Download citation
Download citation
link to html
Electron-donating mol­ecules play an important role in the development of organic solar cells. (Z)-2-(2-Phenyl­hydrazinyl­idene)acenaphthen-1(2H)-one (PDAK), C18H12N2O, was synthesized by a Schiff base reaction. The crystal structure shows that the mol­ecules are planar and are linked together forming `face-to-face' assemblies held together by inter­molecular C—H...O, π–π and C—H...π inter­actions. PDAK exhibits a broadband UV–Vis absorption (200–648 nm) and a low HOMO–LUMO energy gap (1.91 eV; HOMO is the highest occupied mol­ecular orbital and LUMO is the lowest unoccupied mol­ecular orbital), while fluorescence quenching experiments provide evidence for electron transfer from the excited state of PDAK to C60. This suggests that the title mol­ecule may be a suitable donor for use in organic solar cells.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961700691X/wq3126sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961700691X/wq3126Isup3.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961700691X/wq3126sup2.pdf
Size of the biggest single crystal of PDAK

CCDC reference: 1548728

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SHELXTL (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008).

(Z)-2-(2-Phenylhydrazinylidene)acenaphthen-1(2H)-one top
Crystal data top
C18H12N2OF(000) = 568
Mr = 272.30Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4257 reflections
a = 13.3040 (11) Åθ = 2.7–25.0°
b = 5.1796 (4) ŵ = 0.09 mm1
c = 19.6396 (18) ÅT = 298 K
β = 95.143 (1)°Block, colourless
V = 1347.9 (2) Å30.40 × 0.11 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
2362 independent reflections
Radiation source: fine-focus sealed tube1096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scanh = 1515
Tmin = 0.967, Tmax = 0.997k = 66
6372 measured reflectionsl = 2318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.005P)2]
where P = (Fo2 + 2Fc2)/3
2362 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04782 (15)0.5173 (5)0.21991 (10)0.0639 (7)
N20.20574 (17)0.2739 (5)0.30038 (12)0.0526 (7)
H20.14240.27160.28710.063*
C80.2181 (2)0.9388 (6)0.14751 (14)0.0455 (8)
N10.26762 (18)0.4416 (5)0.27247 (12)0.0540 (7)
C20.1194 (2)0.6419 (6)0.20091 (15)0.0503 (9)
C130.2456 (2)0.1019 (6)0.35165 (14)0.0455 (8)
C90.2879 (2)0.7970 (6)0.19210 (14)0.0485 (8)
C140.3463 (2)0.1130 (6)0.37631 (15)0.0606 (10)
H140.38910.23370.35900.073*
C30.1181 (2)0.8561 (6)0.15021 (14)0.0488 (9)
C180.1824 (2)0.0788 (6)0.37729 (15)0.0529 (9)
H180.11470.08720.36080.063*
C50.0677 (2)1.1781 (7)0.06632 (15)0.0635 (10)
H50.01711.25880.03830.076*
C160.3208 (3)0.2389 (7)0.45350 (15)0.0618 (10)
H160.34570.35220.48770.074*
C100.3883 (2)0.8584 (7)0.19453 (15)0.0623 (10)
H100.43550.76810.22310.075*
C40.0415 (2)0.9760 (7)0.10998 (15)0.0591 (10)
H40.02540.92570.11150.071*
C110.4192 (2)1.0632 (7)0.15244 (17)0.0663 (10)
H110.48731.10600.15420.080*
C70.2463 (2)1.1369 (7)0.10502 (15)0.0515 (9)
C120.3507 (3)1.2001 (7)0.10908 (16)0.0643 (10)
H120.37301.33360.08260.077*
C60.1653 (3)1.2577 (6)0.06415 (15)0.0595 (9)
H60.17931.39340.03550.071*
C10.2280 (2)0.6048 (6)0.22689 (15)0.0496 (9)
C170.2212 (2)0.2482 (7)0.42811 (15)0.0622 (10)
H170.17880.37030.44520.075*
C150.3830 (2)0.0584 (8)0.42729 (16)0.0682 (11)
H150.45060.05080.44390.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0685 (15)0.0556 (17)0.0678 (16)0.0074 (13)0.0068 (11)0.0015 (13)
N20.0575 (17)0.045 (2)0.0544 (18)0.0012 (14)0.0021 (13)0.0000 (15)
C80.058 (2)0.035 (2)0.043 (2)0.0021 (17)0.0049 (16)0.0076 (17)
N10.0725 (19)0.043 (2)0.0473 (17)0.0045 (16)0.0079 (14)0.0012 (15)
C20.060 (2)0.044 (3)0.047 (2)0.0017 (18)0.0081 (17)0.0057 (18)
C130.053 (2)0.040 (2)0.043 (2)0.0023 (17)0.0017 (16)0.0004 (16)
C90.057 (2)0.041 (2)0.048 (2)0.0016 (18)0.0023 (17)0.0067 (17)
C140.058 (2)0.060 (3)0.063 (2)0.0059 (18)0.0015 (17)0.004 (2)
C30.058 (2)0.045 (2)0.043 (2)0.0007 (18)0.0028 (16)0.0024 (17)
C180.054 (2)0.050 (3)0.054 (2)0.0028 (18)0.0017 (16)0.0041 (19)
C50.069 (2)0.057 (3)0.064 (3)0.009 (2)0.0011 (19)0.008 (2)
C160.071 (2)0.057 (3)0.056 (2)0.017 (2)0.003 (2)0.011 (2)
C100.063 (2)0.058 (3)0.065 (3)0.0009 (19)0.0016 (17)0.003 (2)
C40.061 (2)0.051 (3)0.065 (2)0.0004 (18)0.0014 (18)0.002 (2)
C110.062 (2)0.063 (3)0.074 (3)0.007 (2)0.0085 (19)0.000 (2)
C70.064 (2)0.042 (2)0.049 (2)0.0002 (18)0.0064 (17)0.0010 (18)
C120.083 (3)0.047 (3)0.065 (3)0.007 (2)0.0185 (19)0.0002 (19)
C60.083 (2)0.040 (2)0.056 (2)0.004 (2)0.0101 (18)0.0044 (18)
C10.065 (2)0.037 (2)0.046 (2)0.0011 (17)0.0039 (17)0.0002 (18)
C170.074 (3)0.049 (3)0.064 (2)0.005 (2)0.0056 (19)0.009 (2)
C150.054 (2)0.082 (3)0.067 (3)0.010 (2)0.0037 (18)0.002 (2)
Geometric parameters (Å, º) top
O1—C21.236 (3)C9—C11.481 (4)
N2—N11.347 (3)C14—C151.393 (4)
N2—C131.412 (3)C3—C41.380 (4)
C8—C71.395 (4)C18—C171.393 (4)
C8—C31.404 (3)C5—C61.366 (4)
C8—C91.422 (4)C5—C41.416 (4)
N1—C11.308 (3)C16—C171.374 (3)
C2—C31.490 (4)C16—C151.379 (4)
C2—C11.500 (4)C10—C111.428 (4)
C13—C181.384 (4)C11—C121.386 (4)
C13—C141.384 (3)C7—C121.422 (4)
C9—C101.369 (3)C7—C61.429 (4)
N1—N2—C13119.5 (2)C8—C3—C2107.3 (3)
C7—C8—C3123.6 (3)C13—C18—C17119.2 (3)
C7—C8—C9123.5 (3)C6—C5—C4121.9 (3)
C3—C8—C9112.8 (3)C17—C16—C15118.7 (3)
C1—N1—N2118.1 (3)C9—C10—C11118.9 (3)
O1—C2—C3128.8 (3)C3—C4—C5118.1 (3)
O1—C2—C1125.1 (3)C12—C11—C10121.8 (3)
C3—C2—C1106.0 (3)C8—C7—C12116.7 (3)
C18—C13—C14120.1 (3)C8—C7—C6115.4 (3)
C18—C13—N2119.0 (3)C12—C7—C6127.9 (3)
C14—C13—N2120.9 (3)C11—C12—C7120.2 (3)
C10—C9—C8118.9 (3)C5—C6—C7121.4 (3)
C10—C9—C1134.7 (3)N1—C1—C9123.3 (3)
C8—C9—C1106.4 (3)N1—C1—C2129.3 (3)
C13—C14—C15119.4 (3)C9—C1—C2107.4 (3)
C4—C3—C8119.6 (3)C16—C17—C18121.5 (3)
C4—C3—C2133.0 (3)C16—C15—C14121.1 (3)
C13—N2—N1—C1177.6 (3)C3—C8—C7—C12179.1 (3)
N1—N2—C13—C18176.5 (3)C9—C8—C7—C121.7 (4)
N1—N2—C13—C143.6 (4)C3—C8—C7—C61.1 (4)
C7—C8—C9—C100.8 (5)C9—C8—C7—C6179.7 (3)
C3—C8—C9—C10179.9 (3)C10—C11—C12—C70.6 (5)
C7—C8—C9—C1179.2 (3)C8—C7—C12—C111.5 (5)
C3—C8—C9—C10.0 (3)C6—C7—C12—C11179.2 (3)
C18—C13—C14—C150.3 (5)C4—C5—C6—C71.3 (5)
N2—C13—C14—C15179.5 (3)C8—C7—C6—C51.3 (5)
C7—C8—C3—C41.0 (5)C12—C7—C6—C5179.0 (3)
C9—C8—C3—C4179.7 (3)N2—N1—C1—C9179.5 (3)
C7—C8—C3—C2179.6 (3)N2—N1—C1—C22.0 (5)
C9—C8—C3—C20.3 (3)C10—C9—C1—N10.7 (6)
O1—C2—C3—C40.7 (6)C8—C9—C1—N1179.2 (3)
C1—C2—C3—C4179.8 (3)C10—C9—C1—C2179.6 (3)
O1—C2—C3—C8178.6 (3)C8—C9—C1—C20.4 (3)
C1—C2—C3—C80.6 (3)O1—C2—C1—N10.2 (5)
C14—C13—C18—C170.1 (5)C3—C2—C1—N1179.3 (3)
N2—C13—C18—C17179.7 (3)O1—C2—C1—C9178.6 (3)
C8—C9—C10—C110.3 (5)C3—C2—C1—C90.6 (3)
C1—C9—C10—C11179.7 (3)C15—C16—C17—C180.5 (5)
C8—C3—C4—C50.9 (5)C13—C18—C17—C160.3 (5)
C2—C3—C4—C5179.9 (3)C17—C16—C15—C140.3 (5)
C6—C5—C4—C31.1 (5)C13—C14—C15—C160.1 (5)
C9—C10—C11—C120.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.623.496 (3)157
N2—H2···O10.862.162.812 (3)133
Symmetry code: (i) x, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds