Download citation
Download citation
link to html
The unsymmetrical N-heterocyclic ligand 1-[(benzotriazol-1-yl)meth­yl]-1H-1,3-imidazole (bmi) has three potential N-atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methyl­ene spacer. Two new complexes, namely bis­{1-[(benzotriazol-1-yl)meth­yl]-1H-1,3-imidazole-κN3}di­bromido­mercury(II), [HgBr2(C10H9N5)2], and bis­{1-[(benzotriazol-1-yl)meth­yl]-1H-1,3-imidazole-κN3}di­iodido­mercury(II), [HgI2(C10H9N5)2], have been synthesized through the self-assembly of bmi with HgBr2 or HgI2. Single-crystal X-ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three-dimensional networks formed by a combination of hydrogen bonds and π–π inter­actions. The IR spectra and PXRD patterns of both complexes have also been recorded.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617003199/wq3128sup1.cif
Contains datablocks I, II, Huang

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617003199/wq3128Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617003199/wq3128IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617003199/wq3128sup4.pdf
Crystal structure data for related compounds

CCDC references: 998622; 1421140

Computing details top

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole-κN3}dibromidomercury(II) top
Crystal data top
[HgBr2(C10H9N5)2]Dx = 2.094 Mg m3
Mr = 758.85Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5603 reflections
a = 11.756 (2) Åθ = 1.7–27.9°
b = 11.764 (2) ŵ = 9.74 mm1
c = 17.407 (4) ÅT = 293 K
V = 2407.4 (8) Å3Platelike, colourless
Z = 40.15 × 0.13 × 0.07 mm
F(000) = 1432
Data collection top
Rigaku Saturn
diffractometer
2372 independent reflections
Radiation source: fine-focus sealed tube1975 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.045
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
h = 1412
Tmin = 0.496, Tmax = 1.000k = 1114
11136 measured reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.7321P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2372 reflectionsΔρmax = 0.80 e Å3
150 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00000.62301 (3)0.25000.04596 (14)
Br10.06282 (6)0.52696 (6)0.12758 (4)0.0646 (2)
N10.1434 (4)0.7396 (4)0.2938 (3)0.0440 (12)
N20.2530 (4)0.8229 (4)0.3785 (3)0.0411 (11)
N30.2289 (4)0.9279 (4)0.4960 (3)0.0399 (11)
N40.2346 (5)1.0433 (4)0.4865 (3)0.0546 (14)
N50.1585 (5)1.0884 (4)0.5313 (4)0.0609 (16)
C10.1755 (5)0.7416 (4)0.3665 (4)0.0421 (13)
H1A0.14790.69300.40420.050*
C20.2040 (5)0.8238 (6)0.2580 (3)0.0505 (16)
H2A0.19880.84220.20620.061*
C30.2719 (6)0.8754 (5)0.3088 (4)0.0540 (17)
H3A0.32190.93490.29900.065*
C40.3041 (5)0.8545 (4)0.4523 (3)0.0421 (14)
H4A0.31990.78630.48170.051*
H4B0.37560.89330.44320.051*
C50.1484 (5)0.9003 (4)0.5488 (3)0.0383 (13)
C60.1110 (5)0.7979 (5)0.5792 (4)0.0482 (15)
H6A0.14140.72870.56360.058*
C70.0272 (6)0.8044 (6)0.6330 (5)0.064 (2)
H7A0.00150.73790.65610.076*
C80.0214 (6)0.9088 (7)0.6548 (5)0.065 (2)
H8A0.08030.90940.69050.079*
C90.0151 (6)1.0077 (6)0.6252 (5)0.061 (2)
H9A0.01651.07660.64050.074*
C100.1025 (5)1.0037 (4)0.5703 (4)0.0467 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0504 (2)0.0485 (2)0.0389 (2)0.0000.00576 (16)0.000
Br10.0626 (4)0.0751 (4)0.0561 (5)0.0083 (3)0.0163 (4)0.0203 (4)
N10.046 (3)0.046 (3)0.040 (3)0.004 (2)0.009 (2)0.001 (2)
N20.043 (3)0.038 (2)0.042 (3)0.002 (2)0.005 (2)0.002 (2)
N30.048 (3)0.032 (2)0.040 (3)0.005 (2)0.006 (2)0.001 (2)
N40.069 (4)0.035 (3)0.059 (4)0.009 (3)0.014 (3)0.007 (3)
N50.081 (4)0.038 (3)0.063 (4)0.001 (3)0.023 (3)0.001 (3)
C10.048 (3)0.035 (3)0.043 (4)0.009 (2)0.003 (3)0.000 (3)
C20.050 (4)0.065 (4)0.037 (4)0.007 (3)0.004 (3)0.011 (3)
C30.061 (4)0.057 (4)0.045 (4)0.020 (3)0.004 (3)0.015 (3)
C40.038 (3)0.050 (3)0.038 (4)0.001 (2)0.008 (3)0.000 (3)
C50.042 (3)0.040 (3)0.033 (3)0.001 (2)0.010 (3)0.004 (3)
C60.051 (3)0.045 (3)0.048 (4)0.001 (3)0.004 (3)0.001 (3)
C70.067 (4)0.065 (5)0.059 (5)0.011 (4)0.002 (4)0.008 (4)
C80.057 (4)0.092 (6)0.047 (5)0.006 (4)0.001 (3)0.007 (4)
C90.059 (4)0.065 (4)0.061 (5)0.021 (3)0.017 (4)0.024 (4)
C100.058 (4)0.039 (3)0.043 (4)0.005 (3)0.020 (3)0.007 (3)
Geometric parameters (Å, º) top
Hg1—N12.304 (4)C2—C31.337 (9)
Hg1—N1i2.304 (4)C2—H2A0.9300
Hg1—Br1i2.5225 (8)C3—H3A0.9300
Hg1—Br12.5226 (8)C4—H4A0.9700
N1—C11.320 (7)C4—H4B0.9700
N1—C21.370 (7)C5—C101.382 (7)
N2—C11.338 (6)C5—C61.386 (7)
N2—C31.380 (7)C6—C71.362 (9)
N2—C41.465 (7)C6—H6A0.9300
N3—C51.360 (7)C7—C81.407 (10)
N3—N41.369 (6)C7—H7A0.9300
N3—C41.451 (7)C8—C91.343 (10)
N4—N51.300 (7)C8—H8A0.9300
N5—C101.374 (8)C9—C101.403 (10)
C1—H1A0.9300C9—H9A0.9300
N1—Hg1—N1i106.9 (2)N2—C3—H3A126.8
N1—Hg1—Br1i101.61 (13)N3—C4—N2111.2 (4)
N1i—Hg1—Br1i109.40 (13)N3—C4—H4A109.4
N1—Hg1—Br1109.41 (13)N2—C4—H4A109.4
N1i—Hg1—Br1101.61 (13)N3—C4—H4B109.4
Br1i—Hg1—Br1126.78 (4)N2—C4—H4B109.4
C1—N1—C2106.0 (5)H4A—C4—H4B108.0
C1—N1—Hg1122.5 (4)N3—C5—C10104.2 (5)
C2—N1—Hg1131.3 (4)N3—C5—C6133.3 (5)
C1—N2—C3106.9 (5)C10—C5—C6122.5 (6)
C1—N2—C4126.7 (5)C7—C6—C5116.3 (6)
C3—N2—C4126.3 (5)C7—C6—H6A121.9
C5—N3—N4110.7 (5)C5—C6—H6A121.9
C5—N3—C4129.5 (5)C6—C7—C8121.9 (6)
N4—N3—C4119.8 (5)C6—C7—H7A119.0
N5—N4—N3107.4 (5)C8—C7—H7A119.0
N4—N5—C10109.3 (5)C9—C8—C7121.5 (7)
N1—C1—N2110.9 (5)C9—C8—H8A119.2
N1—C1—H1A124.5C7—C8—H8A119.2
N2—C1—H1A124.5C8—C9—C10117.7 (6)
C3—C2—N1109.7 (6)C8—C9—H9A121.1
C3—C2—H2A125.1C10—C9—H9A121.1
N1—C2—H2A125.1N5—C10—C5108.5 (6)
C2—C3—N2106.4 (5)N5—C10—C9131.5 (6)
C2—C3—H3A126.8C5—C10—C9120.0 (6)
C5—N3—N4—N50.9 (6)C4—N3—C5—C10179.0 (5)
C4—N3—N4—N5179.4 (5)N4—N3—C5—C6179.1 (6)
N3—N4—N5—C100.0 (6)C4—N3—C5—C60.6 (10)
C2—N1—C1—N20.2 (6)N3—C5—C6—C7179.3 (6)
Hg1—N1—C1—N2174.6 (3)C10—C5—C6—C71.3 (9)
C3—N2—C1—N10.4 (6)C5—C6—C7—C82.1 (10)
C4—N2—C1—N1176.7 (5)C6—C7—C8—C92.2 (11)
C1—N1—C2—C30.1 (7)C7—C8—C9—C101.2 (10)
Hg1—N1—C2—C3174.3 (4)N4—N5—C10—C50.9 (7)
N1—C2—C3—N20.4 (7)N4—N5—C10—C9179.4 (7)
C1—N2—C3—C20.5 (7)N3—C5—C10—N51.4 (6)
C4—N2—C3—C2176.7 (5)C6—C5—C10—N5179.1 (5)
C5—N3—C4—N291.4 (7)N3—C5—C10—C9180.0 (6)
N4—N3—C4—N289.0 (5)C6—C5—C10—C90.4 (9)
C1—N2—C4—N380.6 (6)C8—C9—C10—N5178.6 (6)
C3—N2—C4—N396.0 (7)C8—C9—C10—C50.3 (9)
N4—N3—C5—C101.4 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N4ii0.932.663.305 (8)127
C4—H4A···N5ii0.972.503.448 (8)167
C4—H4B···Br1iii0.972.973.912 (6)163
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2.
(II) Bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole-κN3}diiodidomercury(II) top
Crystal data top
[HgI2(C10H9N5)2]Dx = 2.215 Mg m3
Mr = 852.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5903 reflections
a = 12.103 (2) Åθ = 2.0–27.9°
b = 11.827 (2) ŵ = 8.46 mm1
c = 17.862 (4) ÅT = 293 K
V = 2556.8 (9) Å3Prism, colourless
Z = 40.16 × 0.15 × 0.11 mm
F(000) = 1576
Data collection top
Rigaku Saturn
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.044
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
h = 1114
Tmin = 0.703, Tmax = 1.000k = 1214
18126 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0289P)2 + 3.5625P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max < 0.001
2519 reflectionsΔρmax = 0.53 e Å3
150 parametersΔρmin = 0.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.00000.61838 (3)0.25000.04677 (14)
I10.93007 (4)0.52533 (5)0.12259 (3)0.06414 (19)
N10.8619 (5)0.7401 (5)0.2936 (3)0.0487 (14)
N20.7533 (4)0.8218 (5)0.3753 (3)0.0461 (13)
N30.7754 (5)0.9297 (4)0.4882 (3)0.0484 (14)
N40.7665 (6)1.0422 (5)0.4772 (4)0.068 (2)
N50.8361 (6)1.0922 (6)0.5220 (4)0.074 (2)
C10.8304 (6)0.7427 (5)0.3636 (4)0.0493 (17)
H1A0.85810.69530.40070.059*
C20.8006 (6)0.8208 (7)0.2579 (4)0.063 (2)
H2A0.80410.83710.20700.075*
C30.7352 (6)0.8726 (7)0.3072 (4)0.067 (2)
H3A0.68670.93170.29740.080*
C40.7053 (6)0.8534 (6)0.4465 (4)0.0509 (17)
H4A0.63440.88930.43790.061*
H4B0.69260.78570.47600.061*
C50.8522 (6)0.9065 (5)0.5415 (4)0.0464 (17)
C60.8921 (7)1.0115 (7)0.5622 (5)0.059 (2)
C70.9732 (9)1.0203 (10)0.6179 (6)0.084 (3)
H7A1.00111.09000.63280.101*
C81.0092 (7)0.9227 (11)0.6491 (6)0.086 (3)
H8A1.06300.92600.68620.104*
C90.9686 (8)0.8185 (10)0.6278 (6)0.083 (3)
H9A0.99650.75390.65070.100*
C100.8889 (6)0.8072 (7)0.5744 (4)0.062 (2)
H10A0.86080.73690.56080.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0496 (2)0.0518 (2)0.0389 (2)0.0000.00187 (17)0.000
I10.0600 (3)0.0779 (4)0.0545 (3)0.0034 (3)0.0164 (2)0.0170 (3)
N10.052 (3)0.050 (3)0.044 (3)0.009 (3)0.006 (3)0.001 (3)
N20.050 (3)0.045 (3)0.043 (3)0.011 (3)0.005 (3)0.004 (3)
N30.061 (4)0.034 (3)0.050 (4)0.006 (3)0.017 (3)0.006 (3)
N40.091 (5)0.039 (3)0.074 (5)0.013 (3)0.033 (4)0.013 (3)
N50.093 (6)0.044 (4)0.085 (6)0.005 (4)0.043 (5)0.006 (4)
C10.055 (4)0.040 (4)0.053 (5)0.012 (3)0.003 (3)0.001 (3)
C20.063 (5)0.078 (5)0.047 (5)0.014 (4)0.003 (4)0.017 (4)
C30.066 (5)0.081 (6)0.053 (5)0.034 (4)0.005 (4)0.016 (4)
C40.050 (4)0.048 (4)0.055 (5)0.008 (3)0.007 (3)0.005 (3)
C50.049 (4)0.039 (4)0.051 (4)0.001 (3)0.017 (3)0.008 (3)
C60.060 (5)0.059 (5)0.059 (5)0.010 (4)0.027 (4)0.018 (4)
C70.077 (6)0.096 (8)0.080 (7)0.039 (6)0.030 (5)0.039 (6)
C80.061 (6)0.137 (10)0.060 (6)0.010 (6)0.003 (4)0.018 (7)
C90.071 (6)0.105 (8)0.073 (7)0.010 (6)0.004 (5)0.006 (6)
C100.070 (5)0.058 (5)0.057 (5)0.002 (4)0.002 (4)0.003 (4)
Geometric parameters (Å, º) top
Hg1—N12.340 (5)C2—C31.333 (10)
Hg1—N1i2.340 (5)C2—H2A0.9300
Hg1—I1i2.6658 (7)C3—H3A0.9300
Hg1—I12.6659 (6)C4—H4A0.9700
N1—C11.307 (8)C4—H4B0.9700
N1—C21.366 (9)C5—C61.383 (9)
N2—C11.338 (8)C5—C101.386 (10)
N2—C31.374 (9)C6—C71.401 (13)
N2—C41.448 (8)C7—C81.353 (14)
N3—N41.350 (8)C7—H7A0.9300
N3—C51.358 (9)C8—C91.380 (15)
N3—C41.446 (9)C8—H8A0.9300
N4—N51.303 (10)C9—C101.363 (11)
N5—C61.374 (11)C9—H9A0.9300
C1—H1A0.9300C10—H10A0.9300
N1—Hg1—N1i104.0 (3)N2—C3—H3A126.6
N1—Hg1—I1i101.36 (15)N3—C4—N2112.2 (6)
N1i—Hg1—I1i108.13 (15)N3—C4—H4A109.2
N1—Hg1—I1108.14 (15)N2—C4—H4A109.2
N1i—Hg1—I1101.36 (15)N3—C4—H4B109.2
I1i—Hg1—I1131.23 (3)N2—C4—H4B109.2
C1—N1—C2105.8 (6)H4A—C4—H4B107.9
C1—N1—Hg1122.7 (5)N3—C5—C6104.2 (7)
C2—N1—Hg1131.5 (5)N3—C5—C10133.4 (7)
C1—N2—C3106.2 (6)C6—C5—C10122.3 (8)
C1—N2—C4126.7 (6)N5—C6—C5108.1 (8)
C3—N2—C4127.0 (6)N5—C6—C7131.7 (9)
N4—N3—C5110.8 (6)C5—C6—C7120.1 (9)
N4—N3—C4119.6 (6)C8—C7—C6117.0 (9)
C5—N3—C4129.5 (5)C8—C7—H7A121.5
N5—N4—N3107.8 (7)C6—C7—H7A121.5
N4—N5—C6109.0 (6)C7—C8—C9122.2 (10)
N1—C1—N2111.6 (6)C7—C8—H8A118.9
N1—C1—H1A124.2C9—C8—H8A118.9
N2—C1—H1A124.2C10—C9—C8122.2 (10)
C3—C2—N1109.6 (7)C10—C9—H9A118.9
C3—C2—H2A125.2C8—C9—H9A118.9
N1—C2—H2A125.2C9—C10—C5116.1 (8)
C2—C3—N2106.8 (6)C9—C10—H10A121.9
C2—C3—H3A126.6C5—C10—H10A121.9
C5—N3—N4—N50.3 (7)C4—N3—C5—C6179.2 (6)
C4—N3—N4—N5178.7 (6)N4—N3—C5—C10177.4 (7)
N3—N4—N5—C60.5 (8)C4—N3—C5—C100.7 (12)
C2—N1—C1—N21.0 (8)N4—N5—C6—C51.2 (8)
Hg1—N1—C1—N2177.7 (4)N4—N5—C6—C7178.7 (8)
C3—N2—C1—N10.1 (8)N3—C5—C6—N51.3 (8)
C4—N2—C1—N1175.6 (6)C10—C5—C6—N5177.3 (7)
C1—N1—C2—C31.5 (9)N3—C5—C6—C7179.2 (7)
Hg1—N1—C2—C3177.0 (5)C10—C5—C6—C70.5 (11)
N1—C2—C3—N21.5 (10)N5—C6—C7—C8177.4 (8)
C1—N2—C3—C20.9 (9)C5—C6—C7—C80.1 (12)
C4—N2—C3—C2176.5 (7)C6—C7—C8—C90.1 (14)
N4—N3—C4—N288.1 (7)C7—C8—C9—C100.6 (15)
C5—N3—C4—N294.0 (8)C8—C9—C10—C51.1 (13)
C1—N2—C4—N380.9 (8)N3—C5—C10—C9179.4 (8)
C3—N2—C4—N393.8 (9)C6—C5—C10—C91.1 (11)
N4—N3—C5—C61.0 (7)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N4ii0.932.723.334 (9)124
C4—H4B···N5ii0.972.463.408 (10)167
C4—H4A···I1iii0.973.144.093 (7)167
Symmetry codes: (ii) x+3/2, y1/2, z; (iii) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds