Download citation
Download citation
link to html
In order to search for new anionic architectures and develop useful organic-inorganic hybrid materials in halometallate systems, two new crystalline organic-inorganic hybrid compounds have been prepared, i.e. catena-poly[tri­ethyl(2-hy­droxy­ethyl)aza­nium [[bromido­cadmate(II)]-di-[mu]-bromido]], {(C8H20NO)[CdBr3]}n, (1), and catena-poly[triethyl(2-hy­droxy­ethyl)aza­nium [[bromido­mercurate(II)]-di-[mu]-bromido]], {(C8H20NO)[HgBr3]}n, (2), and the structures determined by X-ray diffraction analysis. The compounds are isostructural, crystallizing in the space group P21/n. The metal centres are five-coordinated by bromide anions, giving a slightly distorted trigonal-bipyramidal geometry. The crystal structures consist of one-dimensional edge-sharing chains of MBr5 trigonal bipyramids, between which tri­ethyl­choline counter-cations are inter­calated. O-H...Br hydrogen-bonding inter­actions are present between the cations and anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615013303/wq3095sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615013303/wq30951sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615013303/wq30952sup3.hkl
Contains datablock 2

CCDC references: 1412250; 1412249

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(1) catena-Poly[triethyl(2-hydroxyethyl)azanium [[bromidocadmate(II)]-di-µ-bromido]] top
Crystal data top
(C8H20NO)[CdBr3]F(000) = 944
Mr = 498.38Dx = 2.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3337 reflections
a = 10.440 (2) Åθ = 3.3–27.5°
b = 7.7444 (15) ŵ = 9.67 mm1
c = 18.161 (4) ÅT = 293 K
β = 95.16 (3)°Block, colourless
V = 1462.4 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2729 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 910
Tmin = 0.248, Tmax = 0.248l = 2323
14640 measured reflections3 standard reflections every 180 reflections
3337 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.041P)2 + 1.0147P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
3337 reflectionsΔρmax = 0.71 e Å3
127 parametersΔρmin = 2.06 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0819 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.98923 (4)0.74601 (5)0.03627 (2)0.03501 (14)
Br10.94600 (6)0.73423 (7)0.17217 (3)0.03691 (17)
Br31.18000 (5)0.55465 (7)0.00335 (3)0.03590 (17)
Br20.84679 (5)0.93902 (7)0.05617 (3)0.03613 (17)
N10.4909 (4)0.2992 (5)0.8204 (2)0.0230 (9)
C10.5249 (5)0.2059 (7)0.8930 (3)0.0319 (13)
H1A0.56750.09860.88240.038*
H1C0.58670.27600.92280.038*
C30.4216 (5)0.4678 (6)0.8326 (3)0.0279 (12)
H3A0.33870.44100.85000.034*
H3B0.40550.52560.78530.034*
C20.4154 (6)0.1639 (7)0.9391 (3)0.0365 (13)
H2A0.44750.15670.99080.044*
H2B0.35170.25540.93390.044*
C70.6140 (5)0.3404 (7)0.7856 (3)0.0345 (13)
H7A0.59370.41820.74440.041*
H7B0.67170.40080.82170.041*
C50.4020 (5)0.1844 (7)0.7700 (3)0.0291 (12)
H5A0.44420.07420.76430.035*
H5B0.32420.16280.79400.035*
C60.3649 (7)0.2594 (8)0.6937 (4)0.0461 (16)
H6A0.30970.17980.66550.069*
H6B0.44110.27890.66890.069*
H6C0.32050.36680.69850.069*
C80.6837 (6)0.1850 (9)0.7582 (4)0.0538 (19)
H8A0.76040.22230.73730.081*
H8B0.62870.12610.72110.081*
H8C0.70640.10810.79870.081*
C40.4912 (7)0.5936 (8)0.8869 (4)0.0532 (18)
H4A0.43950.69510.89090.080*
H4B0.57220.62510.86960.080*
H4C0.50580.53970.93460.080*
O10.3576 (4)0.0053 (6)0.9162 (3)0.0496 (12)
H1B0.29820.01580.94150.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0380 (3)0.0390 (3)0.0287 (2)0.01494 (18)0.00671 (19)0.00640 (18)
Br10.0481 (4)0.0355 (3)0.0284 (3)0.0047 (3)0.0105 (3)0.0021 (2)
Br30.0226 (3)0.0369 (3)0.0475 (4)0.0045 (2)0.0003 (2)0.0119 (3)
Br20.0323 (3)0.0354 (3)0.0396 (4)0.0017 (2)0.0028 (2)0.0117 (3)
N10.018 (2)0.021 (2)0.029 (2)0.0008 (16)0.0009 (18)0.0007 (18)
C10.032 (3)0.024 (3)0.038 (3)0.003 (2)0.008 (3)0.004 (2)
C30.028 (3)0.021 (2)0.034 (3)0.008 (2)0.000 (2)0.003 (2)
C20.047 (4)0.029 (3)0.033 (3)0.002 (3)0.005 (3)0.004 (3)
C70.022 (3)0.037 (3)0.046 (4)0.001 (2)0.008 (2)0.001 (3)
C50.023 (3)0.029 (3)0.034 (3)0.003 (2)0.002 (2)0.007 (2)
C60.053 (4)0.050 (4)0.033 (3)0.010 (3)0.009 (3)0.001 (3)
C80.030 (3)0.061 (4)0.072 (5)0.008 (3)0.018 (3)0.005 (4)
C40.058 (4)0.036 (3)0.063 (5)0.006 (3)0.001 (4)0.021 (3)
O10.048 (3)0.049 (3)0.054 (3)0.012 (2)0.017 (2)0.001 (2)
Geometric parameters (Å, º) top
Cd1—Br12.5503 (9)C2—H2A0.9700
Cd1—Br32.5950 (8)C2—H2B0.9700
Cd1—Br22.6105 (9)C7—C81.514 (8)
Cd1—Br3i2.9719 (8)C7—H7A0.9700
Cd1—Br2ii2.9832 (8)C7—H7B0.9700
Br3—Cd1i2.9719 (8)C5—C61.521 (8)
Br2—Cd1ii2.9832 (8)C5—H5A0.9700
N1—C71.516 (6)C5—H5B0.9700
N1—C11.518 (7)C6—H6A0.9600
N1—C31.519 (6)C6—H6B0.9600
N1—C51.528 (6)C6—H6C0.9600
C1—C21.511 (8)C8—H8A0.9600
C1—H1A0.9700C8—H8B0.9600
C1—H1C0.9700C8—H8C0.9600
C3—C41.523 (8)C4—H4A0.9600
C3—H3A0.9700C4—H4B0.9600
C3—H3B0.9700C4—H4C0.9600
C2—O11.414 (7)O1—H1B0.8200
Br1—Cd1—Br3114.14 (3)C1—C2—H2B109.6
Br1—Cd1—Br2120.18 (3)H2A—C2—H2B108.1
Br3—Cd1—Br2125.69 (3)C8—C7—N1114.9 (5)
Br1—Cd1—Br3i93.05 (3)C8—C7—H7A108.5
Br3—Cd1—Br3i87.06 (2)N1—C7—H7A108.5
Br2—Cd1—Br3i90.06 (3)C8—C7—H7B108.5
Br1—Cd1—Br2ii93.54 (3)N1—C7—H7B108.5
Br3—Cd1—Br2ii92.92 (3)H7A—C7—H7B107.5
Br2—Cd1—Br2ii84.10 (3)C6—C5—N1114.5 (4)
Br3i—Cd1—Br2ii172.80 (2)C6—C5—H5A108.6
Cd1—Br3—Cd1i92.94 (2)N1—C5—H5A108.6
Cd1—Br2—Cd1ii95.90 (3)C6—C5—H5B108.6
C7—N1—C1108.8 (4)N1—C5—H5B108.6
C7—N1—C3108.2 (4)H5A—C5—H5B107.6
C1—N1—C3111.1 (4)C5—C6—H6A109.5
C7—N1—C5111.4 (4)C5—C6—H6B109.5
C1—N1—C5108.9 (4)H6A—C6—H6B109.5
C3—N1—C5108.5 (4)C5—C6—H6C109.5
C2—C1—N1117.0 (4)H6A—C6—H6C109.5
C2—C1—H1A108.0H6B—C6—H6C109.5
N1—C1—H1A108.0C7—C8—H8A109.5
C2—C1—H1C108.0C7—C8—H8B109.5
N1—C1—H1C108.0H8A—C8—H8B109.5
H1A—C1—H1C107.3C7—C8—H8C109.5
N1—C3—C4116.0 (4)H8A—C8—H8C109.5
N1—C3—H3A108.3H8B—C8—H8C109.5
C4—C3—H3A108.3C3—C4—H4A109.5
N1—C3—H3B108.3C3—C4—H4B109.5
C4—C3—H3B108.3H4A—C4—H4B109.5
H3A—C3—H3B107.4C3—C4—H4C109.5
O1—C2—C1110.4 (5)H4A—C4—H4C109.5
O1—C2—H2A109.6H4B—C4—H4C109.5
C1—C2—H2A109.6C2—O1—H1B109.5
O1—C2—H2B109.6
Br1—Cd1—Br3—Cd1i92.02 (3)C7—N1—C3—C464.0 (6)
Br2—Cd1—Br3—Cd1i87.96 (4)C1—N1—C3—C455.4 (6)
Br3i—Cd1—Br3—Cd1i0.0C5—N1—C3—C4175.1 (5)
Br2ii—Cd1—Br3—Cd1i172.79 (2)N1—C1—C2—O185.9 (6)
Br1—Cd1—Br2—Cd1ii90.67 (3)C1—N1—C7—C868.8 (6)
Br3—Cd1—Br2—Cd1ii89.36 (3)C3—N1—C7—C8170.4 (5)
Br3i—Cd1—Br2—Cd1ii175.78 (2)C5—N1—C7—C851.2 (6)
Br2ii—Cd1—Br2—Cd1ii0.0C7—N1—C5—C657.5 (6)
C7—N1—C1—C2176.0 (5)C1—N1—C5—C6177.5 (5)
C3—N1—C1—C257.0 (6)C3—N1—C5—C661.5 (6)
C5—N1—C1—C262.4 (6)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Br2iii0.822.753.489 (4)151
Symmetry code: (iii) x+1, y+1, z+1.
(2) catena-Poly[triethyl(2-hydroxyethyl)azanium [[bromidomercurate(II)]-di-µ-bromido]] top
Crystal data top
(C8H20NO)[HgBr3]F(000) = 1072
Mr = 586.57Dx = 2.666 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3348 reflections
a = 10.373 (2) Åθ = 3.3–27.5°
b = 7.8620 (16) ŵ = 18.71 mm1
c = 17.984 (4) ÅT = 293 K
β = 94.85 (3)°Block, colourless
V = 1461.5 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.118, Tmax = 0.118l = 2323
14649 measured reflections3 standard reflections every 180 reflections
3348 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0326P)2 + 2.2686P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3348 reflectionsΔρmax = 1.11 e Å3
127 parametersΔρmin = 1.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0819 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.48696 (4)0.75529 (5)0.03655 (2)0.04689 (16)
Br20.68530 (8)0.92145 (11)0.00256 (5)0.0431 (3)
Br10.34645 (8)0.58644 (11)0.06039 (5)0.0423 (3)
Br30.44772 (10)0.76597 (11)0.17318 (5)0.0448 (3)
N10.0088 (6)0.7950 (7)0.1785 (3)0.0221 (14)
O10.1437 (6)0.5042 (8)0.0819 (4)0.0520 (17)
H1A0.20470.48330.05720.078*
C70.0236 (7)0.7022 (11)0.1048 (5)0.034 (2)
H7A0.06690.59670.11530.041*
H7B0.08490.77130.07420.041*
C30.0766 (8)0.9611 (9)0.1661 (5)0.0317 (19)
H3A0.09411.01650.21410.038*
H3B0.15940.93570.14740.038*
C20.1342 (10)0.7544 (11)0.3055 (5)0.048 (3)
H2A0.19230.67850.33360.071*
H2B0.05650.76700.33040.071*
H2C0.17480.86330.30160.071*
C50.1143 (7)0.8318 (10)0.2130 (5)0.0327 (19)
H5A0.17230.89130.17670.039*
H5B0.09520.90800.25490.039*
C80.0884 (9)0.6604 (11)0.0590 (5)0.043 (2)
H8A0.05780.65460.00660.051*
H8B0.15310.74940.06520.051*
C10.1015 (7)0.6828 (10)0.2289 (5)0.0301 (19)
H1B0.06230.57170.23370.036*
H1C0.18090.66720.20490.036*
C40.0067 (8)1.0846 (11)0.1139 (6)0.048 (3)
H4A0.05831.18520.11030.072*
H4B0.07451.11440.13240.072*
H4C0.00871.03360.06540.072*
C60.1859 (9)0.6739 (13)0.2407 (6)0.054 (3)
H6A0.26360.70950.26170.081*
H6B0.13080.61580.27810.081*
H6C0.20760.59860.19950.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0505 (3)0.0607 (3)0.0303 (2)0.01604 (19)0.00843 (18)0.00828 (18)
Br20.0311 (5)0.0513 (5)0.0460 (6)0.0040 (4)0.0010 (4)0.0113 (5)
Br10.0423 (5)0.0478 (5)0.0364 (6)0.0028 (4)0.0004 (4)0.0114 (4)
Br30.0565 (6)0.0501 (6)0.0290 (5)0.0052 (4)0.0109 (4)0.0004 (4)
N10.023 (3)0.027 (3)0.016 (4)0.002 (3)0.002 (3)0.001 (3)
O10.048 (4)0.056 (4)0.054 (5)0.014 (3)0.015 (3)0.000 (4)
C70.028 (5)0.043 (5)0.029 (5)0.003 (4)0.011 (4)0.008 (4)
C30.036 (5)0.026 (4)0.033 (5)0.007 (4)0.004 (4)0.002 (4)
C20.054 (6)0.060 (6)0.026 (5)0.011 (5)0.011 (5)0.000 (5)
C50.025 (4)0.040 (5)0.034 (5)0.007 (4)0.004 (4)0.008 (4)
C80.062 (6)0.039 (5)0.028 (5)0.011 (5)0.015 (5)0.005 (4)
C10.028 (5)0.031 (4)0.030 (5)0.008 (3)0.003 (4)0.008 (4)
C40.045 (6)0.041 (5)0.058 (7)0.008 (4)0.001 (5)0.014 (5)
C60.031 (5)0.073 (7)0.062 (7)0.005 (5)0.023 (5)0.001 (6)
Geometric parameters (Å, º) top
Hg1—Br32.5258 (12)C2—C11.500 (12)
Hg1—Br12.5489 (11)C2—H2A0.9600
Hg1—Br22.5546 (10)C2—H2B0.9600
Hg1—Br1i3.2036 (11)C2—H2C0.9600
Hg1—Br2ii3.1518 (11)C5—C61.550 (12)
N1—C51.494 (10)C5—H5A0.9700
N1—C31.509 (9)C5—H5B0.9700
N1—C71.526 (10)C8—H8A0.9700
N1—C11.542 (9)C8—H8B0.9700
O1—C81.402 (10)C1—H1B0.9700
O1—H1A0.8200C1—H1C0.9700
C7—C81.515 (11)C4—H4A0.9600
C7—H7A0.9700C4—H4B0.9600
C7—H7B0.9700C4—H4C0.9600
C3—C41.496 (11)C6—H6A0.9600
C3—H3A0.9700C6—H6B0.9600
C3—H3B0.9700C6—H6C0.9600
Br3—Hg1—Br1123.57 (4)N1—C5—H5A108.4
Br3—Hg1—Br2114.52 (4)C6—C5—H5A108.4
Br1—Hg1—Br2121.88 (4)N1—C5—H5B108.4
C5—N1—C3108.6 (6)C6—C5—H5B108.4
C5—N1—C7108.7 (6)H5A—C5—H5B107.5
C3—N1—C7110.9 (6)O1—C8—C7110.2 (7)
C5—N1—C1112.3 (6)O1—C8—H8A109.6
C3—N1—C1107.8 (6)C7—C8—H8A109.6
C7—N1—C1108.5 (6)O1—C8—H8B109.6
C8—O1—H1A109.5C7—C8—H8B109.6
C8—C7—N1117.0 (6)H8A—C8—H8B108.1
C8—C7—H7A108.1C2—C1—N1114.0 (6)
N1—C7—H7A108.1C2—C1—H1B108.8
C8—C7—H7B108.1N1—C1—H1B108.8
N1—C7—H7B108.1C2—C1—H1C108.8
H7A—C7—H7B107.3N1—C1—H1C108.8
C4—C3—N1116.6 (6)H1B—C1—H1C107.6
C4—C3—H3A108.2C3—C4—H4A109.5
N1—C3—H3A108.2C3—C4—H4B109.5
C4—C3—H3B108.2H4A—C4—H4B109.5
N1—C3—H3B108.2C3—C4—H4C109.5
H3A—C3—H3B107.3H4A—C4—H4C109.5
C1—C2—H2A109.5H4B—C4—H4C109.5
C1—C2—H2B109.5C5—C6—H6A109.5
H2A—C2—H2B109.5C5—C6—H6B109.5
C1—C2—H2C109.5H6A—C6—H6B109.5
H2A—C2—H2C109.5C5—C6—H6C109.5
H2B—C2—H2C109.5H6A—C6—H6C109.5
N1—C5—C6115.3 (7)H6B—C6—H6C109.5
C5—N1—C7—C8177.2 (7)C7—N1—C5—C668.3 (9)
C3—N1—C7—C857.9 (9)C1—N1—C5—C651.8 (9)
C1—N1—C7—C860.4 (9)N1—C7—C8—O186.8 (9)
C5—N1—C3—C462.3 (9)C5—N1—C1—C256.0 (9)
C7—N1—C3—C457.1 (9)C3—N1—C1—C263.7 (9)
C1—N1—C3—C4175.8 (7)C7—N1—C1—C2176.2 (7)
C3—N1—C5—C6171.0 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br10.822.803.507 (6)146
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds