Download citation
Download citation
link to html
The dipyridyl-type building blocks 4-amino-3,5-bis­(pyridin-3-yl)-1,2,4-triazole (3-bpt) and 4,4'-bi­pyridine (bpy) have been used to assemble with ZnII in the presence of tri­thio­cyanuric acid (ttcH3) to afford two coordination compounds, namely bis­[4-amino-3,5-bis­(pyridin-3-yl)-1,2,4-triazole-[kappa]N3]bis­(trithio­cyanurato-[kappa]2N,S)zinc(II), [Zn(C3H2N3S3)2(C12H10N6)2]·2H2O, (1), and catena-poly[[[bis­(tri­thio­cyanurato-[kappa]2N,S)zinc(II)]-[mu]-4,4'-bi­pyridine-[kappa]2N:N'] 4,4'-bi­pyridine mono­solvate], {[Zn2(C3H2N3S3)4(C10H8N2)3]·C10H8N2}n, (2). Single-crystal X-ray analysis indicates that complex (1) is a mononuclear structure, while complex (2) presents a one-dimensional chain coordination motif. In both complexes, the central ZnII cation adopts an octa­hedral geometry, coordinated by four N- and two S-donor atoms. Notably, tri­thio­cyanurate (ttcH2-) adopts the same bidentate chelating coordination mode in each complex and exists in the thione tautomeric form. The 3-bpt co-ligand in (1) adopts a monodentate coordination mode and serves as a terminal pendant ligand, whereas the 4,4'-bi­pyridine (bpy) ligand in (2) adopts a bidentate-bridging coordination mode. The different coordination characters of the different N-donor auxiliary ligands lead to structural diversity for complexes (1) and (2). Further analysis indicates that the resultant three-dimensional supra­molecular networks for (1) and (2) arise through inter­molecular N-H...S and N-H...N hydrogen bonds. Both complexes have been further characterized by FT-IR spectroscopy and elemental analyses.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614014260/wq3063sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014260/wq30631sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014260/wq30632sup3.hkl
Contains datablock 2

CCDC references: 1008903; 1008904

Introduction top

During the past decade, the design of new coordination complexes has attracted ever-increasing attention in the fields of coordination chemistry and crystal engineering, the main aim being to discover new crystalline materials with useful functionality (Férey et al., 2005; Tanaka et al., 2010; Kobayashi et al., 2010; Yoon et al., 2012; Chen et al., 2008). The type of coordination polymer obtained is sensitive to many factors, including the type of organic ligand, the metal ion, the solvent, the counter-anion, the pH range etc. (Long, 2010; Moulton & Zaworotko, 2001; Li & Du, 2011; Du et al., 2009). Among these factors, the choice of organic ligands as building blocks is often the key factor in the final structures of coordination polymers.

To date, much research effort has been devoted to the coordination chemistry of pyridyl-based and polycarboxyl­ate ligands, for example 2,2'-bi­pyridyl, 4,4'-bi­pyridyl (bpy), benzene-1,4-di­carb­oxy­lic acid and benzene-1,3,5-tri­carb­oxy­lic acid (Du et al., 2004; Daiguebonne et al., 2006; Biradha et al., 2006). Recently, the angular di­pyridyl ligand 4-amino-3,5-bis­(pyridin-3-yl)-1,2,4-triazole (3-bpt), which can adopt three different conformations depending on the conditions (see Scheme 1), has been chosen to assemble with metal salts by ourselves and many other researchers (Du et al., 2008; Jiang et al., 2012; Yang et al., 2013). However, thio­cyanuric acid (ttcH3), which can exist in either the thiol or thione tautomeric forms (see Scheme 2), has not been studied extensively in the field of metal–organic complexes compared with the above ligands. In fact, complexes involving ttcH3 have potential applications in industry, biology, pharmacology and analytical chemistry, because anions of ttcH3 have been used widely to remove heavy metals (Ag+, Hg2+, Cd2+, Pd2+ and Cu2+) from waste water (Matlock et al., 2001; Henke & Atwood, 1998; Henke et al., 2000). The ttcH3 molecule has three S- and three N-donor atoms available and can behave as either a chelating or a bridging ligand (Mahon et al., 2003; Chan et al., 1996; Hunks et al., 1999). Moreover, the multiplicity of S and N atoms can provide potential sites for hydrogen-bonding inter­actions, which may further extend the dimensions of the crystalline architectures. Considering all the factors stated above, we present the results of the synthesis and characterization of two mixed-ligand complexes involving ttcH3 with two kinds of di­pyridyl-type ligand.

In this work, we have used 4-amino-3,5-bis­(pyridin-3-yl)-1,2,4-triazole (3-bpt) and 4,4'-bi­pyridine (bpy), respectively, in combination with ttcH3 to prepare two new ZnII coordination complexes, namely, [Zn(ttcH2)2(3-bpt)2]·2H2O, (1), and {[Zn2(ttcH2)4(bpy)3]·bpy}n, (2) (Scheme 3). Complex (1) is mononuclear, while (2) is a one-dimensional coordination polymer. These complexes have also been characterised using FT–IR spectroscopy and elemental analyses.

Experimental top

Synthesis and crystallization top

A methanol (5 ml) solution of 4-amino-3,5-bis­(pyridin-3-yl)-1,2,4-triazole (3-bpt) (12 mg, 0.05 mmol) was added to an aqueous solution (10 ml) of Zn(NO3)2·6H2O (15 mg, 0.05 mmol) with continuous stirring for 10 min. A solution of tri­thio­cyanuric acid (ttcH3) (9 mg, 0.05 mmol) in methanol (5 ml) was then added dropwise. The mixture was stirred at room temperature for 30 min, filtered, and the resulting solution left to stand at room temperature. Colourless block-shaped crystals of (1) were obtained by slow evaporation of the solvents after ca 2 d (yield 53%, 12.5 mg, based on 3-bpt). Analysis, calculated for C30H28N18O2S6Zn, (1): C 38.73, H 3.03, N 27.10%; found: C 38.69, H 3.01, N 27.08%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3393 (b), 3124 (b), 1569 (s), 1498 (s), 1462 (m), 1412 (vs), 1360 (m), 1284 (w), 1244 (vs), 1183 (m), 1158 (vs), 990 (w), 883 (w), 817 (w), 700 (w), 634 (w), 507 (w), 457 (m).

The synthesis of (2) was similar to (1) except that 3-bpt was replaced by bpy (7.8 mg, 0.05 mmol), affording colourless block crystals of (2) in ca 40% yield (7.3 mg, based on bpy). Analysis, calculated for C26H20N10S6Zn, (2): C 42.76, H 2.76, N 19.18%; found: C 42.72, H 2.73, N 19.17%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3052 (b), 2907 (b), 1898 (b), 1600 (w), 1544 (vs), 1449 (m), 1365 (vs), 1255 (m), 1213 (s), 1135 (vs), 1057 (w), 999 (w), 806 (vs), 670 (w), 612 (s), 456 (vs).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were initially located in a difference Fourier map and then refined using a riding model, with C—H = 0.93, N—H = 0.89 and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N,O).

Results and discussion top

Single-crystal X-ray diffraction reveals that complex (1) adopts a mononuclear structure. The asymmetric coordination unit of (1) consists of one half-occupied ZnII cation, one 3-bpt ligand, one ttcH2- anion existing in the thione tautomeric form and one solvent water molecule. As can be seen in Fig. 1, the central ZnII is coordinated to four N atoms from two pyridyl rings of 3-bpt ligands and two ttcH2- anions, and two S-donor atoms from two monovalent ttcH2- anions, exhibiting a distorted o­cta­hedral geometry. The triazine ring of ttcH2- forms strong bonds with the ZnII cation, as indicated by the bond distances [Zn—N1 = 2.1476 (15) Å and Zn—S1 = 2.5925 (6) Å; Table 2]. The 3-bpt ligand, showing an uncommon cisiod-II conformation (see Scheme 1), adopts a monodentate coordination mode, while the ttcH2- ligand adopts a bidentate–chelating coordination mode. For complex (1), adjacent mononuclear units are extended into a one-dimensional tubular array by N3—H3'···N9v hydrogen bonds [symmetry code: (v) x + 1, y, z - 1] between the uncoordinated pyridyl ring of 3-bpt and the triazine ring of ttcH2-. In addition, adjacent one-dimensional arrays are inter­connected via N8—H8''···S3vi [symmetry code: (vi) -x + 2, -y + 2, -z + 1] hydrogen bonds between the amino group of 3-bpt and uncoordinated S atoms of ttcH2-, resulting in a two-dimensional layered network (Fig. 2). The parallel two-dimensional layers are further extended via N2—H2'···S2iv hydrogen bonds [symmetry code: (iv) -x + 1, -y + 2, -z + 1] between triazine and thione groups of ttcH2-, to give a three-dimensional supra­molecular network (Fig. 3). The structure of (1) is further stabilized by hydrogen-bonding inter­actions involving the solvent water molecules and the amino and triazole groups of 3-bpt via N8—H8'···O1, O1—H1A···N6 and O1—H1B···N5 hydrogen bonds (see Table 3).

Compound (2) crystallizes in the monoclinic C2/c space group, and is made up of a neutral ZnII coordination unit and one uncoordinated bpy molecule. As can be seen in Fig. 4, the coordination polyhedron around the ZnII cation has o­cta­hedral geometry, coordinated by four N atoms from the triazine and pyridyl rings of bpy, and two S atoms of ttcH2- existing in the thione tautomeric form. The ttcH2- ligands adopt bidentate–chelating coordination modes. The Zn—N bond lengths are in the normal range [2.141 (2)–2.187 (3) Å] and the Zn—S bond length is 2.600 (1) Å (Table 4). Adjacent ZnII centres are extended to afford a one-dimensional polymeric chain via the bridging bpy ligand, with a Zn···Zn distance of 11.39 (1) Å. Adjacent one-dimensional chains are inter­connected via N3—H3···S2ii hydrogen bonds [symmetry code: (ii) -x + 1/2, -y - 1/2, -z + 1] between the thione and triazine groups of ttcH2-, producing a two-dimensional layered hydrogen-bonded network with (4,4) topology (Fig. 5). These two-dimensional sheets are further linked by the connection of inter­calated bpy in the crystalline lattice via N2—H2···N6i hydrogen bonds [symmetry code: (i) x - 1/2, -y + 1/2, z - 1/2] between the pyridyl ring of bpy and the triazine ring of ttcH2- (Fig. 6 and Table 5), resulting in an extended three-dimensional net.

From the above observations, it can be seen that self-assembly of ttcH3 and 3-bpt/bpy with ZnII under similar reaction conditions results in two kinds of coordination motif, viz. mononuclear for (1) and one-dimensional for (2). The structural difference can mainly be attributed to the introduction of different N-donor auxiliary ligands which show diverse coordination modes. In mononuclear structure (1), the 3-bpt ligand serves as the monodentate terminal around the metal centre, while the co-ligand bpy in (2) adopts a bidentate–bridging coordination mode. The central metal ions adopt the same o­cta­hedral geometry and the ttcH2- anions show the same bidentate–chelating coordination pattern in complexes (1) and (2). All the Zn—-S [2.5925 (6) and 2.600 (1) Å] and Zn—N [2.141 (2)–2.187 (3) Å] bond lengths are in normal ranges [Standard reference?]. In addition, both (1) and (2) are extended into three-dimensional supra­molecular networks via multiple hydrogen-bond inter­actions. Notably, the presence of bpy in the crystalline lattice plays an important role in directing the resultant three-dimensional supra­molecular net for (2).

In summary, two ZnII coordination complexes have been assembled based on ttcH3 and two di­pyridyl-type building blocks, 3-bpt and bpy, affording two types of coordination structure, mononuclear and one-dimensional, respectively. This structural variation may arise from the different coordination modes of the N-donor auxiliary ligand (monodentate for 3-bpt and bidentate-bridging for bpy). Notably, ttcH2- adopts the same bidentate chelating coordination mode [in each complex?], existing in the thione tautomeric form. The results prove that the choice of different organic co-ligands plays an important role in preparing new crystalline materials. We are currently extending this research to assemble complexes using ttcH3 and different building blocks to enrich such inorganic–organic hybrid materials.

Related literature top

For related literature, see: Biradha et al. (2006); Chan et al. (1996); Chen et al. (2008); Daiguebonne et al. (2006); Du et al. (2004, 2008, 2009); Férey et al. (2005); Henke & Atwood (1998); Henke et al. (2000); Hunks et al. (1999); Jiang et al. (2012); Kobayashi et al. (2010); Li & Du (2011); Long (2010); Mahon et al. (2003); Matlock et al. (2001); Moulton & Zaworotko (2001); Tanaka et al. (2010); Yang et al. (2013); Yoon et al. (2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2009) for (1); SMART (Bruker, 2002) for (2). Cell refinement: CrystalClear (Rigaku, 2009) for (1); SMART (Bruker, 2002) for (2). Data reduction: CrystalClear (Rigaku, 2009) for (1); SAINT (Bruker, 2002) for (2). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the coordination environment of the ZnII cation of complex (1), with the atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry code: (A) -x + 2, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The two-dimensional network of complex (1), constructed via N3—H3'···N9v and N8—H8''···S3vi hydrogen bonds (red dashed lines?). [Symmetry codes: (v) x + 1, y, z - 1; (vi) -x + 2, -y + 2, -z + 1.]
[Figure 3] Fig. 3. The resultant three-dimensional supramolecular network of complex (1), connected via N2—H2'···S2iv hydrogen bonds (red dashed lines?). [Symmetry code: (iv) -x + 1, -y + 2, -z + 1.]
[Figure 4] Fig. 4. A local view of the coordination environment of the ZnII cation of complex (2), with the atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, y, -z + 1/2; (B) x, y - 1, z; (C) -x, -y + 1, -z + 2.]
[Figure 5] Fig. 5. The two-dimensional hydrogen-bonding network of complex (2), showing N3—H3···S2ii hydrogen bonds (red dashed lines?). [Symmetry code: (ii) -x + 1/2, -y - 1/2, -z + 1.]
[Figure 6] Fig. 6. The three-dimensional supramolecular network of complex (2), connected via the intercalated bpy ligands in the crystalline lattice through N2—H2···N6i hydrogen bonds (red dashed lines?). [Symmetry code:(i) x - 1/2, -y + 1/2, z - 1/2.]
(1) Bis[4-amino-3,5-bis(pyridin-3-yl)-1,2,4-triazole-κN3]bis(trithiocyanurato-κ2N,S)zinc(II) top
Crystal data top
[Zn(C3H2N3S3)2(C12H10N6)2]·2H2OZ = 1
Mr = 930.43F(000) = 476
Triclinic, P1Dx = 1.581 Mg m3
a = 7.7509 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8253 (1) ÅCell parameters from 2767 reflections
c = 12.5824 (11) Åθ = 3.0–27.5°
α = 77.543 (16)°µ = 1.01 mm1
β = 81.089 (18)°T = 294 K
γ = 72.256 (16)°Platelet, colourless
V = 977.32 (10) Å30.25 × 0.09 × 0.03 mm
Data collection top
Rigaku Mercury 375R
diffractometer
4460 independent reflections
Radiation source: fine-focus sealed tube3822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1414
Tmin = 0.787, Tmax = 0.970l = 1616
10320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.222P]
where P = (Fo2 + 2Fc2)/3
4460 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Zn(C3H2N3S3)2(C12H10N6)2]·2H2Oγ = 72.256 (16)°
Mr = 930.43V = 977.32 (10) Å3
Triclinic, P1Z = 1
a = 7.7509 (4) ÅMo Kα radiation
b = 10.8253 (1) ŵ = 1.01 mm1
c = 12.5824 (11) ÅT = 294 K
α = 77.543 (16)°0.25 × 0.09 × 0.03 mm
β = 81.089 (18)°
Data collection top
Rigaku Mercury 375R
diffractometer
4460 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3822 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.970Rint = 0.078
10320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.71 e Å3
4460 reflectionsΔρmin = 0.58 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.50000.50000.02827 (10)
N10.90763 (19)0.71110 (14)0.45831 (12)0.0253 (3)
N20.7712 (2)0.93764 (16)0.43796 (13)0.0290 (3)
H2'0.682 (3)1.005 (2)0.4494 (16)0.026 (5)*
N31.0662 (2)0.86390 (16)0.36717 (13)0.0296 (3)
H3'1.159 (3)0.884 (2)0.3354 (19)0.043 (7)*
N41.0848 (2)0.52174 (16)0.64929 (12)0.0288 (3)
N50.7123 (2)0.62519 (18)0.92162 (14)0.0369 (4)
N60.6065 (2)0.69480 (19)0.99985 (14)0.0374 (4)
N70.8535 (2)0.75829 (16)0.95354 (12)0.0278 (3)
N80.9760 (3)0.8347 (2)0.94497 (18)0.0391 (4)
H8'1.073 (4)0.776 (3)0.982 (2)0.057 (8)*
H8''0.994 (3)0.859 (3)0.883 (2)0.044 (7)*
N90.3782 (2)0.92061 (19)1.24065 (14)0.0386 (4)
O10.2645 (2)0.6503 (2)0.06706 (16)0.0519 (4)
H1A0.368 (5)0.659 (4)0.049 (3)0.089 (11)*
H1B0.276 (5)0.564 (4)0.085 (3)0.106 (14)*
S11.24443 (6)0.60758 (5)0.38892 (4)0.03241 (12)
S20.56113 (6)0.78511 (5)0.53560 (4)0.03580 (13)
S30.93140 (7)1.12356 (5)0.34464 (4)0.03862 (13)
C11.0623 (2)0.73607 (18)0.40536 (14)0.0261 (4)
C20.7575 (2)0.81119 (18)0.47446 (14)0.0254 (3)
C30.9230 (2)0.96850 (18)0.38512 (14)0.0275 (4)
C41.2610 (3)0.4899 (2)0.66538 (16)0.0359 (4)
H41.34760.44830.61480.043*
C51.3190 (3)0.5164 (2)0.75407 (17)0.0416 (5)
H51.44260.49420.76220.050*
C61.1914 (3)0.5765 (2)0.83083 (15)0.0366 (4)
H61.22770.59550.89110.044*
C71.0085 (2)0.60788 (18)0.81607 (14)0.0274 (4)
C80.9610 (2)0.57932 (18)0.72355 (14)0.0279 (4)
H80.83840.60110.71300.033*
C90.8606 (2)0.66347 (19)0.89558 (14)0.0290 (4)
C100.6921 (2)0.77514 (19)1.01836 (14)0.0284 (4)
C110.6178 (2)0.8636 (2)1.09825 (14)0.0286 (4)
C120.6829 (3)0.9658 (2)1.10905 (18)0.0391 (5)
H120.78560.98111.06570.047*
C130.5929 (3)1.0449 (2)1.18517 (19)0.0443 (5)
H130.63471.11391.19360.053*
C140.4411 (3)1.0204 (2)1.24816 (17)0.0397 (5)
H140.37981.07521.29780.048*
C150.4651 (3)0.8448 (2)1.16783 (16)0.0368 (5)
H150.42200.77511.16280.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03719 (18)0.02164 (16)0.02543 (15)0.00764 (13)0.00109 (11)0.00688 (12)
N10.0232 (7)0.0197 (7)0.0294 (7)0.0025 (6)0.0049 (6)0.0071 (6)
N20.0245 (7)0.0199 (7)0.0366 (8)0.0012 (6)0.0037 (6)0.0044 (7)
N30.0270 (8)0.0231 (8)0.0343 (8)0.0068 (7)0.0086 (6)0.0047 (7)
N40.0308 (8)0.0269 (8)0.0264 (7)0.0037 (7)0.0023 (6)0.0097 (6)
N50.0411 (9)0.0391 (10)0.0353 (8)0.0176 (8)0.0126 (7)0.0192 (8)
N60.0387 (9)0.0441 (10)0.0361 (8)0.0205 (8)0.0133 (7)0.0207 (8)
N70.0280 (8)0.0297 (8)0.0278 (7)0.0110 (7)0.0062 (6)0.0117 (6)
N80.0360 (10)0.0451 (11)0.0429 (10)0.0214 (9)0.0130 (8)0.0198 (9)
N90.0382 (9)0.0417 (10)0.0367 (9)0.0128 (8)0.0128 (7)0.0181 (8)
O10.0420 (9)0.0588 (12)0.0632 (11)0.0231 (9)0.0007 (8)0.0187 (10)
S10.0244 (2)0.0265 (2)0.0402 (3)0.00143 (19)0.00929 (18)0.0102 (2)
S20.0242 (2)0.0254 (2)0.0525 (3)0.00490 (19)0.01038 (19)0.0090 (2)
S30.0448 (3)0.0212 (2)0.0451 (3)0.0098 (2)0.0075 (2)0.0032 (2)
C10.0265 (8)0.0227 (9)0.0261 (8)0.0044 (7)0.0038 (6)0.0065 (7)
C20.0251 (8)0.0218 (8)0.0267 (8)0.0031 (7)0.0011 (6)0.0063 (7)
C30.0299 (9)0.0234 (9)0.0268 (8)0.0060 (7)0.0026 (7)0.0050 (7)
C40.0295 (9)0.0397 (11)0.0328 (9)0.0016 (8)0.0015 (7)0.0138 (9)
C50.0277 (9)0.0530 (14)0.0377 (10)0.0042 (9)0.0033 (8)0.0170 (10)
C60.0373 (10)0.0434 (12)0.0276 (9)0.0037 (9)0.0035 (8)0.0137 (9)
C70.0319 (9)0.0239 (9)0.0242 (8)0.0064 (7)0.0060 (7)0.0078 (7)
C80.0278 (9)0.0255 (9)0.0285 (8)0.0045 (7)0.0030 (7)0.0092 (7)
C90.0329 (9)0.0288 (9)0.0245 (8)0.0085 (8)0.0044 (7)0.0081 (7)
C100.0287 (9)0.0301 (9)0.0270 (8)0.0104 (8)0.0060 (7)0.0095 (8)
C110.0272 (8)0.0309 (9)0.0269 (8)0.0063 (8)0.0035 (7)0.0107 (8)
C120.0371 (11)0.0447 (12)0.0420 (11)0.0188 (10)0.0099 (8)0.0205 (10)
C130.0457 (12)0.0473 (13)0.0497 (12)0.0209 (11)0.0060 (10)0.0253 (11)
C140.0425 (11)0.0432 (12)0.0356 (10)0.0095 (10)0.0060 (8)0.0222 (9)
C150.0383 (10)0.0369 (11)0.0383 (10)0.0160 (9)0.0124 (8)0.0171 (9)
Geometric parameters (Å, º) top
Zn1—N1i2.1476 (15)N9—C141.339 (3)
Zn1—N12.1476 (15)O1—H1A0.83 (4)
Zn1—N42.1640 (15)O1—H1B0.89 (4)
Zn1—N4i2.1640 (15)S1—C11.6754 (18)
Zn1—S12.5925 (6)S2—C21.6712 (18)
Zn1—S1i2.5925 (6)S3—C31.6640 (19)
N1—C21.350 (2)C4—C51.379 (3)
N1—C11.352 (2)C4—H40.9300
N2—C31.356 (2)C5—C61.385 (3)
N2—C21.378 (2)C5—H50.9300
N2—H2'0.86 (2)C6—C71.386 (3)
N3—C31.354 (2)C6—H60.9300
N3—C11.371 (2)C7—C81.394 (2)
N3—H3'0.83 (2)C7—C91.470 (2)
N4—C81.339 (2)C8—H80.9300
N4—C41.340 (2)C10—C111.469 (2)
N5—C91.310 (2)C11—C121.387 (3)
N5—N61.379 (2)C11—C151.399 (2)
N6—C101.319 (2)C12—C131.385 (3)
N7—C91.366 (2)C12—H120.9300
N7—C101.368 (2)C13—C141.377 (3)
N7—N81.416 (2)C13—H130.9300
N8—H8'0.94 (3)C14—H140.9300
N8—H8''0.77 (3)C15—H150.9300
N9—C151.328 (2)
N1i—Zn1—N1180N1—C2—S2122.13 (14)
N1i—Zn1—N491.55 (6)N2—C2—S2120.54 (13)
N1—Zn1—N488.45 (6)N3—C3—N2114.99 (16)
N1i—Zn1—N4i88.45 (6)N3—C3—S3122.65 (14)
N1—Zn1—N4i91.55 (6)N2—C3—S3122.36 (14)
N4—Zn1—N4i180N4—C4—C5122.53 (17)
N1i—Zn1—S1114.22 (4)N4—C4—H4118.7
N1—Zn1—S165.78 (4)C5—C4—H4118.7
N4—Zn1—S189.26 (4)C4—C5—C6119.33 (18)
N4i—Zn1—S190.74 (4)C4—C5—H5120.3
N1i—Zn1—S1i65.78 (4)C6—C5—H5120.3
N1—Zn1—S1i114.22 (4)C5—C6—C7118.69 (18)
N4—Zn1—S1i90.74 (4)C5—C6—H6120.7
N4i—Zn1—S1i89.26 (4)C7—C6—H6120.7
S1—Zn1—S1i180C6—C7—C8118.52 (16)
C2—N1—C1120.42 (16)C6—C7—C9123.61 (16)
C2—N1—Zn1139.52 (12)C8—C7—C9117.79 (16)
C1—N1—Zn199.97 (11)N4—C8—C7122.60 (17)
C3—N2—C2124.78 (16)N4—C8—H8118.7
C3—N2—H2'113.9 (13)C7—C8—H8118.7
C2—N2—H2'121.3 (13)N5—C9—N7109.66 (15)
C3—N3—C1122.63 (15)N5—C9—C7122.94 (17)
C3—N3—H3'114.3 (18)N7—C9—C7127.39 (16)
C1—N3—H3'122.9 (18)N6—C10—N7108.60 (16)
C8—N4—C4118.33 (16)N6—C10—C11122.64 (16)
C8—N4—Zn1119.88 (13)N7—C10—C11128.76 (16)
C4—N4—Zn1121.51 (12)C12—C11—C15117.22 (17)
C9—N5—N6107.42 (15)C12—C11—C10125.83 (17)
C10—N6—N5108.25 (15)C15—C11—C10116.93 (17)
C9—N7—C10106.06 (15)C13—C12—C11119.17 (18)
C9—N7—N8128.96 (15)C13—C12—H12120.4
C10—N7—N8124.78 (15)C11—C12—H12120.4
N7—N8—H8'102.6 (16)C14—C13—C12119.27 (19)
N7—N8—H8''104.7 (19)C14—C13—H13120.4
H8'—N8—H8''118 (3)C12—C13—H13120.4
C15—N9—C14117.99 (17)N9—C14—C13122.54 (19)
H1A—O1—H1B108 (4)N9—C14—H14118.7
C1—S1—Zn176.12 (6)C13—C14—H14118.7
N1—C1—N3119.73 (16)N9—C15—C11123.78 (18)
N1—C1—S1118.08 (13)N9—C15—H15118.1
N3—C1—S1122.19 (13)C11—C15—H15118.1
N1—C2—N2117.33 (15)
N4—Zn1—N1—C287.69 (19)C8—N4—C4—C51.2 (3)
N4i—Zn1—N1—C292.31 (19)Zn1—N4—C4—C5172.61 (17)
S1—Zn1—N1—C2177.6 (2)N4—C4—C5—C60.9 (3)
S1i—Zn1—N1—C22.4 (2)C4—C5—C6—C70.2 (3)
N4—Zn1—N1—C188.34 (11)C5—C6—C7—C81.0 (3)
N4i—Zn1—N1—C191.66 (11)C5—C6—C7—C9175.7 (2)
S1—Zn1—N1—C11.54 (9)C4—N4—C8—C70.4 (3)
S1i—Zn1—N1—C1178.46 (9)Zn1—N4—C8—C7173.55 (13)
N1i—Zn1—N4—C8117.30 (14)C6—C7—C8—N40.7 (3)
N1—Zn1—N4—C862.70 (14)C9—C7—C8—N4176.16 (17)
S1—Zn1—N4—C8128.50 (14)N6—N5—C9—N71.0 (2)
S1i—Zn1—N4—C851.50 (14)N6—N5—C9—C7178.41 (18)
N1i—Zn1—N4—C468.96 (16)C10—N7—C9—N50.8 (2)
N1—Zn1—N4—C4111.04 (16)N8—N7—C9—N5174.2 (2)
S1—Zn1—N4—C445.25 (15)C10—N7—C9—C7178.61 (19)
S1i—Zn1—N4—C4134.75 (15)N8—N7—C9—C76.4 (3)
C9—N5—N6—C100.9 (2)C6—C7—C9—N5138.1 (2)
N1i—Zn1—S1—C1178.74 (8)C8—C7—C9—N538.6 (3)
N1—Zn1—S1—C11.26 (8)C6—C7—C9—N741.3 (3)
N4—Zn1—S1—C187.37 (8)C8—C7—C9—N7142.05 (19)
N4i—Zn1—S1—C192.63 (8)N5—N6—C10—N70.4 (2)
C2—N1—C1—N30.5 (3)N5—N6—C10—C11179.53 (18)
Zn1—N1—C1—N3177.47 (14)C9—N7—C10—N60.2 (2)
C2—N1—C1—S1179.48 (13)N8—N7—C10—N6175.0 (2)
Zn1—N1—C1—S12.46 (15)C9—N7—C10—C11178.86 (19)
C3—N3—C1—N13.6 (3)N8—N7—C10—C115.9 (3)
C3—N3—C1—S1176.37 (14)N6—C10—C11—C12168.2 (2)
Zn1—S1—C1—N12.07 (13)N7—C10—C11—C1212.8 (3)
Zn1—S1—C1—N3177.86 (16)N6—C10—C11—C1510.2 (3)
C1—N1—C2—N21.9 (3)N7—C10—C11—C15168.8 (2)
Zn1—N1—C2—N2173.55 (13)C15—C11—C12—C131.4 (3)
C1—N1—C2—S2177.83 (13)C10—C11—C12—C13177.0 (2)
Zn1—N1—C2—S26.7 (3)C11—C12—C13—C140.1 (4)
C3—N2—C2—N11.5 (3)C15—N9—C14—C131.3 (3)
C3—N2—C2—S2178.25 (14)C12—C13—C14—N91.5 (4)
C1—N3—C3—N23.9 (3)C14—N9—C15—C110.4 (3)
C1—N3—C3—S3176.60 (14)C12—C11—C15—N91.7 (3)
C2—N2—C3—N31.3 (3)C10—C11—C15—N9176.9 (2)
C2—N2—C3—S3179.14 (14)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1ii0.94 (3)1.96 (3)2.892 (3)177 (2)
O1—H1A···N6iii0.83 (4)1.98 (4)2.807 (2)175 (4)
O1—H1B···N5iv0.89 (4)2.05 (4)2.906 (3)163 (4)
N2—H2···S2v0.86 (2)2.49 (2)3.3478 (17)173.6 (18)
N3—H3···N9vi0.83 (2)2.01 (2)2.837 (2)172 (2)
N8—H8···S3vii0.77 (3)2.81 (3)3.560 (2)165 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x+1, y, z1; (vii) x+2, y+2, z+1.
(2) catena-Poly[[[bis(trithiocyanurato-κ2N,S)zinc(II)]-µ-4,4'-bipyridine-κ2N:N'] 4,4'-bipyridine monosolvate] top
Crystal data top
[Zn(C3H2N3S3)2(C10H8N2)]·C10H8N2F(000) = 1488
Mr = 730.25Dx = 1.658 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.3778 (10) ÅCell parameters from 3176 reflections
b = 11.3937 (9) Åθ = 2.4–28.3°
c = 19.2967 (14) ŵ = 1.31 mm1
β = 96.044 (1)°T = 173 K
V = 2924.9 (4) Å3Block, colourless
Z = 40.14 × 0.08 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3633 independent reflections
Radiation source: fine-focus sealed tube3159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1714
Tmin = 0.838, Tmax = 0.950k = 1215
10681 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0411P)2 + 9.7684P]
where P = (Fo2 + 2Fc2)/3
3633 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.73 e Å3
146 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Zn(C3H2N3S3)2(C10H8N2)]·C10H8N2V = 2924.9 (4) Å3
Mr = 730.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.3778 (10) ŵ = 1.31 mm1
b = 11.3937 (9) ÅT = 173 K
c = 19.2967 (14) Å0.14 × 0.08 × 0.04 mm
β = 96.044 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3159 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.950Rint = 0.033
10681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039146 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.73 e Å3
3633 reflectionsΔρmin = 1.02 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.25751 (4)0.25000.01235 (12)
S10.15626 (5)0.23586 (6)0.31854 (3)0.01206 (14)
S20.23120 (5)0.27432 (7)0.38709 (3)0.01784 (16)
S30.00163 (6)0.11977 (9)0.57434 (4)0.0273 (2)
N10.03446 (15)0.24435 (19)0.36060 (11)0.0107 (4)
N20.06795 (16)0.1810 (2)0.44531 (11)0.0134 (4)
H20.1302 (12)0.159 (4)0.452 (2)0.045 (12)*
N30.10238 (17)0.2033 (2)0.47401 (11)0.0150 (5)
H30.1554 (16)0.204 (3)0.5060 (13)0.028 (10)*
N40.00000.0656 (3)0.25000.0117 (6)
N50.00000.5559 (3)0.25000.0109 (6)
N60.24493 (17)0.6013 (2)0.97455 (12)0.0174 (5)
C10.05729 (19)0.2188 (2)0.37983 (13)0.0107 (5)
C20.11676 (19)0.2389 (2)0.40807 (13)0.0120 (5)
C30.0122 (2)0.1694 (3)0.49499 (14)0.0161 (5)
C40.08277 (19)0.0048 (2)0.27253 (13)0.0120 (5)
H40.14180.04700.28890.014*
C50.08640 (19)0.1160 (2)0.27312 (13)0.0120 (5)
H50.14700.15550.28910.014*
C60.00000.1803 (3)0.25000.0102 (7)
C70.00000.3096 (3)0.25000.0102 (7)
C80.08786 (19)0.3736 (2)0.24401 (14)0.0131 (5)
H80.14910.33400.23890.016*
C90.08491 (19)0.4946 (2)0.24564 (14)0.0140 (5)
H90.14590.53660.24360.017*
C100.2264 (2)0.5473 (3)1.03241 (17)0.0288 (7)
H100.28070.53601.06770.035*
C110.1323 (2)0.5063 (3)1.04454 (17)0.0297 (8)
H110.12340.46861.08740.036*
C120.05152 (19)0.5201 (2)0.99461 (13)0.0137 (5)
C130.0710 (3)0.5755 (4)0.93421 (17)0.0411 (10)
H130.01850.58660.89770.049*
C140.1672 (3)0.6151 (4)0.92657 (18)0.0417 (10)
H140.17810.65430.88460.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0152 (2)0.0111 (2)0.0107 (2)0.0000.00138 (16)0.000
S10.0080 (3)0.0162 (3)0.0113 (3)0.0008 (2)0.0017 (2)0.0023 (2)
S20.0085 (3)0.0333 (4)0.0113 (3)0.0054 (3)0.0008 (2)0.0028 (3)
S30.0171 (4)0.0548 (6)0.0096 (3)0.0058 (3)0.0004 (3)0.0109 (3)
N10.0089 (10)0.0156 (11)0.0072 (9)0.0023 (8)0.0008 (8)0.0012 (8)
N20.0094 (10)0.0210 (12)0.0098 (10)0.0018 (8)0.0005 (8)0.0024 (8)
N30.0103 (10)0.0266 (12)0.0076 (10)0.0035 (9)0.0021 (8)0.0030 (9)
N40.0143 (14)0.0100 (14)0.0110 (14)0.0000.0019 (11)0.000
N50.0114 (14)0.0111 (14)0.0099 (13)0.0000.0001 (11)0.000
N60.0149 (11)0.0220 (12)0.0154 (11)0.0055 (9)0.0019 (9)0.0010 (9)
C10.0108 (11)0.0106 (11)0.0107 (11)0.0004 (9)0.0003 (9)0.0024 (9)
C20.0098 (11)0.0156 (12)0.0100 (11)0.0010 (9)0.0012 (9)0.0002 (9)
C30.0122 (12)0.0243 (14)0.0115 (12)0.0008 (10)0.0006 (9)0.0001 (10)
C40.0108 (11)0.0120 (12)0.0128 (11)0.0013 (9)0.0006 (9)0.0002 (9)
C50.0095 (11)0.0139 (12)0.0121 (11)0.0019 (9)0.0005 (9)0.0009 (9)
C60.0116 (16)0.0098 (16)0.0097 (15)0.0000.0032 (12)0.000
C70.0113 (15)0.0115 (16)0.0075 (15)0.0000.0011 (12)0.000
C80.0097 (11)0.0136 (12)0.0159 (12)0.0021 (9)0.0010 (9)0.0008 (10)
C90.0109 (12)0.0138 (12)0.0171 (12)0.0015 (9)0.0003 (9)0.0003 (10)
C100.0146 (14)0.0458 (19)0.0257 (15)0.0003 (13)0.0008 (12)0.0144 (14)
C110.0163 (14)0.048 (2)0.0252 (15)0.0009 (13)0.0036 (12)0.0194 (14)
C120.0156 (13)0.0131 (12)0.0129 (12)0.0032 (10)0.0037 (10)0.0022 (9)
C130.0267 (17)0.077 (3)0.0178 (15)0.0265 (17)0.0077 (13)0.0154 (16)
C140.0270 (17)0.075 (3)0.0217 (16)0.0269 (17)0.0027 (13)0.0192 (16)
Geometric parameters (Å, º) top
Zn1—N5i2.126 (3)N6—C101.321 (4)
Zn1—N1ii2.141 (2)N6—C141.326 (4)
Zn1—N12.141 (2)C4—C51.377 (4)
Zn1—N42.187 (3)C4—H40.9500
Zn1—S1ii2.6004 (6)C5—C61.401 (3)
Zn1—S12.6004 (6)C5—H50.9500
S1—C11.691 (3)C6—C5ii1.401 (3)
S2—C21.674 (3)C6—C71.474 (5)
S3—C31.652 (3)C7—C81.398 (3)
N1—C11.351 (3)C7—C8ii1.398 (3)
N1—C21.358 (3)C8—C91.380 (4)
N2—C11.357 (3)C8—H80.9500
N2—C31.368 (3)C9—H90.9500
N2—H20.8900 (11)C10—C111.387 (4)
N3—C31.367 (3)C10—H100.9500
N3—C21.368 (3)C11—C121.379 (4)
N3—H30.8899 (11)C11—H110.9500
N4—C41.339 (3)C12—C131.374 (4)
N4—C4ii1.340 (3)C12—C12iv1.488 (5)
N5—C9ii1.343 (3)C13—C141.387 (4)
N5—C91.343 (3)C13—H130.9500
N5—Zn1iii2.126 (3)C14—H140.9500
N5i—Zn1—N1ii94.02 (6)N3—C2—S2121.21 (19)
N5i—Zn1—N194.02 (6)N3—C3—N2114.6 (2)
N1ii—Zn1—N1171.97 (12)N3—C3—S3122.4 (2)
N5i—Zn1—N4180N2—C3—S3123.0 (2)
N1ii—Zn1—N485.98 (6)N4—C4—C5123.2 (2)
N1—Zn1—N485.98 (6)N4—C4—H4118.4
N5i—Zn1—S1ii95.444 (17)C5—C4—H4118.4
N1ii—Zn1—S1ii65.58 (6)C4—C5—C6119.5 (2)
N1—Zn1—S1ii113.59 (6)C4—C5—H5120.2
N4—Zn1—S1ii84.556 (17)C6—C5—H5120.2
N5i—Zn1—S195.444 (17)C5ii—C6—C5117.0 (3)
N1ii—Zn1—S1113.59 (6)C5ii—C6—C7121.50 (16)
N1—Zn1—S165.58 (6)C5—C6—C7121.50 (16)
N4—Zn1—S184.556 (17)C8—C7—C8ii117.2 (3)
S1ii—Zn1—S1169.11 (3)C8—C7—C6121.42 (17)
C1—S1—Zn175.79 (9)C8ii—C7—C6121.42 (17)
C1—N1—C2120.0 (2)C9—C8—C7119.5 (2)
C1—N1—Zn1100.51 (15)C9—C8—H8120.2
C2—N1—Zn1138.61 (17)C7—C8—H8120.2
C1—N2—C3122.1 (2)N5—C9—C8123.2 (2)
C1—N2—H2114 (3)N5—C9—H9118.4
C3—N2—H2124 (3)C8—C9—H9118.4
C3—N3—C2125.0 (2)N6—C10—C11123.6 (3)
C3—N3—H3117 (2)N6—C10—H10118.2
C2—N3—H3118 (2)C11—C10—H10118.2
C4—N4—C4ii117.7 (3)C12—C11—C10120.2 (3)
C4—N4—Zn1121.16 (16)C12—C11—H11119.9
C4ii—N4—Zn1121.16 (16)C10—C11—H11119.9
C9ii—N5—C9117.4 (3)C13—C12—C11116.1 (3)
C9ii—N5—Zn1iii121.31 (16)C13—C12—C12iv121.4 (3)
C9—N5—Zn1iii121.31 (16)C11—C12—C12iv122.5 (3)
C10—N6—C14116.3 (3)C12—C13—C14120.1 (3)
N1—C1—N2120.8 (2)C12—C13—H13120.0
N1—C1—S1116.75 (19)C14—C13—H13120.0
N2—C1—S1122.45 (19)N6—C14—C13123.7 (3)
N1—C2—N3117.2 (2)N6—C14—H14118.1
N1—C2—S2121.55 (19)C13—C14—H14118.1
N5i—Zn1—S1—C198.25 (9)C1—N1—C2—S2177.9 (2)
N1ii—Zn1—S1—C1164.95 (11)Zn1—N1—C2—S215.0 (4)
N1—Zn1—S1—C16.31 (11)C3—N3—C2—N12.2 (4)
N4—Zn1—S1—C181.75 (9)C3—N3—C2—S2177.9 (2)
S1ii—Zn1—S1—C181.75 (9)C2—N3—C3—N24.3 (4)
N5i—Zn1—N1—C1101.95 (15)C2—N3—C3—S3176.2 (2)
N4—Zn1—N1—C178.05 (15)C1—N2—C3—N32.5 (4)
S1ii—Zn1—N1—C1160.32 (14)C1—N2—C3—S3178.1 (2)
S1—Zn1—N1—C17.79 (14)C4ii—N4—C4—C50.37 (18)
N5i—Zn1—N1—C289.4 (3)Zn1—N4—C4—C5179.63 (18)
N4—Zn1—N1—C290.6 (3)N4—C4—C5—C60.7 (4)
S1ii—Zn1—N1—C28.3 (3)C4—C5—C6—C5ii0.34 (17)
S1—Zn1—N1—C2176.4 (3)C4—C5—C6—C7179.65 (17)
N1ii—Zn1—N4—C4118.52 (14)C5ii—C6—C7—C8152.66 (17)
N1—Zn1—N4—C461.48 (14)C5—C6—C7—C827.34 (17)
S1ii—Zn1—N4—C452.70 (13)C5ii—C6—C7—C8ii27.34 (17)
S1—Zn1—N4—C4127.30 (13)C5—C6—C7—C8ii152.66 (17)
N1ii—Zn1—N4—C4ii61.48 (14)C8ii—C7—C8—C91.29 (17)
N1—Zn1—N4—C4ii118.52 (14)C6—C7—C8—C9178.71 (17)
S1ii—Zn1—N4—C4ii127.30 (13)C9ii—N5—C9—C81.39 (19)
S1—Zn1—N4—C4ii52.70 (13)Zn1iii—N5—C9—C8178.61 (19)
C2—N1—C1—N23.8 (4)C7—C8—C9—N52.7 (4)
Zn1—N1—C1—N2167.6 (2)C14—N6—C10—C110.2 (6)
C2—N1—C1—S1176.37 (19)N6—C10—C11—C120.5 (6)
Zn1—N1—C1—S112.3 (2)C10—C11—C12—C130.1 (5)
C3—N2—C1—N11.4 (4)C10—C11—C12—C12iv178.7 (4)
C3—N2—C1—S1178.8 (2)C11—C12—C13—C140.8 (6)
Zn1—S1—C1—N110.22 (18)C12iv—C12—C13—C14178.0 (4)
Zn1—S1—C1—N2169.6 (2)C10—N6—C14—C130.6 (6)
C1—N1—C2—N32.1 (4)C12—C13—C14—N61.2 (7)
Zn1—N1—C2—N3165.0 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N6v0.89 (1)1.89 (1)2.776 (3)173 (4)
N3—H3···S2vi0.89 (1)2.44 (1)3.309 (2)165 (3)
Symmetry codes: (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1.

Experimental details

(1)(2)
Crystal data
Chemical formula[Zn(C3H2N3S3)2(C12H10N6)2]·2H2O[Zn(C3H2N3S3)2(C10H8N2)]·C10H8N2
Mr930.43730.25
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)294173
a, b, c (Å)7.7509 (4), 10.8253 (1), 12.5824 (11)13.3778 (10), 11.3937 (9), 19.2967 (14)
α, β, γ (°)77.543 (16), 81.089 (18), 72.256 (16)90, 96.044 (1), 90
V3)977.32 (10)2924.9 (4)
Z14
Radiation typeMo KαMo Kα
µ (mm1)1.011.31
Crystal size (mm)0.25 × 0.09 × 0.030.14 × 0.08 × 0.04
Data collection
DiffractometerRigaku Mercury 375R
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.787, 0.9700.838, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
10320, 4460, 3822 10681, 3633, 3159
Rint0.0780.033
(sin θ/λ)max1)0.6500.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.04 0.039, 0.103, 1.08
No. of reflections44603633
No. of parameters283205
No. of restraints0146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.580.73, 1.02

Computer programs: CrystalClear (Rigaku, 2009), SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (1) top
Zn1—N12.1476 (15)Zn1—S12.5925 (6)
Zn1—N42.1640 (15)
N1i—Zn1—N1180N1—Zn1—S165.78 (4)
N1—Zn1—N488.45 (6)N4—Zn1—S189.26 (4)
N1—Zn1—N4i91.55 (6)N1—Zn1—S1i114.22 (4)
N4—Zn1—N4i180N4—Zn1—S1i90.74 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N8—H8'···O1ii0.94 (3)1.96 (3)2.892 (3)177 (2)
O1—H1A···N6iii0.83 (4)1.98 (4)2.807 (2)175 (4)
O1—H1B···N5iv0.89 (4)2.05 (4)2.906 (3)163 (4)
N2—H2'···S2v0.86 (2)2.49 (2)3.3478 (17)173.6 (18)
N3—H3'···N9vi0.83 (2)2.01 (2)2.837 (2)172 (2)
N8—H8''···S3vii0.77 (3)2.81 (3)3.560 (2)165 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x+1, y, z1; (vii) x+2, y+2, z+1.
Selected geometric parameters (Å, º) for (2) top
Zn1—N5i2.126 (3)Zn1—N42.187 (3)
Zn1—N12.141 (2)Zn1—S12.6004 (6)
N5i—Zn1—N194.02 (6)N5i—Zn1—S195.444 (17)
N1ii—Zn1—N1171.97 (12)N1—Zn1—S165.58 (6)
N5i—Zn1—N4180N4—Zn1—S184.556 (17)
N1—Zn1—N485.98 (6)S1ii—Zn1—S1169.11 (3)
N1—Zn1—S1ii113.59 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N6iii0.890 (1)1.891 (6)2.776 (3)173 (4)
N3—H3···S2iv0.890 (1)2.441 (10)3.309 (2)165 (3)
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds