Download citation
Download citation
link to html
A new cadmium-thio­cyanate complex, poly[4-(di­methyl­amino)­pyridin-1-ium [di-[mu]-thio­cyanato-[kappa]2N:S;[kappa]2S:N-thiocyanato-[kappa]N-cadmium(II)]], {(C7H11N2)[Cd(NCS)3]}n, was synthesized by the reaction of cadmium thio­cyanate and 4-(di­methyl­amino)­pyridine hydro­chloride in aqueous solution. In the crystal structure, each CdII ion is square-pyramidally coordinated by three N and two S atoms from five different thio­cyanate ligands, four of which are bridging. The thio­cyanate ligands play different roles in the build up of the structure; one role results in the formation of [Cd2(NCS)2] building blocks, while the other links the building blocks and cations via N-H...S hydrogen bonds. The N-H...S hydrogen bonds and weak [pi]-[pi] stacking inter­actions are involved in the formation of both a two-dimensional network structure and the supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615005239/wq3086sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615005239/wq3086Isup2.hkl
Contains datablock I

CCDC reference: 1054501

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Poly[4-(dimethylamino)pyridin-1-ium [di-µ-thiocyanato-κ2N:S;κ2S:N-thiocyanato-κN-cadmium(II)]] top
Crystal data top
(C7H11N2)[Cd(NCS)3]F(000) = 808
Mr = 409.82Dx = 1.791 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3435 reflections
a = 10.319 (2) Åθ = 3.1–27.5°
b = 15.029 (3) ŵ = 1.84 mm1
c = 9.954 (2) ÅT = 293 K
β = 100.02 (3)°Block, colourless
V = 1520.1 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2752 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1916
Tmin = 0.710, Tmax = 0.710l = 1012
10426 measured reflections3 standard reflections every 180 reflections
3435 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.032P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3435 reflectionsΔρmax = 0.53 e Å3
177 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0819 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.21827 (2)0.609886 (15)0.47592 (2)0.04188 (9)
S10.36975 (10)0.70641 (7)0.33989 (11)0.0627 (3)
S20.02131 (9)0.39397 (6)0.72857 (9)0.0480 (2)
S30.46863 (11)0.35482 (6)0.33571 (11)0.0597 (3)
N30.1993 (3)0.7690 (2)0.1105 (4)0.0675 (9)
N40.1213 (3)0.5299 (2)0.6274 (3)0.0640 (9)
N50.3278 (3)0.4879 (2)0.4419 (4)0.0689 (10)
C80.2669 (4)0.7421 (2)0.2062 (4)0.0497 (8)
C90.0617 (3)0.4739 (2)0.6669 (3)0.0467 (8)
C100.3881 (3)0.4338 (2)0.3975 (4)0.0495 (8)
N10.6231 (3)0.4695 (2)0.1293 (4)0.0573 (9)
H10.591 (4)0.434 (3)0.168 (4)0.069*
N20.8145 (3)0.66154 (19)0.0523 (3)0.0486 (7)
C10.6041 (3)0.5552 (3)0.1556 (4)0.0551 (9)
H1A0.54920.57030.21690.066*
C20.6629 (3)0.6204 (2)0.0949 (4)0.0504 (8)
H2A0.64620.67960.11280.060*
C30.7500 (3)0.5992 (2)0.0037 (3)0.0402 (7)
C40.7638 (3)0.5074 (2)0.0216 (4)0.0486 (8)
H4A0.81690.48930.08300.058*
C50.7012 (4)0.4459 (3)0.0420 (4)0.0579 (10)
H5A0.71270.38580.02460.070*
C60.9108 (4)0.6388 (3)0.1380 (4)0.0647 (10)
H6A0.86670.61230.22130.097*
H6B0.97350.59740.09060.097*
H6C0.95570.69170.15860.097*
C70.7945 (5)0.7557 (3)0.0293 (5)0.0756 (13)
H7A0.84450.77280.05740.113*
H7B0.70280.76660.02970.113*
H7C0.82300.78980.10030.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05421 (15)0.03550 (13)0.03658 (14)0.00519 (11)0.00972 (10)0.00125 (10)
S10.0594 (6)0.0675 (6)0.0604 (6)0.0070 (5)0.0079 (5)0.0224 (5)
S20.0493 (5)0.0560 (5)0.0376 (4)0.0023 (4)0.0044 (4)0.0063 (4)
S30.0775 (7)0.0454 (5)0.0609 (6)0.0141 (5)0.0257 (5)0.0092 (4)
N30.076 (2)0.067 (2)0.061 (2)0.0017 (18)0.0148 (18)0.0270 (18)
N40.073 (2)0.078 (2)0.0396 (17)0.0204 (19)0.0075 (15)0.0076 (16)
N50.0493 (18)0.0451 (18)0.113 (3)0.0096 (15)0.0161 (19)0.0021 (18)
C80.062 (2)0.0413 (18)0.050 (2)0.0018 (16)0.0217 (18)0.0068 (16)
C90.0480 (19)0.062 (2)0.0291 (17)0.0053 (17)0.0027 (14)0.0031 (15)
C100.0428 (18)0.0409 (18)0.063 (2)0.0023 (15)0.0038 (16)0.0132 (17)
N10.0484 (18)0.062 (2)0.059 (2)0.0142 (15)0.0016 (15)0.0131 (16)
N20.0506 (16)0.0477 (16)0.0478 (17)0.0042 (13)0.0099 (13)0.0011 (13)
C10.0416 (19)0.070 (3)0.053 (2)0.0035 (18)0.0076 (16)0.0015 (19)
C20.0495 (19)0.048 (2)0.053 (2)0.0039 (16)0.0072 (16)0.0052 (16)
C30.0341 (15)0.0455 (19)0.0388 (18)0.0011 (13)0.0002 (13)0.0004 (13)
C40.0475 (18)0.050 (2)0.048 (2)0.0005 (15)0.0063 (15)0.0040 (16)
C50.059 (2)0.045 (2)0.066 (3)0.0041 (17)0.0008 (19)0.0004 (18)
C60.064 (2)0.068 (2)0.067 (3)0.003 (2)0.024 (2)0.000 (2)
C70.095 (3)0.049 (2)0.090 (3)0.004 (2)0.034 (3)0.003 (2)
Geometric parameters (Å, º) top
Cd1—N52.211 (3)N2—C71.453 (5)
Cd1—N3i2.289 (3)N2—C61.459 (5)
Cd1—N42.290 (3)C1—C21.349 (5)
Cd1—S2ii2.6148 (13)C1—H1A0.9300
Cd1—S12.6678 (11)C2—C31.421 (5)
S1—C81.641 (4)C2—H2A0.9300
S2—C91.654 (4)C3—C41.413 (5)
S2—Cd1ii2.6148 (13)C4—C51.348 (5)
S3—C101.629 (4)C4—H4A0.9300
N3—C81.151 (5)C5—H5A0.9300
N3—Cd1iii2.289 (3)C6—H6A0.9600
N4—C91.151 (4)C6—H6B0.9600
N5—C101.157 (5)C6—H6C0.9600
N1—C51.332 (5)C7—H7A0.9600
N1—C11.336 (5)C7—H7B0.9600
N1—H10.77 (4)C7—H7C0.9600
N2—C31.327 (4)
N5—Cd1—N3i147.94 (14)C2—C1—H1A119.4
N5—Cd1—N487.69 (13)C1—C2—C3120.5 (3)
N3i—Cd1—N486.57 (13)C1—C2—H2A119.8
N5—Cd1—S2ii102.19 (10)C3—C2—H2A119.8
N3i—Cd1—S2ii109.83 (9)N2—C3—C4122.8 (3)
N4—Cd1—S2ii97.55 (9)N2—C3—C2121.9 (3)
N5—Cd1—S190.73 (10)C4—C3—C2115.3 (3)
N3i—Cd1—S188.96 (9)C5—C4—C3121.0 (3)
N4—Cd1—S1168.89 (8)C5—C4—H4A119.5
S2ii—Cd1—S193.54 (3)C3—C4—H4A119.5
C8—S1—Cd1103.64 (13)N1—C5—C4121.1 (4)
C9—S2—Cd1ii96.28 (12)N1—C5—H5A119.4
C8—N3—Cd1iii131.4 (3)C4—C5—H5A119.4
C9—N4—Cd1158.3 (3)N2—C6—H6A109.5
C10—N5—Cd1164.7 (3)N2—C6—H6B109.5
N3—C8—S1177.0 (3)H6A—C6—H6B109.5
N4—C9—S2178.1 (3)N2—C6—H6C109.5
N5—C10—S3177.8 (3)H6A—C6—H6C109.5
C5—N1—C1120.8 (3)H6B—C6—H6C109.5
C5—N1—H1121 (3)N2—C7—H7A109.5
C1—N1—H1118 (3)N2—C7—H7B109.5
C3—N2—C7121.7 (3)H7A—C7—H7B109.5
C3—N2—C6121.5 (3)N2—C7—H7C109.5
C7—N2—C6116.8 (3)H7A—C7—H7C109.5
N1—C1—C2121.3 (4)H7B—C7—H7C109.5
N1—C1—H1A119.4
N5—Cd1—S1—C8115.60 (17)Cd1ii—S2—C9—N4162 (11)
N3i—Cd1—S1—C896.46 (17)Cd1—N5—C10—S3126 (9)
N4—Cd1—S1—C8162.7 (5)C5—N1—C1—C20.1 (5)
S2ii—Cd1—S1—C813.34 (14)N1—C1—C2—C31.8 (5)
N5—Cd1—N4—C957.5 (9)C7—N2—C3—C4177.3 (4)
N3i—Cd1—N4—C9154.0 (9)C6—N2—C3—C43.8 (5)
S2ii—Cd1—N4—C944.5 (9)C7—N2—C3—C23.3 (5)
S1—Cd1—N4—C9139.5 (7)C6—N2—C3—C2175.6 (3)
N3i—Cd1—N5—C10120.7 (12)C1—C2—C3—N2176.5 (3)
N4—Cd1—N5—C10159.5 (12)C1—C2—C3—C42.9 (5)
S2ii—Cd1—N5—C1062.3 (12)N2—C3—C4—C5177.0 (3)
S1—Cd1—N5—C1031.5 (12)C2—C3—C4—C52.4 (5)
Cd1iii—N3—C8—S126 (7)C1—N1—C5—C40.4 (5)
Cd1—S1—C8—N3178 (100)C3—C4—C5—N10.8 (5)
Cd1—N4—C9—S2154 (10)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S30.77 (4)2.56 (4)3.298 (3)164 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds