction coefficient: 0.0145 (14)
Crystal data top
GeO4·1.99(Ca)V = 404.91 (4) Å3
Mr = 216.37Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3919 (7) ŵ = 9.96 mm1
b = 6.7800 (4) ÅT = 295 K
c = 5.2424 (3) Å0.13 × 0.12 × 0.09 mm
Data collection top
SMART APEX
diffractometer
595 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
588 reflections with I > 2σ(I)
Tmin = 0.29, Tmax = 0.42Rint = 0.039
4870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01841 parameters
wR(F2) = 0.0440 restraints
S = 1.24Δρmax = 0.69 e Å3
595 reflectionsΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.40389 (2)0.250.06933 (5)0.00810 (12)
Ca10.500.50.01047 (15)
Ca20.22012 (5)0.250.50770 (11)0.00935 (15)0.99
O10.40727 (17)0.250.2635 (4)0.0109 (4)
O20.54569 (16)0.250.2118 (4)0.0101 (4)
O30.33646 (12)0.0446 (2)0.2145 (3)0.0112 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.00906 (17)0.00883 (17)0.00643 (17)00.00004 (10)0
Ca10.0132 (3)0.0092 (3)0.0091 (3)0.0019 (2)0.00049 (19)0.0006 (2)
Ca20.0089 (3)0.0096 (3)0.0095 (3)00.00007 (19)0
O10.0132 (9)0.0134 (9)0.0061 (9)00.0001 (7)0
O20.0082 (9)0.0125 (9)0.0097 (9)00.0008 (7)0
O30.0127 (6)0.0101 (6)0.0108 (6)0.0019 (5)0.0004 (5)0.0006 (5)
Geometric parameters (Å, º) top
Ge1—O11.745 (2)Ca1—O3ii2.4088 (14)
Ge1—O3i1.7634 (14)Ca1—O32.4088 (14)
Ge1—O31.7634 (14)Ca2—O2v2.296 (2)
Ge1—O21.7796 (19)Ca2—O3vi2.3621 (15)
Ca1—O2ii2.3297 (14)Ca2—O3vii2.3621 (15)
Ca1—O22.3297 (14)Ca2—O1iv2.446 (2)
Ca1—O1iii2.3509 (14)Ca2—O3i2.4615 (15)
Ca1—O1iv2.3509 (14)Ca2—O32.4615 (15)
O1—Ge1—O3i116.17 (6)O1iii—Ca1—O396.33 (6)
O1—Ge1—O3116.17 (6)O1iv—Ca1—O383.67 (6)
O3i—Ge1—O3104.35 (9)O3ii—Ca1—O3180
O1—Ge1—O2113.54 (9)O2v—Ca2—O3vi89.65 (5)
O3i—Ge1—O2102.38 (6)O2v—Ca2—O3vii89.65 (5)
O3—Ge1—O2102.38 (6)O3vi—Ca2—O3vii115.45 (7)
O2ii—Ca1—O2180O2v—Ca2—O1iv179.30 (7)
O2ii—Ca1—O1iii85.29 (5)O3vi—Ca2—O1iv90.73 (4)
O2—Ca1—O1iii94.71 (5)O3vii—Ca2—O1iv90.73 (4)
O2ii—Ca1—O1iv94.71 (5)O2v—Ca2—O3i98.81 (6)
O2—Ca1—O1iv85.29 (5)O3vi—Ca2—O3i87.43 (3)
O1iii—Ca1—O1iv180.00 (8)O3vii—Ca2—O3i155.78 (6)
O2ii—Ca1—O3ii71.25 (6)O1iv—Ca2—O3i80.62 (5)
O2—Ca1—O3ii108.75 (6)O2v—Ca2—O398.81 (6)
O1iii—Ca1—O3ii83.67 (6)O3vi—Ca2—O3155.78 (6)
O1iv—Ca1—O3ii96.33 (6)O3vii—Ca2—O387.43 (3)
O2ii—Ca1—O3108.75 (6)O1iv—Ca2—O380.62 (5)
O2—Ca1—O371.25 (6)O3i—Ca2—O368.93 (7)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2.
(camn_a5) top
Crystal data top
Ca1.14GeMn0.86O4Dx = 4.018 Mg m3
Mr = 229.6Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1351 reflections
a = 11.3260 (7) Åθ = 3.6–28.7°
b = 6.5604 (4) ŵ = 12.21 mm1
c = 5.1069 (3) ÅT = 295 K
V = 379.46 (4) Å3Cuboid, brown
Z = 40.17 × 0.15 × 0.14 mm
F(000) = 433.2
Data collection top
SMART APEX
diffractometer
551 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.063
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 29.5°, θmin = 3.6°
Tmin = 0.15, Tmax = 0.18h = 1515
4621 measured reflectionsk = 98
558 independent reflectionsl = 76
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0324P)2 + 0.2826P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max < 0.001
wR(F2) = 0.058Δρmax = 0.68 e Å3
S = 1.16Δρmin = 0.67 e Å3
558 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 parametersExtinction coefficient: 0.0099 (15)
Crystal data top
Ca1.14GeMn0.86O4V = 379.46 (4) Å3
Mr = 229.6Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3260 (7) ŵ = 12.21 mm1
b = 6.5604 (4) ÅT = 295 K
c = 5.1069 (3) Å0.17 × 0.15 × 0.14 mm
Data collection top
SMART APEX
diffractometer
558 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
551 reflections with I > 2σ(I)
Tmin = 0.15, Tmax = 0.18Rint = 0.063
4621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02345 parameters
wR(F2) = 0.0582 restraints
S = 1.16Δρmax = 0.68 e Å3
558 reflectionsΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41128 (3)0.250.07481 (7)0.00950 (16)
Mn10.500.50.01158 (18)0.8
Ca10.500.50.01158 (18)0.2
Ca20.22287 (6)0.250.51094 (14)0.01073 (19)0.94
Mn20.22287 (6)0.250.51094 (14)0.01073 (19)0.06
O10.4130 (2)0.250.2661 (5)0.0130 (5)
O20.5512 (2)0.250.2316 (5)0.0131 (5)
O30.34395 (14)0.0384 (3)0.2242 (3)0.0128 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0098 (2)0.0105 (2)0.0082 (2)00.00012 (11)0
Mn10.0131 (3)0.0109 (3)0.0107 (3)0.00223 (19)0.0003 (2)0.00163 (19)
Ca10.0131 (3)0.0109 (3)0.0107 (3)0.00223 (19)0.0003 (2)0.00163 (19)
Ca20.0097 (3)0.0105 (3)0.0121 (3)00.0007 (2)0
Mn20.0097 (3)0.0105 (3)0.0121 (3)00.0007 (2)0
O10.0156 (12)0.0172 (12)0.0063 (11)00.0005 (8)0
O20.0101 (10)0.0165 (12)0.0126 (12)00.0005 (9)0
O30.0140 (8)0.0117 (8)0.0127 (9)0.0020 (6)0.0017 (7)0.0003 (6)
Geometric parameters (Å, º) top
Ge1—O11.741 (3)Mn1—O32.2740 (17)
Ge1—O3i1.7582 (17)Ca2—O2v2.305 (3)
Ge1—O31.7582 (17)Ca2—O3vi2.3104 (18)
Ge1—O21.776 (2)Ca2—O3vii2.3104 (18)
Mn1—O2ii2.2148 (17)Ca2—O1iii2.436 (3)
Mn1—O22.2148 (17)Ca2—O32.4397 (18)
Mn1—O1iii2.2553 (18)Ca2—O3i2.4397 (18)
Mn1—O1iv2.2553 (18)Ca2—Ca1viii3.5419 (6)
Mn1—O3ii2.2740 (17)
O1—Ge1—O3i116.03 (7)O1iii—Mn1—O384.73 (8)
O1—Ge1—O3116.03 (7)O1iv—Mn1—O395.27 (8)
O3i—Ge1—O3104.31 (11)O3ii—Mn1—O3180
O1—Ge1—O2116.14 (11)O2v—Ca2—O3vi88.68 (6)
O3i—Ge1—O2101.04 (7)O2v—Ca2—O3vii88.68 (6)
O3—Ge1—O2101.04 (7)O3vi—Ca2—O3vii109.93 (9)
O2ii—Mn1—O2180O2v—Ca2—O1iii175.36 (9)
O2ii—Mn1—O1iii95.53 (7)O3vi—Ca2—O1iii93.97 (6)
O2—Mn1—O1iii84.47 (7)O3vii—Ca2—O1iii93.97 (6)
O2ii—Mn1—O1iv84.47 (7)O2v—Ca2—O398.72 (7)
O2—Mn1—O1iv95.53 (7)O3vi—Ca2—O3158.91 (7)
O1iii—Mn1—O1iv180O3vii—Ca2—O390.06 (4)
O2ii—Mn1—O3ii74.83 (8)O1iii—Ca2—O377.50 (7)
O2—Mn1—O3ii105.17 (8)O2v—Ca2—O3i98.72 (7)
O1iii—Mn1—O3ii95.27 (8)O3vi—Ca2—O3i90.06 (4)
O1iv—Mn1—O3ii84.73 (8)O3vii—Ca2—O3i158.91 (7)
O2ii—Mn1—O3105.17 (8)O1iii—Ca2—O3i77.50 (7)
O2—Mn1—O374.83 (8)O3—Ca2—O3i69.37 (8)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1, y+1/2, z+1.
(camn_a2) top
Crystal data top
Ca1.17GeMn0.83O4Dx = 4.007 Mg m3
Mr = 229.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1351 reflections
a = 11.3256 (7) Åθ = 3.6–28.7°
b = 6.5643 (4) ŵ = 12.14 mm1
c = 5.1098 (3) ÅT = 295 K
V = 379.89 (4) Å3Cuboid, brown
Z = 40.18 × 0.15 × 0.14 mm
F(000) = 432.6
Data collection top
SMART APEX
diffractometer
548 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.058
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 29.5°, θmin = 3.6°
Tmin = 0.23, Tmax = 0.34h = 1515
4624 measured reflectionsk = 88
555 independent reflectionsl = 77
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0218P)2 + 0.2627P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.050Δρmax = 0.8 e Å3
S = 1.22Δρmin = 0.65 e Å3
555 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 parametersExtinction coefficient: 0.0288 (18)
Crystal data top
Ca1.17GeMn0.83O4V = 379.89 (4) Å3
Mr = 229.16Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3256 (7) ŵ = 12.14 mm1
b = 6.5643 (4) ÅT = 295 K
c = 5.1098 (3) Å0.18 × 0.15 × 0.14 mm
Data collection top
SMART APEX
diffractometer
555 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
548 reflections with I > 2σ(I)
Tmin = 0.23, Tmax = 0.34Rint = 0.058
4624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02145 parameters
wR(F2) = 0.0502 restraints
S = 1.22Δρmax = 0.8 e Å3
555 reflectionsΔρmin = 0.65 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41100 (3)0.250.07458 (6)0.00812 (15)
Mn10.500.50.01045 (17)0.8
Ca10.500.50.01045 (17)0.2
Ca20.22281 (6)0.250.51088 (13)0.00887 (17)0.97
Mn20.22281 (6)0.250.51088 (13)0.00887 (17)0.03
O10.4126 (2)0.250.2649 (5)0.0116 (5)
O20.5510 (2)0.250.2311 (5)0.0117 (5)
O30.34371 (14)0.0381 (3)0.2243 (3)0.0112 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0071 (2)0.0100 (2)0.0073 (2)00.00024 (11)0
Mn10.0109 (3)0.0105 (3)0.0099 (3)0.0025 (2)0.00007 (19)0.00141 (18)
Ca10.0109 (3)0.0105 (3)0.0099 (3)0.0025 (2)0.00007 (19)0.00141 (18)
Ca20.0061 (3)0.0096 (3)0.0109 (3)00.0008 (2)0
Mn20.0061 (3)0.0096 (3)0.0109 (3)00.0008 (2)0
O10.0116 (11)0.0174 (12)0.0059 (10)00.0006 (8)0
O20.0077 (11)0.0149 (12)0.0126 (11)00.0003 (9)0
O30.0109 (8)0.0112 (8)0.0115 (8)0.0020 (6)0.0007 (6)0.0006 (6)
Geometric parameters (Å, º) top
Ge1—O11.735 (3)Mn1—O3ii2.2760 (16)
Ge1—O31.7611 (17)Mn1—O32.2760 (16)
Ge1—O3i1.7611 (17)Ca2—O2v2.305 (2)
Ge1—O21.776 (2)Ca2—O3vi2.3094 (17)
Mn1—O22.2169 (16)Ca2—O3vii2.3094 (17)
Mn1—O2ii2.2169 (16)Ca2—O1iv2.436 (2)
Mn1—O1iii2.2617 (17)Ca2—O32.4401 (17)
Mn1—O1iv2.2617 (17)Ca2—O3i2.4401 (17)
O1—Ge1—O3116.04 (6)O1iii—Mn1—O395.24 (7)
O1—Ge1—O3i116.04 (6)O1iv—Mn1—O384.76 (7)
O3—Ge1—O3i104.36 (11)O3ii—Mn1—O3180
O1—Ge1—O2116.16 (11)O2v—Ca2—O3vi88.74 (6)
O3—Ge1—O2100.99 (7)O2v—Ca2—O3vii88.74 (6)
O3i—Ge1—O2100.99 (7)O3vi—Ca2—O3vii109.94 (9)
O2—Mn1—O2ii180.00 (11)O2v—Ca2—O1iv175.61 (9)
O2—Mn1—O1iii95.39 (7)O3vi—Ca2—O1iv93.77 (5)
O2ii—Mn1—O1iii84.61 (7)O3vii—Ca2—O1iv93.77 (5)
O2—Mn1—O1iv84.61 (7)O2v—Ca2—O398.72 (7)
O2ii—Mn1—O1iv95.39 (7)O3vi—Ca2—O3158.96 (7)
O1iii—Mn1—O1iv180.00 (10)O3vii—Ca2—O389.98 (4)
O2—Mn1—O3ii105.19 (7)O1iv—Ca2—O377.70 (6)
O2ii—Mn1—O3ii74.81 (7)O2v—Ca2—O3i98.72 (7)
O1iii—Mn1—O3ii84.76 (7)O3vi—Ca2—O3i89.98 (4)
O1iv—Mn1—O3ii95.24 (7)O3vii—Ca2—O3i158.96 (7)
O2—Mn1—O374.81 (7)O1iv—Ca2—O3i77.70 (6)
O2ii—Mn1—O3105.19 (7)O3—Ca2—O3i69.52 (8)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2.
(camg_a1) top
Crystal data top
Ca1.16GeMg0.83O4Dx = 3.7 Mg m3
Mr = 203.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 3945 reflections
a = 11.2916 (7) Åθ = 3.6–28.7°
b = 6.4405 (4) ŵ = 10.01 mm1
c = 5.0251 (3) ÅT = 295 K
V = 365.44 (4) Å3Cuboid, colourless
Z = 40.07 × 0.05 × 0.04 mm
F(000) = 389.1
Data collection top
SMART APEX
diffractometer
536 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.036
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 29.7°, θmin = 3.6°
Tmin = 0.55, Tmax = 0.67h = 1515
4411 measured reflectionsk = 88
542 independent reflectionsl = 67
Refinement top
Refinement on F243 parameters
Least-squares matrix: full1 restraint
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.4844P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.77 e Å3
542 reflectionsΔρmin = 0.61 e Å3
Crystal data top
Ca1.16GeMg0.83O4V = 365.44 (4) Å3
Mr = 203.52Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.2916 (7) ŵ = 10.01 mm1
b = 6.4405 (4) ÅT = 295 K
c = 5.0251 (3) Å0.07 × 0.05 × 0.04 mm
Data collection top
SMART APEX
diffractometer
542 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
536 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.67Rint = 0.036
4411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02243 parameters
wR(F2) = 0.0511 restraint
S = 1.22Δρmax = 0.77 e Å3
542 reflectionsΔρmin = 0.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41683 (3)0.250.07827 (7)0.01143 (15)
Mg10.500.50.0119 (2)0.84
Ca10.500.50.0119 (2)0.16
Ca20.22417 (6)0.250.51236 (14)0.01142 (18)
O10.4184 (2)0.250.2679 (5)0.0155 (5)
O20.5548 (2)0.250.2480 (5)0.0151 (5)
O30.34974 (14)0.0350 (3)0.2315 (3)0.0146 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0114 (2)0.0139 (2)0.0090 (2)00.00049 (12)0
Mg10.0131 (5)0.0123 (5)0.0103 (5)0.0022 (4)0.0006 (4)0.0019 (4)
Ca10.0131 (5)0.0123 (5)0.0103 (5)0.0022 (4)0.0006 (4)0.0019 (4)
Ca20.0101 (3)0.0124 (3)0.0118 (3)00.0005 (2)0
O10.0173 (12)0.0220 (13)0.0073 (11)00.0000 (9)0
O20.0092 (10)0.0209 (13)0.0152 (11)00.0005 (9)0
O30.0153 (8)0.0139 (8)0.0145 (8)0.0023 (7)0.0022 (7)0.0016 (7)
Geometric parameters (Å, º) top
Ge1—O11.740 (3)Mg1—O1iii2.1914 (17)
Ge1—O3i1.7563 (18)Mg1—O1iv2.1914 (17)
Ge1—O31.7563 (18)Ca2—O3v2.2975 (18)
Ge1—O21.776 (2)Ca2—O3vi2.2975 (18)
Mg1—O2ii2.1399 (17)Ca2—O2vii2.317 (2)
Mg1—O22.1399 (17)Ca2—O32.4330 (18)
Mg1—O3ii2.1793 (17)Ca2—O3i2.4330 (18)
Mg1—O32.1793 (17)Ca2—O1iii2.455 (2)
O1—Ge1—O3i116.28 (7)O3ii—Mg1—O1iv85.75 (8)
O1—Ge1—O3116.28 (7)O3—Mg1—O1iv94.25 (8)
O3i—Ge1—O3104.09 (11)O1iii—Mg1—O1iv180
O1—Ge1—O2118.13 (11)O3v—Ca2—O3vi106.05 (9)
O3i—Ge1—O299.66 (7)O3v—Ca2—O2vii88.33 (6)
O3—Ge1—O299.66 (7)O3vi—Ca2—O2vii88.33 (6)
O2ii—Mg1—O2180O3v—Ca2—O3160.82 (7)
O2ii—Mg1—O3ii77.35 (8)O3vi—Ca2—O392.01 (4)
O2—Mg1—O3ii102.65 (8)O2vii—Ca2—O398.83 (7)
O2ii—Mg1—O3102.65 (8)O3v—Ca2—O3i92.01 (4)
O2—Mg1—O377.35 (8)O3vi—Ca2—O3i160.82 (7)
O3ii—Mg1—O3180O2vii—Ca2—O3i98.83 (7)
O2ii—Mg1—O1iii96.68 (7)O3—Ca2—O3i69.39 (8)
O2—Mg1—O1iii83.32 (7)O3v—Ca2—O1iii96.25 (6)
O3ii—Mg1—O1iii94.25 (8)O3vi—Ca2—O1iii96.25 (6)
O3—Mg1—O1iii85.75 (8)O2vii—Ca2—O1iii172.35 (9)
O2ii—Mg1—O1iv83.32 (7)O3—Ca2—O1iii74.95 (6)
O2—Mg1—O1iv96.68 (7)O3i—Ca2—O1iii74.95 (6)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x1, y, z; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y, z+1/2; (vii) x+1/2, y, z+1/2.
(caco_a2) top
Crystal data top
Ca1.11Co0.89GeO4Dx = 4.247 Mg m3
Mr = 233.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 3980 reflections
a = 11.2923 (7) Åθ = 3.6–28.7°
b = 6.4369 (4) ŵ = 13.70 mm1
c = 5.0246 (3) ÅT = 295 K
V = 365.23 (4) Å3Cuboid, pink
Z = 40.14 × 0.14 × 0.10 mm
F(000) = 440.9
Data collection top
SMART APEX
diffractometer
516 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.038
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 29.6°, θmin = 3.6°
Tmin = 0.13, Tmax = 0.25h = 1515
4343 measured reflectionsk = 88
530 independent reflectionsl = 66
Refinement top
Refinement on F243 parameters
Least-squares matrix: full1 restraint
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.026P)2 + 0.2316P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.70 e Å3
530 reflectionsΔρmin = 0.62 e Å3
Crystal data top
Ca1.11Co0.89GeO4V = 365.23 (4) Å3
Mr = 233.55Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.2923 (7) ŵ = 13.70 mm1
b = 6.4369 (4) ÅT = 295 K
c = 5.0246 (3) Å0.14 × 0.14 × 0.10 mm
Data collection top
SMART APEX
diffractometer
530 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
516 reflections with I > 2σ(I)
Tmin = 0.13, Tmax = 0.25Rint = 0.038
4343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02043 parameters
wR(F2) = 0.0471 restraint
S = 1.15Δρmax = 0.70 e Å3
530 reflectionsΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41832 (3)0.250.07672 (7)0.01088 (14)
Co10.500.50.01129 (15)0.89
Ca10.500.50.01129 (15)0.11
Ca20.22571 (6)0.250.51182 (13)0.01147 (17)
O10.41872 (19)0.250.2705 (5)0.0145 (5)
O20.55598 (19)0.250.2472 (5)0.0141 (5)
O30.35015 (14)0.0347 (3)0.2283 (3)0.0140 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0120 (2)0.0120 (2)0.0087 (2)00.00003 (11)0
Co10.0125 (2)0.0114 (2)0.0099 (3)0.00141 (16)0.00046 (16)0.00137 (16)
Ca10.0125 (2)0.0114 (2)0.0099 (3)0.00141 (16)0.00046 (16)0.00137 (16)
Ca20.0109 (3)0.0114 (3)0.0121 (3)00.0003 (2)0
O10.0164 (11)0.0185 (12)0.0085 (11)00.0008 (8)0
O20.0115 (10)0.0180 (12)0.0128 (11)00.0003 (9)0
O30.0157 (8)0.0124 (8)0.0138 (8)0.0022 (6)0.0010 (6)0.0003 (6)
Geometric parameters (Å, º) top
Ge1—O11.745 (3)Co1—O32.1857 (16)
Ge1—O3i1.7589 (17)Co1—O3ii2.1857 (16)
Ge1—O31.7589 (17)Ca2—O3v2.2965 (17)
Ge1—O21.775 (2)Ca2—O3vi2.2965 (17)
Co1—O2ii2.1453 (16)Ca2—O2vii2.317 (2)
Co1—O22.1453 (16)Ca2—O32.4344 (18)
Co1—O1iii2.1822 (16)Ca2—O3i2.4344 (18)
Co1—O1iv2.1822 (16)Ca2—O1iii2.439 (2)
O1—Ge1—O3i115.72 (7)O1iii—Co1—O3ii94.06 (7)
O1—Ge1—O3115.72 (7)O1iv—Co1—O3ii85.94 (7)
O3i—Ge1—O3104.02 (11)O3—Co1—O3ii180.00 (5)
O1—Ge1—O2118.71 (10)O3v—Ca2—O3vi105.85 (9)
O3i—Ge1—O2100.04 (7)O3v—Ca2—O2vii87.56 (6)
O3—Ge1—O2100.04 (7)O3vi—Ca2—O2vii87.56 (6)
O2ii—Co1—O2180O3v—Ca2—O3161.23 (7)
O2ii—Co1—O1iii96.68 (7)O3vi—Ca2—O392.19 (4)
O2—Co1—O1iii83.32 (7)O2vii—Ca2—O398.56 (7)
O2ii—Co1—O1iv83.32 (7)O3v—Ca2—O3i92.19 (4)
O2—Co1—O1iv96.68 (7)O3vi—Ca2—O3i161.23 (7)
O1iii—Co1—O1iv180.00 (10)O2vii—Ca2—O3i98.56 (7)
O2ii—Co1—O3102.61 (8)O3—Ca2—O3i69.42 (8)
O2—Co1—O377.39 (8)O3v—Ca2—O1iii96.95 (6)
O1iii—Co1—O385.94 (8)O3vi—Ca2—O1iii96.95 (6)
O1iv—Co1—O394.06 (7)O2vii—Ca2—O1iii172.47 (9)
O2ii—Co1—O3ii77.39 (8)O3—Ca2—O1iii75.32 (6)
O2—Co1—O3ii102.61 (8)O3i—Ca2—O1iii75.32 (6)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x1, y, z; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y, z+1/2; (vii) x+1/2, y, z+1/2.
(caco_a1) top
Crystal data top
Ca1.11Co0.89GeO4Dx = 4.249 Mg m3
Mr = 233.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4315 reflections
a = 11.2873 (7) Åθ = 3.6–28.7°
b = 6.4369 (4) ŵ = 13.71 mm1
c = 5.0245 (3) ÅT = 295 K
V = 365.06 (4) Å3Cuboid, pink
Z = 40.13 × 0.12 × 0.09 mm
F(000) = 441
Data collection top
SMART APEX
diffractometer
528 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.040
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 29.3°, θmin = 3.6°
Tmin = 0.19, Tmax = 0.30h = 1515
4315 measured reflectionsk = 88
531 independent reflectionsl = 66
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0183P)2 + 1.0355P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.049Δρmax = 0.66 e Å3
S = 1.20Δρmin = 0.58 e Å3
531 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.0090 (10)
Crystal data top
Ca1.11Co0.89GeO4V = 365.06 (4) Å3
Mr = 233.55Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.2873 (7) ŵ = 13.71 mm1
b = 6.4369 (4) ÅT = 295 K
c = 5.0245 (3) Å0.13 × 0.12 × 0.09 mm
Data collection top
SMART APEX
diffractometer
531 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
528 reflections with I > 2σ(I)
Tmin = 0.19, Tmax = 0.30Rint = 0.040
4315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02143 parameters
wR(F2) = 0.0491 restraint
S = 1.20Δρmax = 0.66 e Å3
531 reflectionsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41844 (3)0.250.07673 (8)0.01049 (15)
Co10.500.50.01082 (16)0.89
Ca10.500.50.01082 (16)0.11
Ca20.22573 (7)0.250.51180 (15)0.01130 (18)
O10.4189 (2)0.250.2707 (5)0.0138 (5)
O20.5563 (2)0.250.2470 (6)0.0136 (5)
O30.35020 (16)0.0345 (3)0.2283 (4)0.0138 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0122 (2)0.0102 (2)0.0091 (2)00.00011 (13)0
Co10.0129 (3)0.0095 (3)0.0101 (3)0.00137 (19)0.00060 (17)0.00125 (18)
Ca10.0129 (3)0.0095 (3)0.0101 (3)0.00137 (19)0.00060 (17)0.00125 (18)
Ca20.0114 (3)0.0101 (3)0.0124 (4)00.0004 (3)0
O10.0167 (13)0.0181 (13)0.0066 (11)00.0005 (10)0
O20.0120 (11)0.0160 (13)0.0128 (12)00.0000 (10)0
O30.0163 (8)0.0106 (8)0.0145 (9)0.0025 (7)0.0009 (7)0.0002 (7)
Geometric parameters (Å, º) top
Ge1—O11.746 (3)Co1—O32.1845 (19)
Ge1—O3i1.7599 (19)Co1—O3ii2.1845 (19)
Ge1—O31.7599 (19)Ca2—O3v2.2962 (19)
Ge1—O21.775 (3)Ca2—O3vi2.2962 (19)
Co1—O22.1467 (19)Ca2—O2vii2.313 (3)
Co1—O2ii2.1467 (19)Ca2—O32.434 (2)
Co1—O1iii2.1804 (18)Ca2—O3i2.434 (2)
Co1—O1iv2.1804 (18)Ca2—O1iv2.439 (3)
O1—Ge1—O3i115.73 (8)O1iii—Co1—O3ii86.01 (9)
O1—Ge1—O3115.73 (8)O1iv—Co1—O3ii93.99 (9)
O3i—Ge1—O3104.02 (13)O3—Co1—O3ii180.00 (6)
O1—Ge1—O2118.63 (13)O3v—Ca2—O3vi105.81 (10)
O3i—Ge1—O2100.07 (8)O3v—Ca2—O2vii87.58 (7)
O3—Ge1—O2100.07 (8)O3vi—Ca2—O2vii87.58 (7)
O2—Co1—O2ii180O3v—Ca2—O3161.27 (8)
O2—Co1—O1iii96.68 (8)O3vi—Ca2—O392.19 (4)
O2ii—Co1—O1iii83.32 (8)O2vii—Ca2—O398.53 (8)
O2—Co1—O1iv83.32 (8)O3v—Ca2—O3i92.19 (4)
O2ii—Co1—O1iv96.68 (8)O3vi—Ca2—O3i161.27 (8)
O1iii—Co1—O1iv180.00 (12)O2vii—Ca2—O3i98.53 (8)
O2—Co1—O377.45 (9)O3—Ca2—O3i69.46 (9)
O2ii—Co1—O3102.55 (9)O3v—Ca2—O1iv96.98 (7)
O1iii—Co1—O393.99 (9)O3vi—Ca2—O1iv96.98 (7)
O1iv—Co1—O386.01 (9)O2vii—Ca2—O1iv172.40 (10)
O2—Co1—O3ii102.55 (9)O3—Ca2—O1iv75.30 (7)
O2ii—Co1—O3ii77.45 (9)O3i—Ca2—O1iv75.30 (7)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y, z+1/2; (vii) x+1/2, y, z+1/2.
(ca2mn_1) top
Crystal data top
Ca1.31GeMn0.69O4Dx = 3.924 Mg m3
Mr = 227.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4305 reflections
a = 11.3391 (7) Åθ = 3.6–28.7°
b = 6.6035 (4) ŵ = 11.74 mm1
c = 5.1326 (3) ÅT = 295 K
V = 384.32 (4) Å3Cuboid, brown
Z = 40.14 × 0.12 × 0.11 mm
F(000) = 429.8
Data collection top
SMART APEX
diffractometer
510 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.054
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 28.4°, θmin = 3.6°
Tmin = 0.21, Tmax = 0.27h = 1415
4316 measured reflectionsk = 88
517 independent reflectionsl = 66
Refinement top
Refinement on F244 parameters
Least-squares matrix: full2 restraints
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0157P)2 + 0.6189P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max < 0.001
S = 1.24Δρmax = 0.78 e Å3
517 reflectionsΔρmin = 0.96 e Å3
Crystal data top
Ca1.31GeMn0.69O4V = 384.32 (4) Å3
Mr = 227.02Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3391 (7) ŵ = 11.74 mm1
b = 6.6035 (4) ÅT = 295 K
c = 5.1326 (3) Å0.14 × 0.12 × 0.11 mm
Data collection top
SMART APEX
diffractometer
517 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
510 reflections with I > 2σ(I)
Tmin = 0.21, Tmax = 0.27Rint = 0.054
4316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02044 parameters
wR(F2) = 0.0452 restraints
S = 1.24Δρmax = 0.78 e Å3
517 reflectionsΔρmin = 0.96 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41000 (3)0.250.07392 (7)0.01007 (14)
Mn10.500.50.01205 (17)0.67
Ca10.500.50.01205 (17)0.33
Ca20.22236 (6)0.250.51037 (14)0.01080 (18)0.98
Mn20.22236 (6)0.250.51037 (14)0.01080 (18)0.02
O10.4122 (2)0.250.2640 (5)0.0132 (5)
O20.5499 (2)0.250.2284 (5)0.0139 (5)
O30.34278 (15)0.0396 (3)0.2232 (3)0.0135 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0105 (2)0.0119 (2)0.0079 (2)00.00037 (13)0
Mn10.0139 (3)0.0120 (3)0.0103 (3)0.0027 (2)0.0000 (2)0.0015 (2)
Ca10.0139 (3)0.0120 (3)0.0103 (3)0.0027 (2)0.0000 (2)0.0015 (2)
Ca20.0097 (3)0.0113 (3)0.0113 (3)00.0006 (3)0
Mn20.0097 (3)0.0113 (3)0.0113 (3)00.0006 (3)0
O10.0134 (12)0.0190 (13)0.0072 (11)00.0006 (9)0
O20.0101 (11)0.0196 (12)0.0121 (12)00.0004 (10)0
O30.0139 (8)0.0132 (8)0.0132 (9)0.0019 (7)0.0015 (7)0.0005 (7)
Geometric parameters (Å, º) top
Ge1—O11.735 (3)Mn1—O3ii2.2945 (18)
Ge1—O31.7605 (18)Mn1—O32.2945 (18)
Ge1—O3i1.7605 (18)Ca2—O2v2.308 (3)
Ge1—O21.773 (3)Ca2—O3vi2.3227 (18)
Mn1—O2ii2.2335 (17)Ca2—O3vii2.3227 (18)
Mn1—O22.2335 (17)Ca2—O32.4430 (18)
Mn1—O1iii2.2770 (17)Ca2—O3i2.4430 (18)
Mn1—O1iv2.2770 (17)Ca2—O1iv2.444 (3)
O1—Ge1—O3116.19 (7)O1iii—Mn1—O395.34 (8)
O1—Ge1—O3i116.19 (7)O1iv—Mn1—O384.66 (8)
O3—Ge1—O3i104.26 (11)O3ii—Mn1—O3180
O1—Ge1—O2115.75 (12)O2v—Ca2—O3vi88.87 (6)
O3—Ge1—O2101.11 (8)O2v—Ca2—O3vii88.87 (6)
O3i—Ge1—O2101.11 (8)O3vi—Ca2—O3vii110.82 (9)
O2ii—Mn1—O2180O2v—Ca2—O398.82 (7)
O2ii—Mn1—O1iii84.66 (7)O3vi—Ca2—O3158.40 (7)
O2—Mn1—O1iii95.34 (7)O3vii—Ca2—O389.61 (4)
O2ii—Mn1—O1iv95.34 (7)O2v—Ca2—O3i98.82 (7)
O2—Mn1—O1iv84.66 (7)O3vi—Ca2—O3i89.61 (4)
O1iii—Mn1—O1iv180.00 (11)O3vii—Ca2—O3i158.40 (7)
O2ii—Mn1—O3ii74.11 (8)O3—Ca2—O3i69.34 (9)
O2—Mn1—O3ii105.89 (8)O2v—Ca2—O1iv176.21 (9)
O1iii—Mn1—O3ii84.66 (8)O3vi—Ca2—O1iv93.28 (6)
O1iv—Mn1—O3ii95.34 (8)O3vii—Ca2—O1iv93.28 (6)
O2ii—Mn1—O3105.89 (8)O3—Ca2—O1iv78.09 (7)
O2—Mn1—O374.11 (8)O3i—Ca2—O1iv78.09 (7)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2.
(ca2mg_1) top
Crystal data top
GeO4·1.07(Ca)0.93(Mg)Dx = 3.682 Mg m3
Mr = 202.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 3967 reflections
a = 11.2882 (7) Åθ = 3.6–28.7°
b = 6.4309 (4) ŵ = 9.92 mm1
c = 5.0223 (3) ÅT = 295 K
V = 364.59 (4) Å3Cube, colourless
Z = 40.08 × 0.07 × 0.07 mm
F(000) = 386.2
Data collection top
SMART APEX
diffractometer
476 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.097
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 28.3°, θmin = 3.6°
Tmin = 0.46, Tmax = 0.50h = 1415
3967 measured reflectionsk = 88
487 independent reflectionsl = 66
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0238P)2 + 0.2954P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max < 0.001
wR(F2) = 0.054Δρmax = 0.74 e Å3
S = 1.16Δρmin = 1.37 e Å3
487 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 parametersExtinction coefficient: 0.0044 (15)
Crystal data top
GeO4·1.07(Ca)0.93(Mg)V = 364.59 (4) Å3
Mr = 202.04Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.2882 (7) ŵ = 9.92 mm1
b = 6.4309 (4) ÅT = 295 K
c = 5.0223 (3) Å0.08 × 0.07 × 0.07 mm
Data collection top
SMART APEX
diffractometer
487 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
476 reflections with I > 2σ(I)
Tmin = 0.46, Tmax = 0.50Rint = 0.097
3967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02645 parameters
wR(F2) = 0.0542 restraints
S = 1.16Δρmax = 0.74 e Å3
487 reflectionsΔρmin = 1.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.41756 (3)0.250.07864 (7)0.01020 (17)
Mg10.500.50.0105 (3)0.91
Ca10.500.50.0105 (3)0.09
Ca20.22438 (6)0.250.51245 (14)0.0100 (2)0.98
Mg20.22438 (6)0.250.51245 (14)0.0100 (2)0.02
O10.41885 (19)0.250.2675 (5)0.0138 (6)
O20.5554 (2)0.250.2497 (5)0.0141 (5)
O30.35056 (14)0.0347 (3)0.2323 (3)0.0134 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0099 (2)0.0126 (3)0.0081 (2)00.00034 (11)0
Mg10.0111 (5)0.0115 (6)0.0088 (5)0.0018 (4)0.0004 (4)0.0023 (4)
Ca10.0111 (5)0.0115 (6)0.0088 (5)0.0018 (4)0.0004 (4)0.0023 (4)
Ca20.0081 (3)0.0112 (4)0.0108 (4)00.0002 (2)0
Mg20.0081 (3)0.0112 (4)0.0108 (4)00.0002 (2)0
O10.0136 (12)0.0192 (15)0.0085 (10)00.0003 (8)0
O20.0100 (10)0.0200 (14)0.0124 (11)00.0011 (9)0
O30.0136 (8)0.0125 (9)0.0140 (8)0.0019 (7)0.0016 (6)0.0010 (7)
Geometric parameters (Å, º) top
Ge1—O11.739 (3)Mg1—O1iii2.1879 (16)
Ge1—O3i1.7561 (19)Mg1—O1iv2.1879 (16)
Ge1—O31.7561 (19)Ca2—O3v2.2996 (19)
Ge1—O21.778 (2)Ca2—O3vi2.2996 (19)
Mg1—O2ii2.1347 (16)Ca2—O2vii2.317 (2)
Mg1—O22.1347 (16)Ca2—O32.4340 (18)
Mg1—O32.1686 (16)Ca2—O3i2.4340 (18)
Mg1—O3ii2.1686 (16)Ca2—O1iii2.458 (2)
O1—Ge1—O3i116.30 (7)O3—Mg1—O1iv94.05 (8)
O1—Ge1—O3116.30 (7)O3ii—Mg1—O1iv85.95 (8)
O3i—Ge1—O3104.05 (12)O1iii—Mg1—O1iv180
O1—Ge1—O2118.41 (11)O3v—Ca2—O3vi105.55 (9)
O3i—Ge1—O299.48 (7)O3v—Ca2—O2vii88.28 (6)
O3—Ge1—O299.48 (7)O3vi—Ca2—O2vii88.28 (6)
O2ii—Mg1—O2180O3v—Ca2—O3161.04 (7)
O2ii—Mg1—O3102.40 (8)O3vi—Ca2—O392.29 (4)
O2—Mg1—O377.60 (8)O2vii—Ca2—O398.82 (7)
O2ii—Mg1—O3ii77.60 (8)O3v—Ca2—O3i92.29 (4)
O2—Mg1—O3ii102.40 (8)O3vi—Ca2—O3i161.04 (7)
O3—Mg1—O3ii180O2vii—Ca2—O3i98.82 (7)
O2ii—Mg1—O1iii96.69 (7)O3—Ca2—O3i69.32 (9)
O2—Mg1—O1iii83.31 (7)O3v—Ca2—O1iii96.47 (6)
O3—Mg1—O1iii85.95 (8)O3vi—Ca2—O1iii96.47 (6)
O3ii—Mg1—O1iii94.05 (8)O2vii—Ca2—O1iii172.11 (9)
O2ii—Mg1—O1iv83.31 (7)O3—Ca2—O1iii74.76 (6)
O2—Mg1—O1iv96.69 (7)O3i—Ca2—O1iii74.76 (6)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x1/2, y, z+1/2.
(ca2ge_1) top
Crystal data top
GeO4·2.00(Ca)Dx = 3.555 Mg m3
Mr = 216.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4351 reflections
a = 11.3923 (8) Åθ = 3.6–28.7°
b = 6.7854 (8) ŵ = 9.97 mm1
c = 5.2388 (4) ÅT = 295 K
V = 404.97 (6) Å3Cuboid, colourless
Z = 40.16 × 0.15 × 0.13 mm
F(000) = 416
Data collection top
SMART APEX
diffractometer
533 reflections with I > 2σ(I)
rotation, ω–scans at 4 different ϕ positionsRint = 0.084
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
θmax = 28.3°, θmin = 3.6°
Tmin = 0.22, Tmax = 0.28h = 1515
4496 measured reflectionsk = 89
536 independent reflectionsl = 66
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.026P)2 + 0.8056P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max < 0.001
wR(F2) = 0.063Δρmax = 0.92 e Å3
S = 1.21Δρmin = 0.94 e Å3
536 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.55 (2)
Crystal data top
GeO4·2.00(Ca)V = 404.97 (6) Å3
Mr = 216.69Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.3923 (8) ŵ = 9.97 mm1
b = 6.7854 (8) ÅT = 295 K
c = 5.2388 (4) Å0.16 × 0.15 × 0.13 mm
Data collection top
SMART APEX
diffractometer
536 independent reflections
Absorption correction: numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
533 reflections with I > 2σ(I)
Tmin = 0.22, Tmax = 0.28Rint = 0.084
4496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02443 parameters
wR(F2) = 0.0630 restraints
S = 1.21Δρmax = 0.92 e Å3
536 reflectionsΔρmin = 0.94 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.40386 (4)0.250.06914 (8)0.0074 (3)
Ca10.500.50.0096 (4)0.999 (5)
Ca20.22020 (7)0.250.50764 (16)0.0092 (4)1.00 (5)
O10.4071 (2)0.250.2640 (6)0.0098 (6)
O20.5459 (2)0.250.2119 (6)0.0099 (6)
O30.33635 (17)0.0444 (3)0.2152 (4)0.0102 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0057 (3)0.0080 (3)0.0084 (3)00.00006 (14)0
Ca10.0099 (5)0.0079 (5)0.0110 (5)0.0017 (3)0.0004 (3)0.0006 (3)
Ca20.0059 (5)0.0094 (5)0.0124 (5)00.0002 (3)0
O10.0103 (14)0.0119 (14)0.0070 (14)00.0007 (10)0
O20.0069 (13)0.0116 (14)0.0111 (13)00.0004 (11)0
O30.0096 (9)0.0095 (9)0.0116 (9)0.0019 (7)0.0008 (8)0.0013 (8)
Geometric parameters (Å, º) top
Ge1—O11.746 (3)Ca1—O3ii2.407 (2)
Ge1—O31.767 (2)Ca1—O32.407 (2)
Ge1—O3i1.767 (2)Ca2—O2v2.295 (3)
Ge1—O21.782 (3)Ca2—O3vi2.364 (2)
Ca1—O22.330 (2)Ca2—O3vii2.364 (2)
Ca1—O2ii2.330 (2)Ca2—O1iv2.443 (3)
Ca1—O1iii2.351 (2)Ca2—O32.458 (2)
Ca1—O1iv2.351 (2)Ca2—O3i2.458 (2)
O1—Ge1—O3116.25 (8)O1iii—Ca1—O396.49 (9)
O1—Ge1—O3i116.25 (8)O1iv—Ca1—O383.51 (9)
O3—Ge1—O3i104.25 (14)O3ii—Ca1—O3180
O1—Ge1—O2113.59 (13)O2v—Ca2—O3vi89.69 (7)
O3—Ge1—O2102.32 (9)O2v—Ca2—O3vii89.69 (7)
O3i—Ge1—O2102.32 (9)O3vi—Ca2—O3vii115.36 (11)
O2—Ca1—O2ii180O2v—Ca2—O1iv179.26 (11)
O2—Ca1—O1iii94.80 (8)O3vi—Ca2—O1iv90.70 (7)
O2ii—Ca1—O1iii85.20 (8)O3vii—Ca2—O1iv90.70 (7)
O2—Ca1—O1iv85.20 (8)O2v—Ca2—O398.83 (8)
O2ii—Ca1—O1iv94.80 (8)O3vi—Ca2—O3155.89 (8)
O1iii—Ca1—O1iv180.00 (12)O3vii—Ca2—O387.36 (4)
O2—Ca1—O3ii108.61 (9)O1iv—Ca2—O380.56 (8)
O2ii—Ca1—O3ii71.39 (9)O2v—Ca2—O3i98.83 (8)
O1iii—Ca1—O3ii83.51 (9)O3vi—Ca2—O3i87.36 (4)
O1iv—Ca1—O3ii96.49 (9)O3vii—Ca2—O3i155.89 (8)
O2—Ca1—O371.39 (9)O1iv—Ca2—O3i80.56 (8)
O2ii—Ca1—O3108.61 (9)O3—Ca2—O3i69.13 (10)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y, z+1/2.

Experimental details

(Ca2Co_2)(cfg_rot)(cazn_b)(camn_a5)
Crystal data
Chemical formulaCa1.17Co0.83GeO4Ca2GeO4GeO4·1.99(Ca)Ca1.14GeMn0.86O4
Mr232.4216.75216.37229.6
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)295293295295
a, b, c (Å)11.3021 (7), 6.4657 (4), 5.0435 (3)11.3919 (7), 6.7800 (4), 5.2424 (3)11.3919 (7), 6.7800 (4), 5.2424 (3)11.3260 (7), 6.5604 (4), 5.1069 (3)
V3)368.56 (4)404.91 (4)404.91 (4)379.46 (4)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)13.409.979.9612.21
Crystal size (mm)0.18 × 0.16 × 0.130.16 × 0.14 × 0.130.13 × 0.12 × 0.090.17 × 0.15 × 0.14
Data collection
DiffractometerSMART APEX
diffractometer
?SMART APEX
diffractometer
SMART APEX
diffractometer
Absorption correctionNumerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Tmin, Tmax0.10, 0.180.29, 0.420.15, 0.18
No. of measured, independent and
observed [I > 2σ(I)] reflections
4087, 507, 504 4592, 551, 544 4870, 595, 588 4621, 558, 551
Rint0.0620.0570.0390.063
(sin θ/λ)max1)0.6760.6760.6900.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.36 0.019, 0.042, 1.25 0.018, 0.044, 1.24 0.023, 0.058, 1.16
No. of reflections507551595558
No. of parameters45414145
No. of restraints2002
Δρmax, Δρmin (e Å3)0.98, 1.680.83, 0.390.69, 0.450.68, 0.67


(camn_a2)(camg_a1)(caco_a2)(caco_a1)
Crystal data
Chemical formulaCa1.17GeMn0.83O4Ca1.16GeMg0.83O4Ca1.11Co0.89GeO4Ca1.11Co0.89GeO4
Mr229.16203.52233.55233.55
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)295295295295
a, b, c (Å)11.3256 (7), 6.5643 (4), 5.1098 (3)11.2916 (7), 6.4405 (4), 5.0251 (3)11.2923 (7), 6.4369 (4), 5.0246 (3)11.2873 (7), 6.4369 (4), 5.0245 (3)
V3)379.89 (4)365.44 (4)365.23 (4)365.06 (4)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)12.1410.0113.7013.71
Crystal size (mm)0.18 × 0.15 × 0.140.07 × 0.05 × 0.040.14 × 0.14 × 0.100.13 × 0.12 × 0.09
Data collection
DiffractometerSMART APEX
diffractometer
SMART APEX
diffractometer
SMART APEX
diffractometer
SMART APEX
diffractometer
Absorption correctionNumerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Tmin, Tmax0.23, 0.340.55, 0.670.13, 0.250.19, 0.30
No. of measured, independent and
observed [I > 2σ(I)] reflections
4624, 555, 548 4411, 542, 536 4343, 530, 516 4315, 531, 528
Rint0.0580.0360.0380.040
(sin θ/λ)max1)0.6920.6960.6940.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.22 0.022, 0.051, 1.22 0.020, 0.047, 1.15 0.021, 0.049, 1.20
No. of reflections555542530531
No. of parameters45434343
No. of restraints2111
Δρmax, Δρmin (e Å3)0.8, 0.650.77, 0.610.70, 0.620.66, 0.58


(ca2mn_1)(ca2mg_1)(ca2ge_1)
Crystal data
Chemical formulaCa1.31GeMn0.69O4GeO4·1.07(Ca)0.93(Mg)GeO4·2.00(Ca)
Mr227.02202.04216.69
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)295295295
a, b, c (Å)11.3391 (7), 6.6035 (4), 5.1326 (3)11.2882 (7), 6.4309 (4), 5.0223 (3)11.3923 (8), 6.7854 (8), 5.2388 (4)
V3)384.32 (4)364.59 (4)404.97 (6)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)11.749.929.97
Crystal size (mm)0.14 × 0.12 × 0.110.08 × 0.07 × 0.070.16 × 0.15 × 0.13
Data collection
DiffractometerSMART APEX
diffractometer
SMART APEX
diffractometer
SMART APEX
diffractometer
Absorption correctionNumerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Numerical
via equivalents using X-SHAPE (Stoe & Cie 1996)
Tmin, Tmax0.21, 0.270.46, 0.500.22, 0.28
No. of measured, independent and
observed [I > 2σ(I)] reflections
4316, 517, 510 3967, 487, 476 4496, 536, 533
Rint0.0540.0970.084
(sin θ/λ)max1)0.6680.6670.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 1.24 0.026, 0.054, 1.16 0.024, 0.063, 1.21
No. of reflections517487536
No. of parameters444543
No. of restraints220
Δρmax, Δρmin (e Å3)0.78, 0.960.74, 1.370.92, 0.94

Computer programs: Bruker SMART+ (Bruker, 2001), Bruker SAINT+ (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Diamonds 3.0 (Pennington,1999), WinGX v1.70.01 (Farrugia 1999).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds