research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Mol­ecular structures of the penta­phenyl­cyclo­penta­dienyl iron com­plexes [(C5Ph5)Fe(CO)2R] (R = Me, Ph, iPr and Bu)

crossmark logo

aChemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 9, Munich D-81377, Germany
*Correspondence e-mail: suenk@cup.uni-muenchen.de

Edited by A. Sarjeant, Bristol-Myers Squibb, USA (Received 16 May 2021; accepted 9 June 2021; online 16 June 2021)

The PdII-catalysed reaction of [(C5Ph5)Fe(CO)2Br] with Grignard com­pounds RMgX or butyl lithium gave the iron alk­yl/aryl com­plexes [(C5Ph5)Fe(CO)2R] (R = Me, Ph, iPr and Bu) in 59–73% yield, namely, di­carbonyl­meth­yl(η5-penta­phenyl­cyclo­penta­dien­yl)iron, [Fe(CH3)(C35H25)(CO)2], dicarbon­yl(η5-penta­phenyl­cyclo­penta­dien­yl)phenyliron, [Fe(C6H5)(C35H25)(CO)2], dicarbon­yl(isoprop­yl)(η5-penta­phenyl­cyclo­penta­dien­yl)iron, [Fe(C3H7)(C35H25)(CO)2], and butyl­dicarbon­yl(η5-penta­phenyl­cyclo­penta­dien­yl)iron, [Fe(C4H9)(C35H25)(CO)2]. The crystal structure determinations showed the usual `paddle-wheel' orientation of the phenyl rings, with an average canting angle of ca 50°. The bond parameters are mainly dictated by the steric requirements of the alk­yl/aryl groups and only the phenyl com­plex shows electronic effects.

1. Introduction

Penta­aryl­cyclo­penta­dienyl com­plexes have been known for nearly 60 years. They were studied mainly because the bulky nature of these cyclo­penta­dienyl derivatives gives their com­plexes high kinetic stability, including the formation of stable radicals (Field et al., 2011[Field, L. D., Lindall, C. M., Masters, A. F. & Clentsmith, G. K. B. (2011). Coord. Chem. Rev. 255, 1733-1790.]) or unusual structures in main group or lanthanoid metallocenes (Schulte et al., 2020[Schulte, Y., Weinert, H., Wölper, C. & Schulz, S. (2020). Organometallics, 39, 206-216.]). Also, several examples of their application as asymmetric catalysts (Ruble et al., 1997[Ruble, J. C., Latham, H. A. & Fu, G. C. (1997). J. Am. Chem. Soc. 119, 1492-1493.]; Field et al., 2011[Field, L. D., Lindall, C. M., Masters, A. F. & Clentsmith, G. K. B. (2011). Coord. Chem. Rev. 255, 1733-1790.]) and as mimics for hydrogenase (Hemming et al., 2018[Hemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234-241.]) were found. So far (Scifinder, accessed on 12th May 2021), 451 publications describing 723 substances have appeared, an increase of 80% during the last decade. On the other hand, a survey of the Cambridge Structural Database (CSD, Version 5.42, accessed on 5th June, 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed only 118 entries, of which roughly half (52) contained iron as the central metal atom. Of these, ca 80% (41) were ferrocene derivatives. The mol­ecular structure of the very first penta­phenyl­cyclo­penta­dienyl com­plex, i.e. [(C5Ph5)Fe(CO)2Br] (McVey & Pauson, 1965[McVey, S. M. & Pauson, P. L. (1965). J. Chem. Soc. pp. 4312-4318.]), was published only 25 years later (Field et al., 1989[Field, L. D., Hambley, T. W., Lindall, C. M. & Masters, A. F. (1989). Polyhedron, 8, 2425-2430.]) and there are only three other structure determinations of mol­ecules containing the [(C5Ph5)Fe(CO)2] moiety in the CSD: MARFET and MARFIX (Hemming et al., 2018[Hemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234-241.]), and PUYDES (Carter et al., 2002[Carter, B. T., Castellani, M. P., Rheingold, A. L., Hwang, S., Longacre, S. E. & Richmond, M. G. (2002). Organometallics, 21, 373-379.]). A very important subgroup of com­pounds containing the [CpFe(CO)] moiety contains the derived alkyl and aryl com­plexes [CpFe(CO)2R] (Pannell & Sharma, 2010[Pannell, K. H. & Sharma, H. K. (2010). Organometallics, 29, 4741-4745.]). These com­pounds were shown to have catalytic properties, for example, in de­hydrogenative couplings (Fukumoto et al., 2015[Fukumoto, K., Kasa, M. & Nakazawa, H. (2015). Inorg. Chim. Acta, 431, 219-221.]; Argouarch et al., 2012[Argouarch, G., Grelaud, G., Roisnel, T., Humphrey, M. G. & Paul, F. (2012). Tetrahedron Lett. 53, 5015-5018.]) or, perhaps more importantly, as reagents in photoinduced DNA cleavage (Mohler et al., 2002[Mohler, D. L., Barnhardt, E. K. & Hurley, A. L. (2002). J. Org. Chem. 67, 4982-4984.]; Mohler & Shell, 2005[Mohler, D. L. & Shell, T. A. (2005). Bioorg. Med. Chem. Lett. 15, 4785-4788.]). Therefore, it seemed worthwhile to study com­pounds of the type [(C5Ph5)Fe(CO)2R], which might combine the unique properties of the penta­phenyl­cyclo­penta­dienyl moiety with the reactivity of the iron–alkyl and iron–aryl groups. Such com­pounds have been reported before, but were usually only partially characterized (Connelly & Manners, 1989[Connelly, N. G. & Manners, I. (1989). J. Chem. Soc. Dalton Trans. pp. 283-288.]; Brégaint et al., 1990[Brégaint, P., Hamon, J.-R. & Lapinte, C. (1990). J. Organomet. Chem. 398, C25—C28.], 1992[Brégaint, P., Hamon, J.-R. & Lapinte, C. (1992). Organometallics, 11, 1417-1419.]; Kuksis & Baird, 1994[Kuksis, I. & Baird, M. C. (1994). Organometallics, 13, 1551-1553.]; Kuksis et al., 1996[Kuksis, I., Kovács, I., Baird, M. C. & Preston, K. F. (1996). Organometallics, 15, 4991-5002.]). In particular, no crystal structures have been published. During the course of our studies on the coordination chemistry of perhalogenated cyclo­penta­dienyl com­plexes (Klein-Heßling et al., 2021[Klein-Heßling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.]; Sünkel et al., 2015[Sünkel, K., Weigand, S., Hoffmann, A., Blomeyer, S., Reuter, C. G., Vishnevskiy, Y. V. & Mitzel, N. W. (2015). J. Am. Chem. Soc. 137, 126-129.]) we also studied the [(C5X5)Fe(CO)2R] system. In the search for possible synthetic applications for these com­pounds and also for the sake of com­parison, we chose to prepare the alkyl and aryl [(C5Ph5)Fe(CO)2R] derivatives (R = Me, 1, Ph, 2, iPr, 3, and Bu, 4) (Scheme 1[link]). We report here the results of our crystal structure studies.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

The starting material [(C5Ph5)Fe(CO)2Br] was prepared according to the literature from Fe(CO)5 and C5Ph5Br (McVey & Pauson, 1965[McVey, S. M. & Pauson, P. L. (1965). J. Chem. Soc. pp. 4312-4318.]). The reagents MeMgBr (3.0 M solution in Et2O), PhMgCl [2.0 M solution in tetra­hydro­furan (THF)], iPrMgCl (1.3 M solution with LiCl in THF) and BuLi (2.5 M solution in hexa­ne), as well as N,N,N′,N′-tetra­methyl­ethylendi­amine (TMEDA) and palladium acetate, were commercial products (Sigma–Aldrich) and were used as provided.

2.1.1. [(C5Ph5)Fe(CO)2Me], (1)

A solution of [(C5Ph5)Fe(CO)2Br] (0.30 g, 0.47 mmol) in THF (12 ml), palladium(II) acetate (0.01 g, 0.05 mmol) and TMEDA (0.07 ml, 0.71 mmol) was treated at 0 °C with an MeMgBr solution (0.24 ml, 0.71 mmol) and stirred for 60 min. After evaporation of the solvent, the residue was redissolved in the minimum amount of petroleum ether and placed on top of a silica-gel chromatography column. Elution with petroleum ether/Et2O (9:1 v/v) yielded, after evaporation, com­pound 1 as a yellow solid (yield: 0.17 g, 0.30 mmol, 63%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether solution in a refrigerator at 5 °C.

IR (ATR): ν (CO) 1993, 1941 cm−1. UV–Vis (CH2Cl2): λmax = 369 nm. 1H NMR (CDCl3, 400 MHz): δ 7.20–6.90 (m, Ph), 0.62 (s, Me) ppm. 13C NMR (CDCl3, 100.5 MHz): δ 217.8 (CO), 132.2, 131.9, 127.7, 127.5 (4 × Ph), 102.1 (C5), −7.5 (Me) ppm.

2.1.2. [(C5Ph5)Fe(CO)2Ph], (2)

A solution of [(C5Ph5)Fe(CO)2Br] (0.05 g, 0.08 mmol) in THF (10 ml), palladium(II) ace­tate (0.002 g, 0.01 mmol) and TMEDA (0.01 ml, 0.08 mmol) was treated at 0 °C with a PhMgCl solution (0.05 ml, 0.10 mmol) and stirred for 60 min. After evaporation of the solvent, the residue was redissolved in the minimum amount of petroleum ether and placed on top of a silica-gel chromatography column. Elution with petroleum ether/Et2O (9:1 v/v) yielded, after evaporation, com­pound 2 as a yellow solid (yield: 0.03 g, 0.05 mmol, 59%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether solution in a refrigerator at 5 °C.

IR (ATR): ν (CO) 2009, 1968 cm−1. UV–Vis (CH2Cl2): λmax = 364 nm. 1H NMR (CDCl3, 400 MHz): δ 7.23–6.81 (m, Ph) ppm. 13C NMR (CDCl3, 100.5 MHz): δ 216.5 (CO), 147–123 (35 × Ph), 102.8 (C5) ppm.

2.1.3. [(C5Ph5)Fe(CO)2iPr], (3)

A solution of [(C5Ph5)Fe(CO)2Br] (0.10 g, 0.16 mmol) in THF (10 ml), palladium(II) acetate (0.004 g, 0.02 mmol) and TMEDA (0.02 ml, 0.16 mmol) was treated at 0°C with an iPrMgCl solution (0.18 ml, 0.24 mmol) and stirred for 60 min. After evaporation of the solvent, the residue was redissolved in the minimum amount of petroleum ether and placed on top of a silica-gel chromatography column. Elution with petroleum ether/Et2O (9:1 v/v) yielded, after evaporation, com­pound 3 as a yellow solid (yield: 0.07 g, 0.12 mmol, 73%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether solution in a refrigerator at 5 °C.

IR (ATR): ν (CO) 1991, 1939 cm−1. UV–Vis (CH2Cl2): λmax = 367 nm. 1H NMR (CDCl3, 400 MHz): δ 7.32–6.85 (m, Ph), 3.07 (m, CHMe2), 1.46 (m, CHMe2) ppm.

2.1.4. [(C5Ph5)Fe(CO)2Bu], (4)

A solution of [(C5Ph5)Fe(CO)2Br] (0.05 g, 0.08 mmol) in THF (10 ml), palladium(II) acetate (0.002 g, 0.01 mmol) and TMEDA (0.01 ml, 0.08 mmol) was treated at −30 °C with a BuLi solution (0.04 ml, 0.10 mmol) and stirred for 60 min. After evaporation of the solvent, the residue was redissolved in the minimum amount of petroleum ether and placed on top of a silica-gel chromatography column. Elution with petroleum ether/Et2O (9:1 v/v) yielded after evaporation com­pound 4 as a yellow solid (yield: 0.03 g, 0.05 mmol, 63%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether solution in a refrigerator at 5 °C.

IR (ATR): ν (CO) 1993, 1939 cm−1. UV–Vis (CH2Cl2): λmax = 378 nm. 1H NMR (CDCl3, 400 MHz): δ 7.22–6.84 (m, Ph), 1.95–0.80 (4 m, Bu) ppm. 13C NMR (CDCl3, 100.5 MHz): δ 218.7 (CO), 132.2, 132.0, 127.7, 127.4 (4 × Ph), 102.3 (C5), 38.5, 28.2, 17.7, 14.1 (4 × Bu) ppm.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms on C atoms were calculated in ideal positions riding on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The methyl groups were allowed to rotate along the C—C bonds to best fit the experimental electron density.

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). H-atom parameters were constrained.

  1 2 3 4
Crystal data
Chemical formula [Fe(CH3)(C35H25)(CO)2] [Fe(C6H5)(C35H25)(CO)2] [Fe(C3H7)(C35H25)(CO)2] [Fe(C4H9)(C35H25)(CO)2]
Mr 572.45 634.52 600.50 614.53
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 105 105 110 108
a, b, c (Å) 13.6393 (3), 20.4360 (5), 21.1978 (5) 12.1860 (4), 16.9411 (6), 15.0691 (6) 12.5488 (7), 13.5046 (7), 18.0119 (11) 12.1141 (4), 16.0945 (5), 16.1650 (5)
α, β, γ (°) 90, 90, 90 90, 93.320 (1), 90 90, 93.208 (2), 90 90, 95.706 (1), 90
V3) 5908.5 (2) 3105.71 (19) 3047.6 (3) 3136.08 (17)
Z 8 4 4 4
μ (mm−1) 0.54 0.52 0.53 0.52
Crystal size (mm) 0.06 × 0.05 × 0.04 0.08 × 0.02 × 0.02 0.06 × 0.04 × 0.03 0.08 × 0.05 × 0.04
 
Data collection
Tmin, Tmax 0.718, 0.746 0.669, 0.745 0.719, 0.746 0.832, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 61228, 6765, 5439 31592, 6352, 5025 52953, 6732, 5995 55494, 7202, 6246
Rint 0.053 0.050 0.031 0.041
(sin θ/λ)max−1) 0.649 0.625 0.641 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.06 0.041, 0.088, 1.04 0.032, 0.088, 1.06 0.033, 0.090, 1.05
No. of reflections 6765 6352 6732 7202
No. of parameters 371 415 390 398
Δρmax, Δρmin (e Å−3) 0.35, −0.49 0.32, −0.41 0.36, −0.36 0.37, −0.47
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

The title com­pounds were prepared in medium to good yields from [(C5Ph5)Fe(CO)2Br] and either Grignard reagents RMgX or butyl lithium in the presence of catalytic amounts of Pd(OAc)2 and TMEDA (Scheme 1[link]).

The synthesis is based on a procedure that was described for the preparation of aryl iron com­plexes [(C5H5)Fe(CO)2Ar] (Yasuda et al., 2008[Yasuda, S., Yorimitsu, H. & Oshima, K. (2008). Organometallics, 27, 4025-4027.]). Compounds 1 and 3 had been prepared before by reaction of [(C5Ph5)Fe(CO)2]2 with the corresponding alkyl iodides (no yields given; Kuksis et al., 1996[Kuksis, I., Kovács, I., Baird, M. C. & Preston, K. F. (1996). Organometallics, 15, 4991-5002.]) or of [(C5Ph5)Fe(CO)2Br] and MeMgBr (55% yield; Connelly & Manners, 1989[Connelly, N. G. & Manners, I. (1989). J. Chem. Soc. Dalton Trans. pp. 283-288.]).

All four com­pounds, particularly phenyl com­pound 2, showed a pale-blue fluorescence when irradiated at 365 nm.

3.1. Crystal structures

3.1.1. [(C5Ph5)Fe(CO)2Me], 1

Compound 1 crystallizes in the ortho­rhom­bic space group Pbca with one mol­ecule in the asymmetric unit (Fig. 1[link]).

[Figure 1]
Figure 1
Displacement ellipsoid plot (top view) of com­pound 1, with ellipsoids drawn at the 30% probability level.

The Fe—C(meth­yl) bond eclipses the cyclo­penta­dienyl (Cp) C5—C501 bond, while the Fe1—C6 bond bis­ects the cyclo­penta­dienyl C1—C2 bond. All the phenyl rings are canted in the same way, as usual, with angles between the planes of the cyclo­penta­dienyl and phenyl rings ranging from 37.80 (9) to 58.66 (9)°. The Cp ring is essentially planar, with a sigpln parameter of PLATON, defined as:

[\sqrt {{\sum _{j=1}^{N}} {{D_j ^2} \over \left( N - 3 \right)}} \ ,]

of 0.023 (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Table 2[link] collects some important bond parameters for com­pounds 14, together with the corresponding data from the other four published structures containing the [(C5Ph5)Fe(CO)2] moiety. PLATON analysis of the crystal structure showed that 6.3% of the volume contained solvent-accessible voids. A PLATON cavity plot (see Fig. 2[link]) shows that the dumbbell-shaped voids are arranged in an fcc-type (fcc is face-centred cubic) lattice.

Table 2
Comparison of important bond parameters (Å, °) of com­pounds 14 and some related structures from the CSD

  1 2 3 4 SIRMIP MARFET MARFIX PUYDES HOZWIC CECKUS01
Fe—Ct (Å) 1.7403 (8) 1.7625 (10) 1.7586 (7) 1.7603 (7) 1.738 (5) 1.7464 (10) 1.7360 (12)/ 1.715 (3) 1.730 1.730
              1.7306 (12)      
Fe—Cα(R) (Å) 2.073 (2) 2.022 (2) 2.1188 (17) 2.0810 (16) n.a. n.a. n.a. n.a. 2.069 (10) 2.002 (2)
Fe—C(CO) (Å) 1.751 (2) 1.755 (2) 1.745 (2) 1.755 (2) 1.812 (5)   1.803 (3) 1.714 (6) 1.739 (11) 1.756 (1)
  1.754 (2) 1.760 (2) 1.756 (2) 1.755 (2) 1.786 (5)   1.813 (3) 1.715 (6) 1.751 (11)  
C—O (Å) 1.149 (2) 1.152 (3) 1.145 (3) 1.150 (1) 1.052 (6) 1.133 (3) 1.131 (4)/ 1.182 (7) 1.153 (13) 1.151 (2)
  1.136 (2) 1.148 (3) 1.148 (2) 1.148 (2) 1.097 (6) 1.137 (4) 1.126 (4) 1.187 (7) 1.139 (14) 1.151 (2)
              1.137 (3)/      
              1.132 (4)      
IR (νCO, cm−1) 1993, 1941 2009, 1968 1991, 1939 1993, 1939 2033, 1993*     1872, 1806* 1987, 1933* 1994, 1937*
(Ci,Ph—Cp)av (Å) 0.122 0.188 0.144 0.160 0.15 0.147 0.144/0.145   n.a. n.a.
(Cp–Ph)av (°) 50.3 48.5 50.6 50.2 58.7 52.3 51.8/51.4 53.4 n.a. n.a.
[Cα—Fe—Ct—CCp]min 9.35 26.46 5.13 32.19 n.a. n.a. n.a. n.a. 1.44 0.0
Ct—Fe—Cα—Cβ (°) n.a. 95.8 141.1 167.4 n.a. n.a. n.a. n.a. 179.9 87.5
    79.8 91.8              
CSD refcodes: SIRMIP is [(C5Ph5)Fe(CO)2Br] (Field et al., 1989[Field, L. D., Hambley, T. W., Lindall, C. M. & Masters, A. F. (1989). Polyhedron, 8, 2425-2430.]), MARFET is [(C5Ph5)Fe(CO)2FBF3] (Hemming et al., 2018[Hemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234-241.]), MARFIX is [(C5Ph5)Fe(CO)2(H2O)]BF4 (Hemming et al., 2018[Hemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234-241.]), PUYDES is [PPN][(C5Ph5)Fe(CO)2] (Carter et al., 2002[Carter, B. T., Castellani, M. P., Rheingold, A. L., Hwang, S., Longacre, S. E. & Richmond, M. G. (2002). Organometallics, 21, 373-379.]), HOZWIC is [(C5Me5)Fe(CO)2C5H11] (Hill et al., 1999[Hill, R. O., Marais, C. F., Moss, J. R. & Naidoo, K. J. (1999). J. Organomet. Chem. 587, 28-37.]) and CECKUS01 is [(C5Me5)Fe(CO)2Ph] (Kalman et al., 2013[Kalman, S. E., Petit, A., Gunnoe, T. B., Ess, D. H., Cundari, T. R. & Sabat, M. (2013). Organometallics, 32, 1797-1806.]). Notes: Ct is the centroid of the cyclo­penta­dienyl ring. (Ci,Ph—Cp)av is the average distance of the phenyl ipso-C atoms from the plane of the Cp ring. (Cp–Ph)av is the average dihedral angle of the five phenyl rings with respect to the plane of the Cp ring, [Cα—Fe—Ct—CCp]min is the smallest torsion angle between the α-alk­yl/aryl C atom, the Fe atom, the centroid of the cyclo­penta­dienyl ring and a Cp-ring C atom. `n.a.' denotes not applicable. The asterisk (*) denotes solution spectra.
[Figure 2]
Figure 2
PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) cavity plot of com­pound 1.

When looking at inter­molecular inter­actions in mercury, some `nonclassical' C—H⋯O contacts [for the concept of C—H⋯O contacts, see Desiraju (2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.])] appear (Fig. 3[link]). Atom O1 accepts hydrogen bonds from H304 and H305, while atom O2 accepts a hydrogen bond from H104 (see Table 3[link] for the hydrogen-bond distances).

Table 3
Nonclassical C—H⋯O contacts in 14

Compound Atom pair Distance (Å) Symmetry code
1 H504⋯O1 2.597 x + [{1\over 2}], −y + 1, z + [{1\over 2}]
  H104⋯O2 2.611 x + [{1\over 2}], y − [{1\over 2}], z
  O1⋯H304 2.703 x + [{1\over 2}], y − [{1\over 2}], z
2 O1⋯H404 2.475 x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]
3 H14⋯O2 2.694 x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
  H56⋯O1 2.430 x + 1, −y + 2, −z + 1
4 O2⋯H504 2.589 x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]
[Figure 3]
Figure 3
The nonclassical C—H⋯O contacts in com­pound 1.

These contacts `join' individual mol­ecules in all directions, leading to the packing shown in Fig. 4[link].

[Figure 4]
Figure 4
Packing diagram of com­pound 1, viewed along the crystallographic a axis.
3.1.2. [(C5Ph5)Fe(CO)2Ph], 2

Compound 2 crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 5[link] shows a side view).

[Figure 5]
Figure 5
Displacement ellipsoid plot (side view) of com­pound 2, with ellipsoids drawn at the 30% probability level.

The iron–phenyl bond Fe1—C11 nearly bis­ects the cyclo­penta­dienyl C4—C5 bond. As usual, the phenyl rings exhibit a chiral propeller arrangement (but, of course, in a centrosymmetric space group like P21/n, both enanti­omers are present), with inter­planar Cp–Ph angles ranging from 30.41 (12) to 59.17 (12)°. The Cp ring is essentially planar, with sigpln = 0.008. The five ipso-C atoms of the phenyl rings are all situated on the distal side of the Cp ring, with distances from the ring plane ranging from 0.147 (2) to 0.224 (2) Å. The σ-phenyl ring lies approximately perpendicular to the plane containing the Cp ring centroid, the Fe atom and the α-phenyl C atom, with light `bending' at the α-phenyl C atom [Fe1—C11⋯C14 = 174.3 (2)°].

The closest structural `relative' to 2 that can be found in the literature is CECKUS01 [(C5Me5)Fe(CO)2Ph] (Kalman et al., 2013[Kalman, S. E., Petit, A., Gunnoe, T. B., Ess, D. H., Cundari, T. R. & Sabat, M. (2013). Organometallics, 32, 1797-1806.]). There, the iron–phenyl bond length is 2.002 (2) Å. As in 2, the σ-phenyl ring is oriented perpendicular to the plane defined by the Cp centroid, the Fe atom and the α-phenyl C atom, with a slight bend at the α-phenyl C atom.

A PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) analysis of the crystal structure shows solvent-accessible voids of only 22 Å3 (0.7%). A cavity plot (Fig. 6[link]) shows a `body-centred' arrangement of these small spherical voids (radius 1.28 Å each), that appear to be `sandwiched' by two cyclo­penta­dienyl rings.

[Figure 6]
Figure 6
PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) cavity plot of com­pound 2.

As observed for com­pound 1, there are also C—H⋯O contacts in com­pound 2 (Fig. 7[link]). However, here only atom O1 is involved in a contact with H404. The individual mol­ecules are `aligned' by these contacts in the a and b directions (Fig. 8[link]).

[Figure 7]
Figure 7
The nonclassical C—H⋯O contacts in com­pound 2.
[Figure 8]
Figure 8
Packing diagram of com­pound 2, viewed along the crystallographic a direction.
3.1.3. [(C5Ph5)Fe(CO)2iPr], 3

Compound 3 also crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 9[link] shows a top view).

[Figure 9]
Figure 9
Displacement ellipsoid plot (top view) of com­pound 3, with ellipsoids drawn at the 30% probability level.

The iron–isopropyl bond Fe—C8 eclipses the exocyclic cyclo­penta­dienyl C2—C21 bond, while the Fe—C6O1 bond bis­ects the cyclo­penta­dienyl C3—C4 bond. Again, all the phenyl rings show a paddle-wheel orientation, with inter­planar angles ranging from 43.72 (8) and 60.94 (8)°. The cyclo­penta­dienyl ring deviates slightly from planarity, with a sigpln parameter of 0.030. All the phenyl-ring ipso-C atoms are located on the distal side of the Cp ring, with distances from the plane ranging from 0.056 (1) to 0.279 (1) Å. PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) analysis of the crystal structure shows solvent-accessible voids of only 18 Å3 (0.6%). A cavity plot (Fig. 10[link]) again shows a body-centred arrangement of the small spherical voids (radius 1.26 Å).

[Figure 10]
Figure 10
PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) cavity plot of com­pound 3.

There are intra- and inter­molecular C—H⋯O contacts involving both carbonyl O atoms (Fig. 11[link]). By means of these contacts, the individual mol­ecules are connected in all directions (Fig. 12[link]).

[Figure 11]
Figure 11
The nonclassical C—H⋯O contacts in com­pound 3.
[Figure 12]
Figure 12
Packing diagram of com­pound 3, viewed along the crystallographic c direction.
3.1.4. [(C5Ph5)Fe(CO)2Bu], 4

Compound 4 also crystallizes in the monoclinic space group P21/n, with one mol­ecule in the asymmetric unit (Fig. 13[link] shows a side view).

[Figure 13]
Figure 13
Displacement ellipsoid plot (side view) of com­pound 1, with ellipsoids drawn at the 30% probability level.

The iron–butyl bond bis­ects the cyclo­penta­dienyl C4—C5 bond, while both iron–carbonyl bonds, Fe—C6 and Fe—C7, eclipse the exocyclic cyclo­penta­dienyl C1—C101 and C3—C301 bonds, respectively. The Cα—Cβ bond of the butyl group only deviates slightly from the plane bis­ecting the Fe(CO)2 unit. All the phenyl rings adopt a paddle-wheel orientation, with inter­planar angles ranging from 42.85 (8) to 59.68 (7)°. The Cp ring is planar, with a sigpln parameter of 0.017. All phenyl ipso-C atoms are located on the distal side of the Cp ring, with distances from the plane ranging from 0.098 (1) to 0.237 (1) Å. A PLATON analysis (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) of the crystal structure shows essentially no solvent-accessible voids.

The closest structural `relative' of 4 that can be found in the literature is [(C5Me5)Fe(CO)2(n-C5H11)] (CSD refcode HOZ­WIC; Hill et al., 1999[Hill, R. O., Marais, C. F., Moss, J. R. & Naidoo, K. J. (1999). J. Organomet. Chem. 587, 28-37.]). There, the Fe—Cα(alk­yl) bond has a length of 2.069 (10) Å. Similar to 4, the Cα—Cβ bond of the pentyl moiety bis­ects the Fe(CO)2 moiety, but in contrast to 4, all the C—C bonds of the alkyl group are in a transoid orientation.

As with the other structures reported here, there are also C—H⋯O contacts in com­pound 4, but only atom O2 is involved (see Fig. 14[link]). The individual mol­ecules are connected in the a and b directions via these contacts (Fig. 15[link]).

[Figure 14]
Figure 14
The nonclassical C—H⋯O contacts in com­pound 4.
[Figure 15]
Figure 15
Packing diagram of com­pound 4, viewed along the crystallographic a direction.

3.2. Comparison of the structures of 1–4 with each other and with some other [C5Ph5] com­plexes

Table 2[link] collects some important bond parameters of penta­phenyl­cyclo­penta­dienyl com­plexes, including the IR carbonyl stretching frequencies. The Fe—centroid distances (Fe—Ct) fall into three groups. The shortest bond can be found in anionic [(C5Ph5)Fe(CO)2][PPN] (CSD refcode PUY­DES; Carter et al., 2002[Carter, B. T., Castellani, M. P., Rheingold, A. L., Hwang, S., Longacre, S. E. & Richmond, M. G. (2002). Organometallics, 21, 373-379.]), with a value of 1.715 Å; a medium bond length of ca 1.74 Å is formed by 1 and the cationoid [(C5Ph5)Fe(CO)2Br] (SIRMIP; Field et al., 1989[Field, L. D., Hambley, T. W., Lindall, C. M. & Masters, A. F. (1989). Polyhedron, 8, 2425-2430.]), [(C5Ph5)Fe(CO)2(FBF3)] (MARFET; Hemming et al., 2018[Hemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234-241.]) and [(C5Ph5)Fe(CO)2(H2O)]BF4 (MARFIX; Hemming et al., 2018[Hemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234-241.]); and the longest bond of ca 1.76 Å is found for 24. The C—O bond lengths of the metal carbonyls can also be divided in three groups. The shortest C—O bonds are found for the bromide com­plex, with a value of 1.07 (3) Å, an inter­mediate bond of 1.14 (1) Å is found for 14 and the tetra­fluoro­borate and aqua com­plexes, and the longest bond of 1.185 (3) Å is found for the anionic com­plex. This parallels the information obtained from the IR carbonyl frequencies: the highest ν(CO) value is observed for the bromide com­plex and the lowest frequencies are obtained for the anionic com­plex. Considering bond strengths, apparently the strongest metal–Cp bond and the strongest back donation to the carbonyl ligands is found for the anionic com­plex, which is not unexpected. In addition, the relative order of the C—O bond lengths (shorter/stronger for the cationoid com­plexes in com­parison with the more `neutral' com­plexes) is in agreement with generally accepted bonding concepts. The only deviation from this trend is apparently the rather high ν(CO) frequency observed for phenyl com­pound 2, which is not paralleled in the crystal structure C—O bond length. However, the relative order of the Fe—Ct distances is less dictated by electronic than by steric requirements. This is also reflected in the metal–carbon bond lengths (Fe—CR) to the alkyl or aryl residues. While the relatively short Fe—C(phen­yl) bond might indicate some back donation into the aromatic ring system [com­pare the same tendency in the pair Cp*Fe(CO)2C5H11/C6H5], the other Fe—CR bonds are ordered according to the increasing steric demand of the alkyl moiety. The deviation of the phenyl ipso-C atoms from the cyclo­penta­dienyl ring plane is smallest for methyl com­plex 1, largest for phenyl com­plex 2 and inter­mediate for all the other com­pounds of Table 2[link]. The average `canting' angle is smallest for phenyl com­pound 2 and largest for the bromide com­pound. The other com­pounds can be divided into two groups: an angle of 50.4 (2)° is found for 1, 3 and 4, and an angle of 52.4 (10)° is found for the rest. The extrema might be explained by the large size of bromine, forcing the phenyl rings into a more perpendicular orientation with respect to the cyclo­penta­dienyl ring, and on the near perpendicular orientation of the σ-phenyl ring with respect to the plane defined by Ct—Fe—Cα, which forces the other phenyl rings into a `flatter' orientation.

When com­paring the `nonclassical' C—H⋯O inter­actions, it appears that nearly always the para H atom of one phenyl group is involved. The only exception to this `rule' occurs in com­pound 3, where two ortho H atoms are also involved. The observed distances are in the range 2.43–2.70 Å (Table 3[link]). For com­parison, such contacts are also observed in [(C5Ph5)Fe(CO)2Br] (2.69 Å) and in [(C5Ph5)Fe(CO)2(H2O)]BF4 (2.534 Å). In the anionic com­plex [PPN][(C5Ph5)Fe(CO)2], only C—H⋯O contacts occur with the phenyl rings of the PPN+ cation.

4. Conclusion

Four penta­phenyl­cyclo­penta­dienyl iron alkyl and aryl com­plexes were prepared via a new route and characterized by IR, NMR and UV spectroscopy, and by X-ray crystallography. The mol­ecular structures show the longest distances between the Fe atom and the cyclo­penta­dienyl ring reported so far. The Fe—C(alkyl and ar­yl) bonds and the C—O bonds are in the same ranges as found for other com­pounds of this type. All com­pounds show a pale-blue solid-state fluorescence, which has not been described before for this type of com­pound. The fact that the phenyl com­pound shows a much stronger solid-state fluorescence than the others cannot be derived from the bond parameters. Despite this, all the com­pounds obviously inter­act with light and might be of use for DNA cleavage reactions. This is, however, beyond the scope of this study.

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020) and WinGX (Farrugia, 2012).

Dicarbonylmethyl(η5-pentaphenylcyclopentadienyl)iron (compd-1) top
Crystal data top
[Fe(CH3)(C35H25)(CO)2]Dx = 1.287 Mg m3
Mr = 572.45Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9987 reflections
a = 13.6393 (3) Åθ = 2.6–27.5°
b = 20.4360 (5) ŵ = 0.54 mm1
c = 21.1978 (5) ÅT = 105 K
V = 5908.5 (2) Å3Block, brown
Z = 80.06 × 0.05 × 0.04 mm
F(000) = 2384
Data collection top
Bruker D8 Venture
diffractometer
6765 independent reflections
Radiation source: rotating anode generator, Bruker TXS5439 reflections with I > 2σ(I)
Detector resolution: 7.391 pixels mm-1Rint = 0.053
mix of ω and phi scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.718, Tmax = 0.746k = 2626
61228 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0342P)2 + 4.2957P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
6765 reflectionsΔρmax = 0.35 e Å3
371 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37682 (12)0.59963 (8)0.30454 (8)0.0147 (3)
C20.39675 (12)0.65428 (8)0.34615 (8)0.0155 (3)
C30.36342 (12)0.71238 (8)0.31556 (8)0.0150 (3)
C40.32506 (12)0.69423 (8)0.25424 (8)0.0151 (3)
C50.33648 (12)0.62477 (8)0.24718 (8)0.0142 (3)
C60.20994 (14)0.59950 (9)0.39146 (9)0.0230 (4)
C70.16177 (13)0.70981 (9)0.35113 (9)0.0223 (4)
C100.12282 (14)0.60934 (10)0.28236 (9)0.0271 (4)
H10A0.1402020.5669110.2639460.041*
H10B0.1012590.6391080.2488760.041*
H10C0.0696410.6034260.3129260.041*
C1010.40372 (12)0.53019 (8)0.31622 (7)0.0152 (3)
C1020.33482 (13)0.47999 (8)0.31259 (8)0.0191 (4)
H1020.2677260.4901620.3056140.023*
C1030.36376 (14)0.41499 (9)0.31915 (8)0.0224 (4)
H1030.3164090.3809770.3168940.027*
C1040.46177 (15)0.39992 (9)0.32897 (8)0.0229 (4)
H1040.4816120.3555300.3327210.027*
C1050.53075 (14)0.44948 (9)0.33332 (8)0.0216 (4)
H1050.5978090.4390860.3401310.026*
C1060.50173 (13)0.51446 (8)0.32770 (8)0.0173 (3)
H1060.5489300.5483880.3316960.021*
C2010.45262 (12)0.65138 (8)0.40618 (8)0.0162 (3)
C2020.43646 (13)0.60253 (9)0.45131 (8)0.0195 (4)
H2020.3866100.5708230.4446000.023*
C2030.49288 (14)0.60012 (9)0.50587 (8)0.0227 (4)
H2030.4818370.5665280.5360230.027*
C2040.56530 (14)0.64658 (10)0.51650 (9)0.0242 (4)
H2040.6030140.6452030.5541550.029*
C2050.58241 (13)0.69495 (9)0.47204 (9)0.0233 (4)
H2050.6319900.7267570.4791550.028*
C2060.52692 (13)0.69692 (9)0.41694 (8)0.0195 (4)
H2060.5398410.7297060.3862810.023*
C3010.36893 (12)0.77994 (8)0.34182 (8)0.0164 (3)
C3020.34005 (13)0.79307 (9)0.40373 (8)0.0210 (4)
H3020.3141610.7588300.4290600.025*
C3030.34877 (14)0.85577 (9)0.42876 (9)0.0258 (4)
H3030.3291040.8640960.4709960.031*
C3040.38610 (14)0.90603 (9)0.39210 (10)0.0279 (4)
H3040.3918110.9488760.4090920.034*
C3050.41507 (14)0.89371 (9)0.33065 (10)0.0259 (4)
H3050.4407470.9281480.3054810.031*
C3060.40665 (13)0.83090 (9)0.30562 (9)0.0208 (4)
H3060.4268550.8227820.2634500.025*
C4010.29641 (12)0.74027 (8)0.20307 (8)0.0167 (3)
C4020.21648 (14)0.78238 (9)0.20753 (9)0.0226 (4)
H4020.1757440.7810490.2438620.027*
C4030.19573 (16)0.82634 (9)0.15933 (10)0.0298 (4)
H4030.1412150.8550200.1630180.036*
C4040.25409 (16)0.82852 (10)0.10599 (9)0.0302 (4)
H4040.2398370.8586890.0731440.036*
C4050.33345 (15)0.78651 (9)0.10067 (9)0.0279 (4)
H4050.3734770.7877020.0640050.033*
C4060.35456 (13)0.74261 (9)0.14894 (9)0.0216 (4)
H4060.4090690.7139540.1450270.026*
C5010.31740 (12)0.58676 (8)0.18883 (8)0.0150 (3)
C5020.23958 (13)0.60131 (8)0.14830 (8)0.0180 (3)
H5020.1956880.6357390.1587620.022*
C5030.22546 (14)0.56613 (9)0.09292 (8)0.0221 (4)
H5030.1715120.5761870.0662770.026*
C5040.28959 (15)0.51655 (9)0.07640 (8)0.0235 (4)
H5040.2796750.4924830.0385950.028*
C5050.36850 (14)0.50215 (9)0.11537 (8)0.0216 (4)
H5050.4133690.4686670.1038440.026*
C5060.38194 (13)0.53655 (8)0.17107 (8)0.0178 (3)
H5060.4357150.5259600.1976590.021*
O10.18451 (11)0.56829 (7)0.43347 (7)0.0378 (4)
O20.10615 (11)0.74773 (7)0.36704 (7)0.0346 (3)
Fe10.24425 (2)0.64866 (2)0.32754 (2)0.01420 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0143 (7)0.0142 (8)0.0155 (7)0.0008 (6)0.0003 (6)0.0004 (6)
C20.0148 (8)0.0157 (8)0.0160 (8)0.0024 (6)0.0015 (6)0.0005 (6)
C30.0141 (8)0.0141 (8)0.0168 (8)0.0026 (6)0.0006 (6)0.0011 (6)
C40.0146 (8)0.0140 (8)0.0167 (8)0.0005 (6)0.0009 (6)0.0002 (6)
C50.0131 (7)0.0143 (7)0.0153 (8)0.0012 (6)0.0011 (6)0.0007 (6)
C60.0207 (9)0.0210 (9)0.0272 (9)0.0000 (7)0.0027 (7)0.0019 (8)
C70.0199 (9)0.0203 (9)0.0266 (9)0.0033 (7)0.0010 (7)0.0034 (7)
C100.0196 (9)0.0398 (12)0.0221 (9)0.0078 (8)0.0002 (7)0.0119 (8)
C1010.0196 (8)0.0134 (8)0.0124 (7)0.0015 (6)0.0010 (6)0.0006 (6)
C1020.0207 (9)0.0176 (8)0.0190 (8)0.0007 (7)0.0001 (7)0.0008 (7)
C1030.0310 (10)0.0140 (8)0.0221 (9)0.0035 (7)0.0036 (8)0.0003 (7)
C1040.0363 (10)0.0146 (8)0.0178 (8)0.0071 (7)0.0078 (8)0.0025 (7)
C1050.0234 (9)0.0246 (9)0.0167 (8)0.0073 (7)0.0030 (7)0.0045 (7)
C1060.0193 (8)0.0197 (8)0.0130 (7)0.0006 (7)0.0010 (7)0.0019 (7)
C2010.0160 (8)0.0160 (8)0.0165 (8)0.0027 (7)0.0004 (6)0.0027 (6)
C2020.0223 (9)0.0194 (9)0.0168 (8)0.0010 (7)0.0014 (7)0.0018 (7)
C2030.0281 (10)0.0253 (9)0.0147 (8)0.0042 (8)0.0018 (7)0.0012 (7)
C2040.0228 (9)0.0329 (10)0.0169 (8)0.0059 (8)0.0047 (7)0.0050 (8)
C2050.0205 (9)0.0243 (9)0.0250 (9)0.0008 (7)0.0045 (7)0.0065 (8)
C2060.0189 (8)0.0187 (8)0.0210 (8)0.0003 (7)0.0022 (7)0.0005 (7)
C3010.0128 (8)0.0159 (8)0.0205 (8)0.0002 (6)0.0034 (6)0.0014 (7)
C3020.0213 (9)0.0189 (8)0.0228 (9)0.0015 (7)0.0005 (7)0.0022 (7)
C3030.0249 (9)0.0241 (9)0.0284 (10)0.0016 (8)0.0012 (8)0.0092 (8)
C3040.0250 (10)0.0173 (9)0.0415 (11)0.0013 (8)0.0071 (9)0.0101 (8)
C3050.0259 (10)0.0160 (9)0.0359 (11)0.0042 (7)0.0044 (8)0.0016 (8)
C3060.0199 (9)0.0182 (8)0.0243 (9)0.0030 (7)0.0026 (7)0.0011 (7)
C4010.0190 (8)0.0130 (8)0.0181 (8)0.0031 (7)0.0037 (7)0.0004 (6)
C4020.0262 (9)0.0180 (9)0.0235 (9)0.0031 (7)0.0006 (7)0.0005 (7)
C4030.0343 (11)0.0197 (9)0.0355 (11)0.0068 (8)0.0071 (9)0.0047 (8)
C4040.0412 (12)0.0203 (9)0.0290 (10)0.0049 (9)0.0111 (9)0.0113 (8)
C4050.0335 (11)0.0267 (10)0.0234 (9)0.0088 (8)0.0001 (8)0.0078 (8)
C4060.0202 (8)0.0202 (9)0.0243 (9)0.0019 (7)0.0005 (7)0.0026 (7)
C5010.0163 (8)0.0138 (7)0.0149 (8)0.0020 (6)0.0002 (6)0.0009 (6)
C5020.0193 (8)0.0157 (8)0.0190 (8)0.0006 (7)0.0013 (7)0.0004 (6)
C5030.0238 (9)0.0241 (9)0.0183 (8)0.0010 (7)0.0057 (7)0.0017 (7)
C5040.0322 (10)0.0222 (9)0.0160 (8)0.0011 (8)0.0022 (7)0.0044 (7)
C5050.0269 (9)0.0180 (9)0.0199 (9)0.0037 (7)0.0031 (7)0.0032 (7)
C5060.0189 (8)0.0173 (8)0.0172 (8)0.0007 (7)0.0019 (7)0.0004 (7)
O10.0389 (9)0.0389 (9)0.0357 (8)0.0018 (7)0.0091 (7)0.0162 (7)
O20.0290 (8)0.0257 (7)0.0490 (9)0.0044 (6)0.0115 (7)0.0048 (7)
Fe10.01451 (12)0.01253 (12)0.01557 (12)0.00121 (9)0.00088 (9)0.00036 (9)
Geometric parameters (Å, º) top
C1—C51.430 (2)C203—H2030.9500
C1—C21.449 (2)C204—C2051.386 (3)
C1—C1011.486 (2)C204—H2040.9500
C1—Fe12.1240 (16)C205—C2061.392 (2)
C2—C31.427 (2)C205—H2050.9500
C2—C2011.484 (2)C206—H2060.9500
C2—Fe12.1202 (16)C301—C3061.392 (2)
C3—C41.450 (2)C301—C3021.396 (2)
C3—C3011.490 (2)C302—C3031.392 (2)
C3—Fe12.0981 (16)C302—H3020.9500
C4—C51.436 (2)C303—C3041.385 (3)
C4—C4011.488 (2)C303—H3030.9500
C4—Fe12.1205 (16)C304—C3051.384 (3)
C5—C5011.484 (2)C304—H3040.9500
C5—Fe12.1731 (16)C305—C3061.394 (2)
C6—O11.149 (2)C305—H3050.9500
C6—Fe11.7506 (19)C306—H3060.9500
C7—O21.136 (2)C401—C4021.392 (2)
C7—Fe11.7542 (19)C401—C4061.396 (2)
C10—Fe12.0751 (18)C402—C4031.390 (3)
C10—H10A0.9800C402—H4020.9500
C10—H10B0.9800C403—C4041.384 (3)
C10—H10C0.9800C403—H4030.9500
C101—C1021.393 (2)C404—C4051.386 (3)
C101—C1061.396 (2)C404—H4040.9500
C102—C1031.393 (2)C405—C4061.391 (3)
C102—H1020.9500C405—H4050.9500
C103—C1041.387 (3)C406—H4060.9500
C103—H1030.9500C501—C5021.397 (2)
C104—C1051.385 (3)C501—C5061.403 (2)
C104—H1040.9500C502—C5031.390 (2)
C105—C1061.391 (2)C502—H5020.9500
C105—H1050.9500C503—C5041.384 (3)
C106—H1060.9500C503—H5030.9500
C201—C2061.395 (2)C504—C5051.388 (3)
C201—C2021.400 (2)C504—H5040.9500
C202—C2031.390 (2)C505—C5061.386 (2)
C202—H2020.9500C505—H5050.9500
C203—C2041.388 (3)C506—H5060.9500
C5—C1—C2108.23 (14)C303—C302—H302119.6
C5—C1—C101125.42 (15)C301—C302—H302119.6
C2—C1—C101126.03 (14)C304—C303—C302120.02 (18)
C5—C1—Fe172.43 (9)C304—C303—H303120.0
C2—C1—Fe169.90 (9)C302—C303—H303120.0
C101—C1—Fe1128.48 (12)C305—C304—C303119.87 (17)
C3—C2—C1107.76 (14)C305—C304—H304120.1
C3—C2—C201125.89 (15)C303—C304—H304120.1
C1—C2—C201125.97 (15)C304—C305—C306120.14 (18)
C3—C2—Fe169.39 (9)C304—C305—H305119.9
C1—C2—Fe170.18 (9)C306—C305—H305119.9
C201—C2—Fe1131.37 (12)C301—C306—C305120.64 (18)
C2—C3—C4108.03 (14)C301—C306—H306119.7
C2—C3—C301125.80 (15)C305—C306—H306119.7
C4—C3—C301126.16 (14)C402—C401—C406118.66 (16)
C2—C3—Fe171.06 (9)C402—C401—C4123.16 (15)
C4—C3—Fe170.74 (9)C406—C401—C4118.15 (15)
C301—C3—Fe1124.67 (12)C403—C402—C401120.61 (18)
C5—C4—C3107.89 (14)C403—C402—H402119.7
C5—C4—C401125.28 (15)C401—C402—H402119.7
C3—C4—C401125.93 (14)C404—C403—C402120.30 (19)
C5—C4—Fe172.45 (9)C404—C403—H403119.8
C3—C4—Fe169.07 (9)C402—C403—H403119.8
C401—C4—Fe1132.48 (12)C403—C404—C405119.72 (17)
C1—C5—C4107.96 (14)C403—C404—H404120.1
C1—C5—C501126.04 (14)C405—C404—H404120.1
C4—C5—C501125.83 (15)C404—C405—C406120.08 (18)
C1—C5—Fe168.72 (9)C404—C405—H405120.0
C4—C5—Fe168.50 (9)C406—C405—H405120.0
C501—C5—Fe1132.04 (11)C405—C406—C401120.62 (17)
O1—C6—Fe1177.75 (18)C405—C406—H406119.7
O2—C7—Fe1177.60 (17)C401—C406—H406119.7
Fe1—C10—H10A109.5C502—C501—C506117.85 (15)
Fe1—C10—H10B109.5C502—C501—C5122.30 (15)
H10A—C10—H10B109.5C506—C501—C5119.76 (15)
Fe1—C10—H10C109.5C503—C502—C501120.96 (16)
H10A—C10—H10C109.5C503—C502—H502119.5
H10B—C10—H10C109.5C501—C502—H502119.5
C102—C101—C106119.07 (15)C504—C503—C502120.32 (16)
C102—C101—C1121.81 (15)C504—C503—H503119.8
C106—C101—C1119.02 (15)C502—C503—H503119.8
C103—C102—C101120.37 (17)C503—C504—C505119.66 (16)
C103—C102—H102119.8C503—C504—H504120.2
C101—C102—H102119.8C505—C504—H504120.2
C104—C103—C102119.98 (17)C506—C505—C504120.12 (16)
C104—C103—H103120.0C506—C505—H505119.9
C102—C103—H103120.0C504—C505—H505119.9
C105—C104—C103120.13 (16)C505—C506—C501121.08 (16)
C105—C104—H104119.9C505—C506—H506119.5
C103—C104—H104119.9C501—C506—H506119.5
C104—C105—C106119.93 (17)C6—Fe1—C790.96 (9)
C104—C105—H105120.0C6—Fe1—C1085.51 (9)
C106—C105—H105120.0C7—Fe1—C1084.00 (8)
C105—C106—C101120.48 (16)C6—Fe1—C3131.07 (8)
C105—C106—H106119.8C7—Fe1—C395.11 (7)
C101—C106—H106119.8C10—Fe1—C3143.40 (7)
C206—C201—C202118.57 (15)C6—Fe1—C298.59 (8)
C206—C201—C2119.12 (15)C7—Fe1—C2122.51 (8)
C202—C201—C2122.24 (15)C10—Fe1—C2152.86 (7)
C203—C202—C201120.44 (17)C3—Fe1—C239.54 (6)
C203—C202—H202119.8C6—Fe1—C4163.38 (8)
C201—C202—H202119.8C7—Fe1—C4103.26 (7)
C204—C203—C202120.31 (17)C10—Fe1—C4104.29 (7)
C204—C203—H203119.8C3—Fe1—C440.19 (6)
C202—C203—H203119.8C2—Fe1—C466.59 (6)
C205—C204—C203119.82 (17)C6—Fe1—C197.73 (7)
C205—C204—H204120.1C7—Fe1—C1161.34 (7)
C203—C204—H204120.1C10—Fe1—C1113.01 (7)
C204—C205—C206119.97 (17)C3—Fe1—C166.77 (6)
C204—C205—H205120.0C2—Fe1—C139.92 (6)
C206—C205—H205120.0C4—Fe1—C166.20 (6)
C205—C206—C201120.86 (17)C6—Fe1—C5129.24 (7)
C205—C206—H206119.6C7—Fe1—C5139.00 (7)
C201—C206—H206119.6C10—Fe1—C590.76 (7)
C306—C301—C302118.59 (16)C3—Fe1—C566.18 (6)
C306—C301—C3120.39 (15)C2—Fe1—C565.80 (6)
C302—C301—C3120.98 (15)C4—Fe1—C539.05 (6)
C303—C302—C301120.73 (17)C1—Fe1—C538.86 (6)
C5—C1—C2—C33.22 (18)C1—C2—C201—C206131.06 (18)
C101—C1—C2—C3176.97 (15)Fe1—C2—C201—C206134.30 (15)
Fe1—C1—C2—C359.45 (11)C3—C2—C201—C202142.10 (17)
C5—C1—C2—C201169.99 (15)C1—C2—C201—C20245.9 (2)
C101—C1—C2—C2013.8 (3)Fe1—C2—C201—C20248.8 (2)
Fe1—C1—C2—C201127.34 (16)C206—C201—C202—C2030.6 (2)
C5—C1—C2—Fe162.67 (11)C2—C201—C202—C203177.59 (16)
C101—C1—C2—Fe1123.58 (17)C201—C202—C203—C2040.6 (3)
C1—C2—C3—C41.47 (18)C202—C203—C204—C2051.0 (3)
C201—C2—C3—C4171.75 (15)C203—C204—C205—C2060.1 (3)
Fe1—C2—C3—C461.41 (11)C204—C205—C206—C2011.2 (3)
C1—C2—C3—C301179.55 (15)C202—C201—C206—C2051.5 (3)
C201—C2—C3—C3017.2 (3)C2—C201—C206—C205178.60 (16)
Fe1—C2—C3—C301119.60 (16)C2—C3—C301—C306131.01 (18)
C1—C2—C3—Fe159.95 (11)C4—C3—C301—C30647.8 (2)
C201—C2—C3—Fe1126.83 (16)Fe1—C3—C301—C306138.28 (14)
C2—C3—C4—C50.82 (18)C2—C3—C301—C30246.5 (2)
C301—C3—C4—C5178.16 (15)C4—C3—C301—C302134.67 (18)
Fe1—C3—C4—C562.44 (11)Fe1—C3—C301—C30244.2 (2)
C2—C3—C4—C401170.37 (15)C306—C301—C302—C3030.0 (3)
C301—C3—C4—C4018.6 (3)C3—C301—C302—C303177.59 (16)
Fe1—C3—C4—C401128.00 (16)C301—C302—C303—C3040.2 (3)
C2—C3—C4—Fe161.62 (11)C302—C303—C304—C3050.3 (3)
C301—C3—C4—Fe1119.40 (17)C303—C304—C305—C3060.1 (3)
C2—C1—C5—C43.73 (18)C302—C301—C306—C3050.2 (3)
C101—C1—C5—C4177.52 (15)C3—C301—C306—C305177.81 (16)
Fe1—C1—C5—C457.33 (11)C304—C305—C306—C3010.2 (3)
C2—C1—C5—C501171.69 (15)C5—C4—C401—C402124.51 (19)
C101—C1—C5—C5012.1 (3)C3—C4—C401—C40267.7 (2)
Fe1—C1—C5—C501127.26 (16)Fe1—C4—C401—C40226.1 (2)
C2—C1—C5—Fe161.06 (11)C5—C4—C401—C40657.6 (2)
C101—C1—C5—Fe1125.15 (17)C3—C4—C401—C406110.21 (19)
C3—C4—C5—C12.82 (18)Fe1—C4—C401—C406156.05 (13)
C401—C4—C5—C1172.45 (15)C406—C401—C402—C4030.7 (3)
Fe1—C4—C5—C157.46 (11)C4—C401—C402—C403177.19 (17)
C3—C4—C5—C501172.61 (15)C401—C402—C403—C4040.4 (3)
C401—C4—C5—C5013.0 (3)C402—C403—C404—C4050.1 (3)
Fe1—C4—C5—C501127.11 (16)C403—C404—C405—C4060.4 (3)
C3—C4—C5—Fe160.28 (11)C404—C405—C406—C4010.0 (3)
C401—C4—C5—Fe1130.08 (16)C402—C401—C406—C4050.5 (3)
C5—C1—C101—C10259.9 (2)C4—C401—C406—C405177.50 (16)
C2—C1—C101—C102127.41 (18)C1—C5—C501—C502147.57 (17)
Fe1—C1—C101—C10235.4 (2)C4—C5—C501—C50237.8 (2)
C5—C1—C101—C106116.52 (19)Fe1—C5—C501—C50254.6 (2)
C2—C1—C101—C10656.2 (2)C1—C5—C501—C50636.0 (2)
Fe1—C1—C101—C106148.20 (13)C4—C5—C501—C506138.64 (17)
C106—C101—C102—C1031.2 (2)Fe1—C5—C501—C506128.94 (15)
C1—C101—C102—C103175.19 (16)C506—C501—C502—C5031.4 (2)
C101—C102—C103—C1040.4 (3)C5—C501—C502—C503177.91 (16)
C102—C103—C104—C1051.1 (3)C501—C502—C503—C5041.1 (3)
C103—C104—C105—C1060.1 (3)C502—C503—C504—C5050.2 (3)
C104—C105—C106—C1011.5 (2)C503—C504—C505—C5061.1 (3)
C102—C101—C106—C1052.2 (2)C504—C505—C506—C5010.8 (3)
C1—C101—C106—C105174.35 (15)C502—C501—C506—C5050.5 (2)
C3—C2—C201—C20640.9 (2)C5—C501—C506—C505177.09 (16)
Dicarbonyl(η5-pentaphenylcyclopentadienyl)phenyliron (compd-2) top
Crystal data top
[Fe(C6H5)(C35H25)(CO)2]F(000) = 1320
Mr = 634.52Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1860 (4) ÅCell parameters from 9920 reflections
b = 16.9411 (6) Åθ = 2.7–26.4°
c = 15.0691 (6) ŵ = 0.52 mm1
β = 93.320 (1)°T = 105 K
V = 3105.71 (19) Å3Rod, yellow
Z = 40.08 × 0.02 × 0.02 mm
Data collection top
Bruker D8 Venture
diffractometer
6352 independent reflections
Radiation source: rotating anode generator, Bruker TXS5025 reflections with I > 2σ(I)
Detector resolution: 7.391 pixels mm-1Rint = 0.050
mix of ω and phi scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1514
Tmin = 0.669, Tmax = 0.745k = 2121
31592 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0255P)2 + 3.2346P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6352 reflectionsΔρmax = 0.32 e Å3
415 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51430 (17)0.41526 (12)0.67825 (14)0.0151 (4)
C20.58867 (16)0.47964 (12)0.68908 (14)0.0146 (4)
C30.52471 (17)0.55089 (12)0.68962 (14)0.0141 (4)
C40.41025 (16)0.53041 (12)0.67969 (13)0.0136 (4)
C50.40380 (16)0.44551 (12)0.67353 (14)0.0137 (4)
C60.51341 (19)0.39573 (14)0.86803 (16)0.0219 (5)
C70.55900 (19)0.54035 (13)0.87419 (15)0.0217 (5)
C110.35145 (18)0.49501 (13)0.86829 (15)0.0198 (5)
C120.32867 (19)0.56776 (14)0.90712 (16)0.0234 (5)
H120.3819510.6086560.9063190.028*
C130.2305 (2)0.58204 (16)0.94684 (18)0.0320 (6)
H130.2176260.6322300.9723760.038*
C140.1516 (2)0.52401 (17)0.94948 (18)0.0348 (6)
H140.0837200.5341050.9753090.042*
C150.1732 (2)0.45034 (15)0.91363 (17)0.0294 (6)
H150.1200050.4094290.9154210.035*
C160.27212 (18)0.43651 (14)0.87527 (15)0.0220 (5)
H160.2862970.3852860.8529660.026*
C1010.54613 (17)0.33194 (12)0.65979 (14)0.0147 (4)
C1020.50261 (17)0.29643 (12)0.58201 (14)0.0167 (5)
H1020.4495610.3238250.5450050.020*
C1030.53606 (18)0.22142 (13)0.55815 (15)0.0200 (5)
H1030.5056800.1977610.5050980.024*
C1040.61335 (19)0.18106 (13)0.61124 (16)0.0216 (5)
H1040.6367210.1299270.5946070.026*
C1050.6565 (2)0.21561 (13)0.68886 (16)0.0249 (5)
H1050.7089800.1877300.7259540.030*
C1060.62367 (18)0.29089 (13)0.71289 (15)0.0206 (5)
H1060.6544320.3143560.7659230.025*
C2010.71062 (17)0.47448 (12)0.68737 (14)0.0151 (4)
C2020.75535 (18)0.44018 (13)0.61354 (15)0.0193 (5)
H2020.7078130.4189260.5673800.023*
C2030.86791 (18)0.43661 (13)0.60647 (16)0.0222 (5)
H2030.8970940.4133730.5555260.027*
C2040.93826 (18)0.46697 (13)0.67376 (16)0.0228 (5)
H2041.0155910.4648290.6689570.027*
C2050.89509 (18)0.50025 (13)0.74760 (17)0.0238 (5)
H2050.9430200.5204980.7941030.029*
C2060.78185 (18)0.50441 (13)0.75454 (16)0.0200 (5)
H2060.7530210.5278480.8055220.024*
C3010.56873 (17)0.63255 (12)0.68749 (14)0.0146 (4)
C3020.64470 (17)0.65157 (13)0.62483 (14)0.0165 (5)
H3020.6747130.6109950.5900900.020*
C3030.67661 (18)0.72939 (13)0.61302 (15)0.0188 (5)
H3030.7284020.7417510.5703570.023*
C3040.63314 (18)0.78920 (13)0.66329 (16)0.0216 (5)
H3040.6536110.8425630.6541540.026*
C3050.55957 (18)0.77044 (13)0.72698 (16)0.0222 (5)
H3050.5307760.8110290.7623930.027*
C3060.52785 (18)0.69276 (13)0.73921 (15)0.0190 (5)
H3060.4778100.6805020.7832590.023*
C4010.31727 (17)0.58652 (12)0.66370 (14)0.0153 (4)
C4020.32838 (18)0.64702 (13)0.60196 (15)0.0186 (5)
H4020.3960490.6532870.5744710.022*
C4030.24202 (19)0.69811 (13)0.58019 (16)0.0231 (5)
H4030.2507450.7389100.5379210.028*
C4040.14308 (19)0.68966 (13)0.62004 (16)0.0239 (5)
H4040.0836850.7243980.6050230.029*
C4050.13130 (18)0.63036 (13)0.68181 (16)0.0230 (5)
H4050.0639400.6251520.7100100.028*
C4060.21712 (17)0.57817 (13)0.70314 (15)0.0185 (5)
H4060.2074610.5368460.7445780.022*
C5010.30530 (17)0.39683 (12)0.64965 (14)0.0146 (4)
C5020.23184 (17)0.42020 (13)0.57996 (15)0.0169 (5)
H5020.2402970.4702640.5527940.020*
C5030.14665 (17)0.37086 (13)0.55012 (15)0.0197 (5)
H5030.0972950.3872360.5025530.024*
C5040.13320 (18)0.29777 (14)0.58938 (16)0.0230 (5)
H5040.0747760.2640460.5689860.028*
C5050.20563 (18)0.27431 (13)0.65860 (16)0.0215 (5)
H5050.1968820.2242200.6856380.026*
C5060.29075 (18)0.32343 (12)0.68865 (15)0.0174 (5)
H5060.3396930.3068230.7363780.021*
O10.53289 (15)0.34343 (10)0.91514 (12)0.0311 (4)
O20.60742 (14)0.58192 (10)0.92221 (11)0.0295 (4)
Fe10.48631 (2)0.47746 (2)0.79864 (2)0.01477 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (10)0.0148 (10)0.0161 (11)0.0000 (9)0.0009 (9)0.0003 (8)
C20.0136 (10)0.0135 (10)0.0165 (11)0.0012 (9)0.0003 (8)0.0017 (9)
C30.0152 (10)0.0127 (10)0.0143 (11)0.0010 (8)0.0013 (8)0.0003 (8)
C40.0147 (10)0.0124 (10)0.0139 (10)0.0006 (8)0.0016 (8)0.0006 (8)
C50.0135 (10)0.0131 (10)0.0144 (11)0.0006 (8)0.0000 (8)0.0001 (8)
C60.0208 (12)0.0213 (12)0.0232 (13)0.0036 (10)0.0020 (10)0.0034 (10)
C70.0242 (12)0.0217 (12)0.0197 (12)0.0001 (10)0.0047 (10)0.0023 (10)
C110.0205 (11)0.0217 (12)0.0171 (11)0.0001 (9)0.0008 (9)0.0024 (9)
C120.0237 (12)0.0220 (12)0.0248 (13)0.0025 (10)0.0044 (10)0.0009 (10)
C130.0317 (14)0.0295 (14)0.0357 (15)0.0046 (12)0.0104 (12)0.0049 (12)
C140.0288 (13)0.0394 (15)0.0379 (15)0.0009 (12)0.0169 (12)0.0025 (13)
C150.0246 (13)0.0322 (14)0.0318 (14)0.0079 (11)0.0048 (11)0.0067 (11)
C160.0233 (12)0.0216 (12)0.0215 (12)0.0015 (10)0.0036 (10)0.0034 (10)
C1010.0115 (10)0.0114 (10)0.0210 (12)0.0015 (8)0.0007 (9)0.0005 (9)
C1020.0155 (10)0.0158 (11)0.0187 (11)0.0004 (9)0.0005 (9)0.0018 (9)
C1030.0218 (11)0.0195 (11)0.0186 (12)0.0015 (10)0.0004 (9)0.0041 (9)
C1040.0252 (12)0.0124 (11)0.0270 (13)0.0041 (9)0.0008 (10)0.0014 (9)
C1050.0269 (13)0.0164 (11)0.0301 (14)0.0063 (10)0.0081 (10)0.0001 (10)
C1060.0225 (12)0.0167 (11)0.0217 (12)0.0016 (9)0.0054 (10)0.0035 (9)
C2010.0155 (10)0.0085 (9)0.0213 (11)0.0005 (9)0.0005 (8)0.0023 (9)
C2020.0170 (11)0.0178 (11)0.0230 (12)0.0007 (9)0.0006 (9)0.0010 (9)
C2030.0197 (11)0.0205 (12)0.0271 (13)0.0016 (10)0.0061 (10)0.0030 (10)
C2040.0121 (10)0.0180 (11)0.0384 (14)0.0000 (9)0.0036 (10)0.0012 (10)
C2050.0152 (11)0.0219 (12)0.0339 (14)0.0014 (9)0.0033 (10)0.0052 (10)
C2060.0177 (11)0.0172 (11)0.0250 (12)0.0008 (9)0.0021 (9)0.0044 (9)
C3010.0119 (10)0.0119 (10)0.0195 (11)0.0005 (8)0.0028 (8)0.0001 (8)
C3020.0143 (10)0.0167 (11)0.0182 (11)0.0013 (9)0.0019 (9)0.0001 (9)
C3030.0163 (11)0.0205 (11)0.0192 (12)0.0028 (9)0.0022 (9)0.0047 (9)
C3040.0216 (12)0.0117 (11)0.0304 (13)0.0032 (9)0.0070 (10)0.0020 (9)
C3050.0219 (12)0.0144 (11)0.0300 (13)0.0014 (9)0.0002 (10)0.0063 (10)
C3060.0166 (11)0.0178 (11)0.0228 (12)0.0010 (9)0.0035 (9)0.0017 (9)
C4010.0147 (10)0.0104 (10)0.0205 (11)0.0004 (8)0.0009 (9)0.0039 (9)
C4020.0153 (11)0.0166 (11)0.0240 (12)0.0017 (9)0.0013 (9)0.0008 (9)
C4030.0258 (12)0.0155 (11)0.0274 (13)0.0017 (10)0.0035 (10)0.0031 (10)
C4040.0188 (11)0.0173 (11)0.0345 (14)0.0062 (9)0.0062 (10)0.0045 (10)
C4050.0141 (11)0.0205 (12)0.0344 (14)0.0015 (9)0.0018 (10)0.0063 (10)
C4060.0164 (11)0.0162 (11)0.0231 (12)0.0002 (9)0.0023 (9)0.0011 (9)
C5010.0117 (10)0.0137 (10)0.0187 (11)0.0006 (8)0.0044 (8)0.0030 (9)
C5020.0148 (10)0.0150 (10)0.0212 (12)0.0020 (9)0.0028 (9)0.0016 (9)
C5030.0127 (10)0.0264 (12)0.0200 (12)0.0013 (9)0.0006 (9)0.0055 (10)
C5040.0157 (11)0.0238 (12)0.0295 (13)0.0062 (10)0.0030 (10)0.0081 (10)
C5050.0192 (11)0.0149 (11)0.0307 (13)0.0037 (9)0.0052 (10)0.0017 (10)
C5060.0165 (11)0.0147 (11)0.0213 (12)0.0004 (9)0.0019 (9)0.0001 (9)
O10.0411 (11)0.0209 (9)0.0303 (10)0.0000 (8)0.0069 (8)0.0063 (8)
O20.0310 (10)0.0299 (10)0.0271 (10)0.0079 (8)0.0020 (8)0.0064 (8)
Fe10.01461 (15)0.01271 (15)0.01687 (16)0.00087 (13)0.00001 (12)0.00030 (13)
Geometric parameters (Å, º) top
C1—C21.421 (3)C201—C2021.394 (3)
C1—C51.439 (3)C202—C2031.383 (3)
C1—C1011.494 (3)C202—H2020.9500
C1—Fe12.142 (2)C203—C2041.388 (3)
C2—C31.437 (3)C203—H2030.9500
C2—C2011.490 (3)C204—C2051.379 (3)
C2—Fe12.126 (2)C204—H2040.9500
C3—C41.437 (3)C205—C2061.392 (3)
C3—C3011.485 (3)C205—H2050.9500
C3—Fe12.134 (2)C206—H2060.9500
C4—C51.443 (3)C301—C3061.393 (3)
C4—C4011.488 (3)C301—C3021.398 (3)
C4—Fe12.164 (2)C302—C3031.389 (3)
C5—C5011.483 (3)C302—H3020.9500
C5—Fe12.154 (2)C303—C3041.388 (3)
C6—O11.151 (3)C303—H3030.9500
C6—Fe11.755 (2)C304—C3051.388 (3)
C7—O21.148 (3)C304—H3040.9500
C7—Fe11.761 (2)C305—C3061.387 (3)
C11—C161.393 (3)C305—H3050.9500
C11—C121.399 (3)C306—H3060.9500
C11—Fe12.023 (2)C401—C4061.395 (3)
C12—C131.390 (3)C401—C4021.396 (3)
C12—H120.9500C402—C4031.387 (3)
C13—C141.377 (4)C402—H4020.9500
C13—H130.9500C403—C4041.385 (3)
C14—C151.391 (4)C403—H4030.9500
C14—H140.9500C404—C4051.383 (3)
C15—C161.387 (3)C404—H4040.9500
C15—H150.9500C405—C4061.393 (3)
C16—H160.9500C405—H4050.9500
C101—C1061.389 (3)C406—H4060.9500
C101—C1021.395 (3)C501—C5061.391 (3)
C102—C1031.388 (3)C501—C5021.397 (3)
C102—H1020.9500C502—C5031.387 (3)
C103—C1041.381 (3)C502—H5020.9500
C103—H1030.9500C503—C5041.386 (3)
C104—C1051.384 (3)C503—H5030.9500
C104—H1040.9500C504—C5051.385 (3)
C105—C1061.391 (3)C504—H5040.9500
C105—H1050.9500C505—C5061.385 (3)
C106—H1060.9500C505—H5050.9500
C201—C2061.390 (3)C506—H5060.9500
C2—C1—C5108.73 (18)C201—C206—H206119.8
C2—C1—C101125.15 (18)C205—C206—H206119.8
C5—C1—C101125.42 (19)C306—C301—C302118.78 (19)
C2—C1—Fe169.94 (12)C306—C301—C3121.92 (19)
C5—C1—Fe170.86 (12)C302—C301—C3118.92 (19)
C101—C1—Fe1132.69 (15)C303—C302—C301120.4 (2)
C1—C2—C3107.62 (17)C303—C302—H302119.8
C1—C2—C201125.64 (19)C301—C302—H302119.8
C3—C2—C201126.23 (19)C304—C303—C302120.3 (2)
C1—C2—Fe171.16 (12)C304—C303—H303119.9
C3—C2—Fe170.58 (12)C302—C303—H303119.9
C201—C2—Fe1130.00 (15)C305—C304—C303119.5 (2)
C4—C3—C2108.68 (18)C305—C304—H304120.2
C4—C3—C301124.93 (18)C303—C304—H304120.2
C2—C3—C301125.85 (18)C306—C305—C304120.4 (2)
C4—C3—Fe171.61 (12)C306—C305—H305119.8
C2—C3—Fe170.00 (12)C304—C305—H305119.8
C301—C3—Fe1130.95 (15)C305—C306—C301120.6 (2)
C3—C4—C5107.23 (17)C305—C306—H306119.7
C3—C4—C401126.03 (18)C301—C306—H306119.7
C5—C4—C401126.03 (18)C406—C401—C402118.64 (19)
C3—C4—Fe169.34 (12)C406—C401—C4122.89 (19)
C5—C4—Fe170.08 (12)C402—C401—C4118.33 (19)
C401—C4—Fe1133.19 (15)C403—C402—C401120.9 (2)
C1—C5—C4107.73 (18)C403—C402—H402119.5
C1—C5—C501123.77 (18)C401—C402—H402119.5
C4—C5—C501127.59 (18)C404—C403—C402120.0 (2)
C1—C5—Fe170.01 (12)C404—C403—H403120.0
C4—C5—Fe170.87 (12)C402—C403—H403120.0
C501—C5—Fe1133.02 (15)C405—C404—C403119.6 (2)
O1—C6—Fe1178.1 (2)C405—C404—H404120.2
O2—C7—Fe1178.7 (2)C403—C404—H404120.2
C16—C11—C12116.1 (2)C404—C405—C406120.7 (2)
C16—C11—Fe1121.54 (17)C404—C405—H405119.6
C12—C11—Fe1122.23 (17)C406—C405—H405119.6
C13—C12—C11122.0 (2)C405—C406—C401120.1 (2)
C13—C12—H12119.0C405—C406—H406120.0
C11—C12—H12119.0C401—C406—H406120.0
C14—C13—C12120.5 (2)C506—C501—C502118.62 (19)
C14—C13—H13119.7C506—C501—C5121.04 (19)
C12—C13—H13119.7C502—C501—C5119.93 (19)
C13—C14—C15118.8 (2)C503—C502—C501120.5 (2)
C13—C14—H14120.6C503—C502—H502119.7
C15—C14—H14120.6C501—C502—H502119.7
C16—C15—C14120.1 (2)C504—C503—C502120.3 (2)
C16—C15—H15119.9C504—C503—H503119.8
C14—C15—H15119.9C502—C503—H503119.8
C15—C16—C11122.4 (2)C505—C504—C503119.5 (2)
C15—C16—H16118.8C505—C504—H504120.3
C11—C16—H16118.8C503—C504—H504120.3
C106—C101—C102118.76 (19)C504—C505—C506120.4 (2)
C106—C101—C1122.75 (19)C504—C505—H505119.8
C102—C101—C1118.28 (19)C506—C505—H505119.8
C103—C102—C101120.6 (2)C505—C506—C501120.7 (2)
C103—C102—H102119.7C505—C506—H506119.7
C101—C102—H102119.7C501—C506—H506119.7
C104—C103—C102120.3 (2)C6—Fe1—C791.25 (10)
C104—C103—H103119.9C6—Fe1—C1186.40 (10)
C102—C103—H103119.9C7—Fe1—C1188.22 (10)
C103—C104—C105119.6 (2)C6—Fe1—C2112.19 (10)
C103—C104—H104120.2C7—Fe1—C2101.29 (9)
C105—C104—H104120.2C11—Fe1—C2158.62 (8)
C104—C105—C106120.4 (2)C6—Fe1—C3151.22 (10)
C104—C105—H105119.8C7—Fe1—C391.18 (9)
C106—C105—H105119.8C11—Fe1—C3122.33 (8)
C101—C106—C105120.4 (2)C2—Fe1—C339.42 (8)
C101—C106—H106119.8C6—Fe1—C194.75 (9)
C105—C106—H106119.8C7—Fe1—C1138.28 (9)
C206—C201—C202118.5 (2)C11—Fe1—C1133.30 (9)
C206—C201—C2123.17 (19)C2—Fe1—C138.90 (8)
C202—C201—C2118.34 (19)C3—Fe1—C165.29 (8)
C203—C202—C201121.0 (2)C6—Fe1—C5112.68 (9)
C203—C202—H202119.5C7—Fe1—C5155.52 (9)
C201—C202—H202119.5C11—Fe1—C597.99 (8)
C202—C203—C204120.1 (2)C2—Fe1—C565.78 (8)
C202—C203—H203120.0C3—Fe1—C565.46 (8)
C204—C203—H203120.0C1—Fe1—C539.13 (8)
C205—C204—C203119.5 (2)C6—Fe1—C4151.32 (9)
C205—C204—H204120.2C7—Fe1—C4117.39 (9)
C203—C204—H204120.2C11—Fe1—C492.70 (8)
C204—C205—C206120.5 (2)C2—Fe1—C465.93 (8)
C204—C205—H205119.7C3—Fe1—C439.04 (8)
C206—C205—H205119.7C1—Fe1—C465.42 (8)
C201—C206—C205120.4 (2)C5—Fe1—C439.05 (8)
C5—C1—C2—C31.0 (2)C102—C101—C106—C1050.3 (3)
C101—C1—C2—C3169.8 (2)C1—C101—C106—C105175.0 (2)
Fe1—C1—C2—C361.51 (14)C104—C105—C106—C1010.7 (4)
C5—C1—C2—C201173.3 (2)C1—C2—C201—C206127.2 (2)
C101—C1—C2—C2012.5 (3)C3—C2—C201—C20661.9 (3)
Fe1—C1—C2—C201126.2 (2)Fe1—C2—C201—C20632.5 (3)
C5—C1—C2—Fe160.51 (15)C1—C2—C201—C20254.8 (3)
C101—C1—C2—Fe1128.7 (2)C3—C2—C201—C202116.0 (2)
C1—C2—C3—C40.4 (2)Fe1—C2—C201—C202149.59 (17)
C201—C2—C3—C4172.6 (2)C206—C201—C202—C2030.7 (3)
Fe1—C2—C3—C461.49 (14)C2—C201—C202—C203177.3 (2)
C1—C2—C3—C301171.4 (2)C201—C202—C203—C2040.4 (3)
C201—C2—C3—C3010.8 (3)C202—C203—C204—C2050.3 (3)
Fe1—C2—C3—C301126.7 (2)C203—C204—C205—C2060.8 (4)
C1—C2—C3—Fe161.88 (14)C202—C201—C206—C2050.2 (3)
C201—C2—C3—Fe1125.9 (2)C2—C201—C206—C205177.7 (2)
C2—C3—C4—C50.4 (2)C204—C205—C206—C2010.5 (3)
C301—C3—C4—C5172.3 (2)C4—C3—C301—C30650.4 (3)
Fe1—C3—C4—C560.12 (14)C2—C3—C301—C306139.1 (2)
C2—C3—C4—C401170.5 (2)Fe1—C3—C301—C30645.2 (3)
C301—C3—C4—C4011.5 (3)C4—C3—C301—C302122.5 (2)
Fe1—C3—C4—C401129.1 (2)C2—C3—C301—C30248.1 (3)
C2—C3—C4—Fe160.47 (14)Fe1—C3—C301—C302141.97 (18)
C301—C3—C4—Fe1127.6 (2)C306—C301—C302—C3031.6 (3)
C2—C1—C5—C41.2 (2)C3—C301—C302—C303171.51 (19)
C101—C1—C5—C4169.5 (2)C301—C302—C303—C3040.1 (3)
Fe1—C1—C5—C461.16 (14)C302—C303—C304—C3051.6 (3)
C2—C1—C5—C501171.01 (19)C303—C304—C305—C3061.3 (3)
C101—C1—C5—C5010.3 (3)C304—C305—C306—C3010.4 (3)
Fe1—C1—C5—C501129.1 (2)C302—C301—C306—C3051.8 (3)
C2—C1—C5—Fe159.94 (15)C3—C301—C306—C305171.0 (2)
C101—C1—C5—Fe1129.3 (2)C3—C4—C401—C406141.1 (2)
C3—C4—C5—C11.0 (2)C5—C4—C401—C40649.8 (3)
C401—C4—C5—C1169.8 (2)Fe1—C4—C401—C40646.3 (3)
Fe1—C4—C5—C160.61 (14)C3—C4—C401—C40243.3 (3)
C3—C4—C5—C501170.2 (2)C5—C4—C401—C402125.8 (2)
C401—C4—C5—C5010.6 (4)Fe1—C4—C401—C402138.14 (19)
Fe1—C4—C5—C501130.1 (2)C406—C401—C402—C4030.2 (3)
C3—C4—C5—Fe159.65 (14)C4—C401—C402—C403176.0 (2)
C401—C4—C5—Fe1129.5 (2)C401—C402—C403—C4040.2 (3)
C16—C11—C12—C132.8 (3)C402—C403—C404—C4050.3 (3)
Fe1—C11—C12—C13173.10 (19)C403—C404—C405—C4061.2 (3)
C11—C12—C13—C140.2 (4)C404—C405—C406—C4011.6 (3)
C12—C13—C14—C151.5 (4)C402—C401—C406—C4051.0 (3)
C13—C14—C15—C160.7 (4)C4—C401—C406—C405176.6 (2)
C14—C15—C16—C112.1 (4)C1—C5—C501—C50647.2 (3)
C12—C11—C16—C153.7 (3)C4—C5—C501—C506145.1 (2)
Fe1—C11—C16—C15172.21 (18)Fe1—C5—C501—C50646.3 (3)
C2—C1—C101—C10654.3 (3)C1—C5—C501—C502125.4 (2)
C5—C1—C101—C106136.5 (2)C4—C5—C501—C50242.2 (3)
Fe1—C1—C101—C10640.2 (3)Fe1—C5—C501—C502141.03 (18)
C2—C1—C101—C102120.3 (2)C506—C501—C502—C5030.4 (3)
C5—C1—C101—C10248.9 (3)C5—C501—C502—C503172.4 (2)
Fe1—C1—C101—C102145.14 (18)C501—C502—C503—C5040.2 (3)
C106—C101—C102—C1030.1 (3)C502—C503—C504—C5050.1 (3)
C1—C101—C102—C103174.9 (2)C503—C504—C505—C5060.2 (3)
C101—C102—C103—C1040.2 (3)C504—C505—C506—C5010.3 (3)
C102—C103—C104—C1050.6 (3)C502—C501—C506—C5050.4 (3)
C103—C104—C105—C1060.9 (4)C5—C501—C506—C505172.3 (2)
Dicarbonyl(isopropyl)(η5-pentaphenylcyclopentadienyl)iron (compd-3) top
Crystal data top
[Fe(C3H7)(C35H25)(CO)2]F(000) = 1256
Mr = 600.50Dx = 1.309 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5488 (7) ÅCell parameters from 9881 reflections
b = 13.5046 (7) Åθ = 2.7–27.1°
c = 18.0119 (11) ŵ = 0.53 mm1
β = 93.208 (2)°T = 110 K
V = 3047.6 (3) Å3Block, brown
Z = 40.06 × 0.04 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
6732 independent reflections
Radiation source: rotating anode generator, Bruker TXS5995 reflections with I > 2σ(I)
Detector resolution: 7.391 pixels mm-1Rint = 0.031
mix of ω and phi scansθmax = 27.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1516
Tmin = 0.719, Tmax = 0.746k = 1717
52953 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0377P)2 + 2.212P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
6732 reflectionsΔρmax = 0.36 e Å3
390 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34805 (12)0.66256 (11)0.45764 (8)0.0172 (3)
C20.34016 (12)0.65122 (11)0.53606 (8)0.0168 (3)
C30.43556 (11)0.69012 (10)0.57258 (8)0.0164 (3)
C40.50756 (12)0.71857 (11)0.51583 (8)0.0177 (3)
C50.45259 (12)0.70276 (11)0.44536 (8)0.0175 (3)
C60.41931 (15)0.90205 (14)0.56241 (12)0.0371 (4)
C70.33642 (13)0.88526 (12)0.43146 (10)0.0264 (3)
C80.21376 (13)0.84627 (13)0.54392 (9)0.0271 (3)
H80.1930580.7920730.5780960.032*
C90.20660 (18)0.94269 (16)0.58861 (13)0.0450 (5)
H9A0.2266760.9987320.5577720.067*
H9B0.2552370.9390470.6330260.067*
H9C0.1333340.9517930.6035270.067*
C100.12829 (15)0.84813 (17)0.48138 (11)0.0395 (5)
H10A0.0577770.8478030.5021680.059*
H10B0.1355740.7896500.4498430.059*
H10C0.1361210.9081300.4515710.059*
C110.27332 (11)0.62098 (11)0.39884 (8)0.0177 (3)
C120.22872 (13)0.67774 (13)0.34035 (8)0.0240 (3)
H120.2420700.7469440.3389230.029*
C130.16478 (14)0.63360 (14)0.28406 (9)0.0292 (4)
H130.1338820.6731490.2449020.035*
C140.14581 (13)0.53313 (14)0.28453 (9)0.0286 (4)
H140.1033240.5033270.2453390.034*
C150.18898 (13)0.47583 (13)0.34239 (9)0.0259 (3)
H150.1757670.4065820.3431270.031*
C160.25169 (12)0.51956 (12)0.39949 (8)0.0213 (3)
H160.2801660.4799300.4394130.026*
C210.25569 (12)0.59558 (11)0.57294 (8)0.0176 (3)
C220.14750 (12)0.60281 (12)0.55034 (9)0.0220 (3)
H220.1251950.6478070.5120130.026*
C230.07219 (13)0.54420 (13)0.58384 (9)0.0265 (3)
H230.0012650.5504640.5687810.032*
C240.10369 (14)0.47687 (13)0.63893 (9)0.0278 (4)
H240.0521650.4367720.6612790.033*
C250.21085 (14)0.46850 (12)0.66117 (9)0.0254 (3)
H250.2328710.4224060.6988040.030*
C260.28625 (12)0.52736 (11)0.62856 (8)0.0205 (3)
H260.3594770.5211440.6442680.025*
C310.45797 (12)0.68718 (11)0.65463 (8)0.0178 (3)
C320.38537 (13)0.72724 (12)0.70234 (9)0.0229 (3)
H320.3271980.7659130.6826560.028*
C330.39780 (14)0.71079 (13)0.77856 (9)0.0281 (4)
H330.3475890.7375100.8106630.034*
C340.48309 (15)0.65562 (14)0.80774 (9)0.0309 (4)
H340.4903880.6430780.8596700.037*
C350.55793 (14)0.61865 (13)0.76118 (9)0.0277 (4)
H350.6177400.5826160.7814380.033*
C360.54550 (12)0.63428 (12)0.68473 (9)0.0214 (3)
H360.5968820.6088010.6529770.026*
C410.62197 (12)0.74559 (11)0.52894 (8)0.0188 (3)
C420.69780 (13)0.69979 (12)0.48608 (9)0.0229 (3)
H420.6747550.6563760.4469010.027*
C430.80646 (14)0.71711 (14)0.50019 (10)0.0306 (4)
H430.8569180.6858810.4705010.037*
C440.84104 (14)0.77976 (15)0.55740 (11)0.0330 (4)
H440.9152010.7908030.5675130.040*
C450.76703 (14)0.82637 (14)0.59993 (10)0.0304 (4)
H450.7905180.8699620.6388780.036*
C460.65853 (13)0.80939 (12)0.58562 (9)0.0242 (3)
H460.6084950.8418060.6149630.029*
C510.49636 (12)0.71843 (11)0.37098 (8)0.0195 (3)
C520.48776 (13)0.64331 (13)0.31800 (9)0.0235 (3)
H520.4532400.5829650.3292300.028*
C530.52961 (14)0.65629 (15)0.24850 (9)0.0327 (4)
H530.5240110.6045920.2127250.039*
C540.57922 (15)0.74423 (16)0.23160 (10)0.0373 (4)
H540.6065190.7535140.1839510.045*
C550.58896 (15)0.81866 (14)0.28434 (11)0.0355 (4)
H550.6239710.8787270.2730370.043*
C560.54789 (14)0.80606 (12)0.35364 (10)0.0263 (3)
H560.5549690.8575660.3894960.032*
O10.45705 (14)0.96355 (12)0.59890 (13)0.0716 (6)
O20.31839 (11)0.93700 (10)0.38174 (8)0.0387 (3)
Fe10.36538 (2)0.80613 (2)0.50730 (2)0.01815 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0199 (7)0.0161 (7)0.0159 (7)0.0005 (5)0.0035 (5)0.0007 (5)
C20.0188 (7)0.0159 (7)0.0160 (7)0.0000 (5)0.0027 (5)0.0005 (5)
C30.0175 (7)0.0147 (6)0.0173 (7)0.0003 (5)0.0029 (5)0.0011 (5)
C40.0196 (7)0.0156 (7)0.0181 (7)0.0013 (5)0.0034 (5)0.0007 (5)
C50.0211 (7)0.0146 (6)0.0170 (7)0.0010 (5)0.0037 (5)0.0002 (5)
C60.0310 (9)0.0236 (9)0.0554 (12)0.0072 (7)0.0081 (8)0.0090 (8)
C70.0264 (8)0.0225 (8)0.0314 (9)0.0008 (6)0.0095 (7)0.0025 (7)
C80.0271 (8)0.0293 (8)0.0258 (8)0.0048 (7)0.0096 (6)0.0038 (7)
C90.0496 (12)0.0383 (11)0.0489 (12)0.0103 (9)0.0192 (10)0.0055 (9)
C100.0269 (9)0.0538 (12)0.0383 (10)0.0042 (8)0.0068 (8)0.0116 (9)
C110.0166 (7)0.0232 (7)0.0138 (6)0.0008 (6)0.0043 (5)0.0010 (6)
C120.0285 (8)0.0266 (8)0.0170 (7)0.0010 (6)0.0017 (6)0.0008 (6)
C130.0301 (9)0.0409 (10)0.0162 (7)0.0057 (7)0.0014 (6)0.0011 (7)
C140.0210 (8)0.0444 (10)0.0204 (8)0.0014 (7)0.0017 (6)0.0124 (7)
C150.0228 (8)0.0289 (8)0.0264 (8)0.0054 (6)0.0060 (6)0.0094 (7)
C160.0205 (7)0.0241 (8)0.0195 (7)0.0016 (6)0.0042 (6)0.0012 (6)
C210.0192 (7)0.0199 (7)0.0141 (6)0.0040 (6)0.0050 (5)0.0039 (5)
C220.0211 (7)0.0253 (8)0.0198 (7)0.0005 (6)0.0029 (6)0.0028 (6)
C230.0186 (7)0.0323 (9)0.0293 (8)0.0050 (6)0.0068 (6)0.0082 (7)
C240.0287 (8)0.0271 (8)0.0291 (8)0.0095 (7)0.0145 (7)0.0046 (7)
C250.0326 (9)0.0230 (8)0.0212 (7)0.0050 (7)0.0082 (6)0.0002 (6)
C260.0226 (7)0.0206 (7)0.0186 (7)0.0034 (6)0.0037 (6)0.0017 (6)
C310.0189 (7)0.0176 (7)0.0169 (7)0.0049 (5)0.0009 (5)0.0018 (5)
C320.0243 (8)0.0247 (8)0.0199 (7)0.0007 (6)0.0016 (6)0.0039 (6)
C330.0335 (9)0.0328 (9)0.0185 (8)0.0022 (7)0.0057 (6)0.0059 (7)
C340.0400 (10)0.0355 (9)0.0165 (7)0.0071 (8)0.0038 (7)0.0001 (7)
C350.0278 (8)0.0279 (8)0.0266 (8)0.0024 (7)0.0070 (6)0.0033 (7)
C360.0204 (7)0.0207 (7)0.0232 (7)0.0030 (6)0.0011 (6)0.0020 (6)
C410.0197 (7)0.0179 (7)0.0189 (7)0.0029 (5)0.0032 (5)0.0025 (6)
C420.0232 (8)0.0226 (8)0.0232 (8)0.0002 (6)0.0044 (6)0.0010 (6)
C430.0221 (8)0.0376 (10)0.0328 (9)0.0006 (7)0.0089 (7)0.0017 (8)
C440.0188 (8)0.0408 (10)0.0397 (10)0.0071 (7)0.0032 (7)0.0003 (8)
C450.0263 (8)0.0325 (9)0.0322 (9)0.0092 (7)0.0003 (7)0.0064 (7)
C460.0220 (8)0.0255 (8)0.0253 (8)0.0037 (6)0.0049 (6)0.0032 (6)
C510.0190 (7)0.0221 (7)0.0178 (7)0.0014 (6)0.0046 (5)0.0032 (6)
C520.0245 (8)0.0269 (8)0.0194 (7)0.0003 (6)0.0049 (6)0.0008 (6)
C530.0314 (9)0.0472 (11)0.0204 (8)0.0035 (8)0.0081 (7)0.0047 (8)
C540.0354 (10)0.0545 (12)0.0233 (8)0.0060 (9)0.0147 (7)0.0106 (8)
C550.0354 (10)0.0346 (10)0.0380 (10)0.0002 (8)0.0151 (8)0.0161 (8)
C560.0292 (8)0.0221 (8)0.0286 (8)0.0004 (6)0.0090 (7)0.0040 (6)
O10.0538 (10)0.0353 (8)0.1213 (16)0.0098 (7)0.0354 (10)0.0420 (10)
O20.0446 (8)0.0339 (7)0.0383 (7)0.0068 (6)0.0100 (6)0.0182 (6)
Fe10.01987 (12)0.01597 (11)0.01882 (12)0.00017 (8)0.00301 (8)0.00005 (8)
Geometric parameters (Å, º) top
C1—C21.430 (2)C22—C231.396 (2)
C1—C51.448 (2)C22—H220.9500
C1—C111.485 (2)C23—C241.387 (3)
C1—Fe12.1411 (15)C23—H230.9500
C2—C31.433 (2)C24—C251.386 (2)
C2—C211.486 (2)C24—H240.9500
C2—Fe12.1824 (14)C25—C261.391 (2)
C3—C41.453 (2)C25—H250.9500
C3—C311.489 (2)C26—H260.9500
C3—Fe12.1205 (15)C31—C361.394 (2)
C4—C51.426 (2)C31—C321.396 (2)
C4—C411.487 (2)C32—C331.391 (2)
C4—Fe12.1387 (15)C32—H320.9500
C5—C511.491 (2)C33—C341.383 (3)
C5—Fe12.1278 (15)C33—H330.9500
C6—O11.145 (2)C34—C351.387 (3)
C6—Fe11.7453 (19)C34—H340.9500
C7—O21.148 (2)C35—C361.393 (2)
C7—Fe11.7564 (17)C35—H350.9500
C8—C101.511 (3)C36—H360.9500
C8—C91.536 (3)C41—C461.394 (2)
C8—Fe12.1189 (16)C41—C421.402 (2)
C8—H81.0000C42—C431.393 (2)
C9—H9A0.9800C42—H420.9500
C9—H9B0.9800C43—C441.384 (3)
C9—H9C0.9800C43—H430.9500
C10—H10A0.9800C44—C451.388 (3)
C10—H10B0.9800C44—H440.9500
C10—H10C0.9800C45—C461.390 (2)
C11—C121.395 (2)C45—H450.9500
C11—C161.397 (2)C46—H460.9500
C12—C131.391 (2)C51—C561.392 (2)
C12—H120.9500C51—C521.393 (2)
C13—C141.378 (3)C52—C531.395 (2)
C13—H130.9500C52—H520.9500
C14—C151.384 (3)C53—C541.383 (3)
C14—H140.9500C53—H530.9500
C15—C161.391 (2)C54—C551.384 (3)
C15—H150.9500C54—H540.9500
C16—H160.9500C55—C561.387 (2)
C21—C261.399 (2)C55—H550.9500
C21—C221.399 (2)C56—H560.9500
C2—C1—C5107.73 (12)C25—C26—H26119.6
C2—C1—C11126.03 (13)C21—C26—H26119.6
C5—C1—C11125.04 (13)C36—C31—C32119.09 (14)
C2—C1—Fe172.26 (8)C36—C31—C3120.02 (13)
C5—C1—Fe169.68 (8)C32—C31—C3120.47 (14)
C11—C1—Fe1133.29 (11)C33—C32—C31120.32 (15)
C1—C2—C3108.18 (12)C33—C32—H32119.8
C1—C2—C21125.90 (13)C31—C32—H32119.8
C3—C2—C21125.36 (13)C34—C33—C32120.18 (16)
C1—C2—Fe169.13 (8)C34—C33—H33119.9
C3—C2—Fe168.23 (8)C32—C33—H33119.9
C21—C2—Fe1135.02 (10)C33—C34—C35120.00 (15)
C2—C3—C4108.08 (12)C33—C34—H34120.0
C2—C3—C31123.52 (13)C35—C34—H34120.0
C4—C3—C31127.93 (13)C34—C35—C36120.07 (16)
C2—C3—Fe172.90 (8)C34—C35—H35120.0
C4—C3—Fe170.72 (8)C36—C35—H35120.0
C31—C3—Fe1128.27 (10)C35—C36—C31120.27 (15)
C5—C4—C3107.31 (12)C35—C36—H36119.9
C5—C4—C41126.33 (13)C31—C36—H36119.9
C3—C4—C41125.86 (13)C46—C41—C42118.05 (14)
C5—C4—Fe170.06 (8)C46—C41—C4122.90 (14)
C3—C4—Fe169.38 (8)C42—C41—C4118.90 (13)
C41—C4—Fe1132.05 (10)C43—C42—C41120.87 (15)
C4—C5—C1108.50 (12)C43—C42—H42119.6
C4—C5—C51126.45 (13)C41—C42—H42119.6
C1—C5—C51124.95 (13)C44—C43—C42120.09 (16)
C4—C5—Fe170.88 (8)C44—C43—H43120.0
C1—C5—Fe170.67 (8)C42—C43—H43120.0
C51—C5—Fe1127.17 (10)C43—C44—C45119.78 (16)
O1—C6—Fe1178.22 (17)C43—C44—H44120.1
O2—C7—Fe1179.42 (15)C45—C44—H44120.1
C10—C8—C9108.46 (16)C44—C45—C46120.10 (16)
C10—C8—Fe1112.60 (12)C44—C45—H45119.9
C9—C8—Fe1117.38 (13)C46—C45—H45119.9
C10—C8—H8105.8C45—C46—C41121.10 (15)
C9—C8—H8105.8C45—C46—H46119.5
Fe1—C8—H8105.8C41—C46—H46119.5
C8—C9—H9A109.5C56—C51—C52118.97 (14)
C8—C9—H9B109.5C56—C51—C5121.41 (14)
H9A—C9—H9B109.5C52—C51—C5119.60 (14)
C8—C9—H9C109.5C51—C52—C53120.30 (16)
H9A—C9—H9C109.5C51—C52—H52119.8
H9B—C9—H9C109.5C53—C52—H52119.8
C8—C10—H10A109.5C54—C53—C52120.14 (17)
C8—C10—H10B109.5C54—C53—H53119.9
H10A—C10—H10B109.5C52—C53—H53119.9
C8—C10—H10C109.5C53—C54—C55119.75 (16)
H10A—C10—H10C109.5C53—C54—H54120.1
H10B—C10—H10C109.5C55—C54—H54120.1
C12—C11—C16118.38 (14)C54—C55—C56120.37 (17)
C12—C11—C1122.80 (14)C54—C55—H55119.8
C16—C11—C1118.70 (13)C56—C55—H55119.8
C13—C12—C11120.38 (16)C55—C56—C51120.45 (16)
C13—C12—H12119.8C55—C56—H56119.8
C11—C12—H12119.8C51—C56—H56119.8
C14—C13—C12120.68 (16)C6—Fe1—C792.72 (9)
C14—C13—H13119.7C6—Fe1—C887.68 (8)
C12—C13—H13119.7C7—Fe1—C886.34 (7)
C13—C14—C15119.66 (15)C6—Fe1—C395.58 (8)
C13—C14—H14120.2C7—Fe1—C3160.43 (7)
C15—C14—H14120.2C8—Fe1—C3111.64 (6)
C14—C15—C16120.05 (16)C6—Fe1—C5126.20 (8)
C14—C15—H15120.0C7—Fe1—C594.67 (7)
C16—C15—H15120.0C8—Fe1—C5145.91 (6)
C15—C16—C11120.83 (15)C3—Fe1—C566.19 (5)
C15—C16—H16119.6C6—Fe1—C494.25 (7)
C11—C16—H16119.6C7—Fe1—C4121.85 (7)
C26—C21—C22118.49 (14)C8—Fe1—C4151.54 (6)
C26—C21—C2118.65 (13)C3—Fe1—C439.90 (5)
C22—C21—C2122.66 (14)C5—Fe1—C439.06 (5)
C23—C22—C21120.29 (15)C6—Fe1—C1159.51 (7)
C23—C22—H22119.9C7—Fe1—C1102.37 (7)
C21—C22—H22119.9C8—Fe1—C1106.84 (6)
C24—C23—C22120.56 (15)C3—Fe1—C165.92 (5)
C24—C23—H23119.7C5—Fe1—C139.65 (5)
C22—C23—H23119.7C4—Fe1—C166.06 (6)
C25—C24—C23119.55 (15)C6—Fe1—C2129.29 (8)
C25—C24—H24120.2C7—Fe1—C2137.85 (7)
C23—C24—H24120.2C8—Fe1—C291.53 (6)
C24—C25—C26120.22 (16)C3—Fe1—C238.87 (5)
C24—C25—H25119.9C5—Fe1—C265.25 (5)
C26—C25—H25119.9C4—Fe1—C265.45 (5)
C25—C26—C21120.88 (15)C1—Fe1—C238.61 (5)
C5—C1—C2—C33.86 (16)C3—C2—C21—C2639.4 (2)
C11—C1—C2—C3171.77 (14)Fe1—C2—C21—C26133.21 (14)
Fe1—C1—C2—C357.12 (10)C1—C2—C21—C2243.9 (2)
C5—C1—C2—C21167.83 (14)C3—C2—C21—C22145.82 (15)
C11—C1—C2—C210.1 (2)Fe1—C2—C21—C2252.0 (2)
Fe1—C1—C2—C21131.19 (15)C26—C21—C22—C231.1 (2)
C5—C1—C2—Fe160.98 (10)C2—C21—C22—C23175.94 (14)
C11—C1—C2—Fe1131.11 (15)C21—C22—C23—C241.2 (2)
C1—C2—C3—C44.70 (16)C22—C23—C24—C250.5 (2)
C21—C2—C3—C4167.05 (14)C23—C24—C25—C260.1 (2)
Fe1—C2—C3—C462.37 (10)C24—C25—C26—C210.1 (2)
C1—C2—C3—C31177.34 (13)C22—C21—C26—C250.5 (2)
C21—C2—C3—C315.6 (2)C2—C21—C26—C25175.52 (14)
Fe1—C2—C3—C31124.99 (14)C2—C3—C31—C36117.57 (16)
C1—C2—C3—Fe157.67 (10)C4—C3—C31—C3653.5 (2)
C21—C2—C3—Fe1130.58 (14)Fe1—C3—C31—C36148.23 (12)
C2—C3—C4—C53.71 (16)C2—C3—C31—C3255.0 (2)
C31—C3—C4—C5175.93 (14)C4—C3—C31—C32133.93 (16)
Fe1—C3—C4—C560.06 (10)Fe1—C3—C31—C3239.2 (2)
C2—C3—C4—C41168.56 (14)C36—C31—C32—C332.8 (2)
C31—C3—C4—C413.7 (2)C3—C31—C32—C33169.79 (14)
Fe1—C3—C4—C41127.66 (15)C31—C32—C33—C340.8 (3)
C2—C3—C4—Fe163.77 (10)C32—C33—C34—C351.6 (3)
C31—C3—C4—Fe1124.01 (15)C33—C34—C35—C362.1 (3)
C3—C4—C5—C11.33 (16)C34—C35—C36—C310.1 (2)
C41—C4—C5—C1170.90 (14)C32—C31—C36—C352.4 (2)
Fe1—C4—C5—C160.96 (10)C3—C31—C36—C35170.28 (14)
C3—C4—C5—C51177.76 (14)C5—C4—C41—C46143.76 (16)
C41—C4—C5—C515.5 (2)C3—C4—C41—C4645.4 (2)
Fe1—C4—C5—C51122.61 (15)Fe1—C4—C41—C4648.4 (2)
C3—C4—C5—Fe159.63 (10)C5—C4—C41—C4240.9 (2)
C41—C4—C5—Fe1128.14 (15)C3—C4—C41—C42129.91 (16)
C2—C1—C5—C41.55 (16)Fe1—C4—C41—C42136.26 (13)
C11—C1—C5—C4169.61 (14)C46—C41—C42—C430.5 (2)
Fe1—C1—C5—C461.09 (10)C4—C41—C42—C43175.09 (15)
C2—C1—C5—C51174.95 (13)C41—C42—C43—C440.4 (3)
C11—C1—C5—C516.9 (2)C42—C43—C44—C451.0 (3)
Fe1—C1—C5—C51122.40 (14)C43—C44—C45—C460.7 (3)
C2—C1—C5—Fe162.64 (10)C44—C45—C46—C410.2 (3)
C11—C1—C5—Fe1129.30 (15)C42—C41—C46—C450.7 (2)
C2—C1—C11—C12130.29 (16)C4—C41—C46—C45174.62 (15)
C5—C1—C11—C1263.8 (2)C4—C5—C51—C5649.6 (2)
Fe1—C1—C11—C1230.7 (2)C1—C5—C51—C56134.50 (16)
C2—C1—C11—C1653.7 (2)Fe1—C5—C51—C5643.2 (2)
C5—C1—C11—C16112.20 (17)C4—C5—C51—C52129.03 (17)
Fe1—C1—C11—C16153.34 (12)C1—C5—C51—C5246.8 (2)
C16—C11—C12—C130.3 (2)Fe1—C5—C51—C52138.17 (13)
C1—C11—C12—C13175.70 (14)C56—C51—C52—C530.4 (2)
C11—C12—C13—C141.0 (3)C5—C51—C52—C53179.12 (15)
C12—C13—C14—C151.4 (3)C51—C52—C53—C540.5 (3)
C13—C14—C15—C160.4 (2)C52—C53—C54—C551.2 (3)
C14—C15—C16—C111.0 (2)C53—C54—C55—C560.9 (3)
C12—C11—C16—C151.3 (2)C54—C55—C56—C510.0 (3)
C1—C11—C16—C15174.90 (14)C52—C51—C56—C550.7 (2)
C1—C2—C21—C26130.93 (16)C5—C51—C56—C55179.35 (16)
Butyldicarbonyl(η5-pentaphenylcyclopentadienyl)iron (compd-4) top
Crystal data top
[Fe(C4H9)(C35H25)(CO)2]F(000) = 1288
Mr = 614.53Dx = 1.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1141 (4) ÅCell parameters from 9964 reflections
b = 16.0945 (5) Åθ = 2.5–27.5°
c = 16.1650 (5) ŵ = 0.52 mm1
β = 95.706 (1)°T = 108 K
V = 3136.08 (17) Å3Block, yellow
Z = 40.08 × 0.05 × 0.04 mm
Data collection top
Bruker D8 Venture
diffractometer
7202 independent reflections
Radiation source: rotating anode generator, Bruker TXS6246 reflections with I > 2σ(I)
Detector resolution: 7.391 pixels mm-1Rint = 0.041
mix of ω and phi scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.832, Tmax = 0.862k = 2020
55494 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.832P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7202 reflectionsΔρmax = 0.37 e Å3
398 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47579 (11)0.57025 (8)0.83402 (8)0.0131 (3)
C20.41324 (11)0.49455 (8)0.82891 (8)0.0131 (3)
C30.49011 (11)0.42693 (8)0.83398 (8)0.0131 (3)
C40.60059 (11)0.46044 (8)0.83961 (8)0.0133 (3)
C50.59232 (11)0.54974 (8)0.84196 (8)0.0136 (3)
C60.44862 (13)0.57507 (10)0.65645 (9)0.0213 (3)
C70.47165 (12)0.41992 (9)0.65795 (9)0.0188 (3)
C110.65229 (12)0.51767 (10)0.66507 (9)0.0205 (3)
H11A0.6769100.5758840.6742500.025*
H11B0.7109710.4818770.6932250.025*
C120.64900 (15)0.50065 (12)0.57212 (10)0.0308 (4)
H12A0.5865200.5318740.5426980.037*
H12B0.6351470.4407200.5619520.037*
C130.75680 (16)0.52532 (15)0.53626 (12)0.0402 (5)
H13A0.7475280.5164680.4753590.048*
H13B0.7701380.5853310.5462780.048*
C140.85757 (17)0.47728 (17)0.57283 (14)0.0495 (6)
H14A0.8724270.4904790.6320760.074*
H14B0.9219490.4927110.5439380.074*
H14C0.8435510.4175720.5661430.074*
C1010.42810 (11)0.65501 (8)0.83848 (8)0.0140 (3)
C1020.46705 (12)0.72134 (9)0.79390 (9)0.0188 (3)
H1020.5203620.7114260.7557310.023*
C1030.42899 (13)0.80141 (9)0.80458 (10)0.0229 (3)
H1030.4571380.8460620.7744700.028*
C1040.34974 (13)0.81655 (9)0.85922 (10)0.0225 (3)
H1040.3243380.8715560.8671020.027*
C1050.30788 (12)0.75098 (9)0.90220 (9)0.0202 (3)
H1050.2524550.7609180.9386690.024*
C1060.34690 (11)0.67068 (9)0.89203 (8)0.0156 (3)
H1060.3180250.6260880.9217990.019*
C2010.29087 (11)0.48686 (8)0.82957 (9)0.0137 (3)
C2020.24907 (12)0.44568 (9)0.89560 (9)0.0177 (3)
H2020.2988680.4207590.9375190.021*
C2030.13555 (12)0.44061 (9)0.90089 (10)0.0211 (3)
H2030.1081670.4120260.9460420.025*
C2040.06197 (12)0.47728 (10)0.84024 (10)0.0216 (3)
H2040.0156790.4746900.8441890.026*
C2050.10277 (13)0.51768 (9)0.77390 (10)0.0212 (3)
H2050.0528070.5426090.7321010.025*
C2060.21648 (12)0.52190 (9)0.76820 (9)0.0174 (3)
H2060.2435640.5489320.7220380.021*
C3010.45953 (11)0.33829 (8)0.84401 (8)0.0140 (3)
C3020.36941 (12)0.30272 (9)0.79632 (9)0.0180 (3)
H3020.3317930.3333130.7518080.022*
C3030.33424 (13)0.22299 (9)0.81338 (10)0.0221 (3)
H3030.2725900.1994480.7806610.027*
C3040.38875 (13)0.17752 (9)0.87802 (10)0.0219 (3)
H3040.3642490.1231180.8898500.026*
C3050.47916 (13)0.21192 (9)0.92524 (9)0.0202 (3)
H3050.5170520.1808110.9692500.024*
C3060.51457 (12)0.29177 (9)0.90842 (9)0.0165 (3)
H3060.5766730.3148720.9409760.020*
C4010.70126 (11)0.40786 (9)0.85278 (9)0.0149 (3)
C4020.71651 (12)0.34096 (9)0.80006 (10)0.0206 (3)
H4020.6683270.3340060.7504810.025*
C4030.80175 (13)0.28462 (10)0.81983 (11)0.0270 (4)
H4030.8106270.2386410.7842320.032*
C4040.87416 (13)0.29490 (10)0.89119 (11)0.0279 (4)
H4040.9323330.2560990.9044430.034*
C4050.86122 (12)0.36198 (10)0.94299 (10)0.0224 (3)
H4050.9110310.3695120.9916220.027*
C4060.77527 (11)0.41846 (9)0.92390 (9)0.0165 (3)
H4060.7669710.4645100.9595300.020*
C5010.68523 (11)0.60888 (8)0.86256 (8)0.0144 (3)
C5020.78843 (12)0.60097 (9)0.83100 (9)0.0183 (3)
H5020.7998670.5575410.7929820.022*
C5030.87442 (12)0.65617 (10)0.85483 (10)0.0229 (3)
H5030.9433720.6508800.8319880.027*
C5040.85986 (13)0.71883 (10)0.91175 (10)0.0241 (3)
H5040.9185310.7564470.9278280.029*
C5050.75916 (13)0.72612 (10)0.94494 (10)0.0229 (3)
H5050.7491710.7682970.9846330.028*
C5060.67288 (12)0.67205 (9)0.92041 (9)0.0177 (3)
H5060.6040780.6780170.9433250.021*
O10.40743 (11)0.62256 (8)0.60997 (7)0.0335 (3)
O20.44211 (10)0.36770 (7)0.61268 (7)0.0286 (3)
Fe10.51082 (2)0.50163 (2)0.72658 (2)0.01342 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (6)0.0145 (6)0.0120 (6)0.0004 (5)0.0021 (5)0.0011 (5)
C20.0133 (6)0.0136 (6)0.0124 (6)0.0002 (5)0.0008 (5)0.0013 (5)
C30.0129 (6)0.0141 (6)0.0121 (6)0.0000 (5)0.0004 (5)0.0000 (5)
C40.0133 (6)0.0144 (6)0.0120 (6)0.0006 (5)0.0003 (5)0.0008 (5)
C50.0131 (6)0.0147 (6)0.0132 (6)0.0004 (5)0.0025 (5)0.0005 (5)
C60.0244 (8)0.0227 (7)0.0170 (7)0.0030 (6)0.0028 (6)0.0020 (6)
C70.0170 (7)0.0221 (7)0.0178 (7)0.0006 (6)0.0036 (5)0.0002 (6)
C110.0166 (7)0.0277 (8)0.0175 (7)0.0031 (6)0.0035 (6)0.0000 (6)
C120.0232 (8)0.0527 (12)0.0172 (8)0.0049 (7)0.0055 (6)0.0000 (7)
C130.0342 (10)0.0622 (13)0.0266 (9)0.0120 (9)0.0151 (8)0.0001 (9)
C140.0269 (10)0.0788 (16)0.0453 (12)0.0054 (10)0.0153 (9)0.0118 (11)
C1010.0122 (6)0.0137 (6)0.0153 (6)0.0007 (5)0.0024 (5)0.0004 (5)
C1020.0176 (7)0.0180 (7)0.0207 (7)0.0002 (6)0.0020 (6)0.0030 (6)
C1030.0265 (8)0.0146 (7)0.0268 (8)0.0013 (6)0.0021 (6)0.0060 (6)
C1040.0253 (8)0.0156 (7)0.0250 (8)0.0054 (6)0.0063 (6)0.0034 (6)
C1050.0188 (7)0.0215 (7)0.0197 (7)0.0046 (6)0.0015 (6)0.0048 (6)
C1060.0146 (6)0.0166 (7)0.0151 (6)0.0007 (5)0.0004 (5)0.0001 (5)
C2010.0126 (6)0.0110 (6)0.0177 (7)0.0001 (5)0.0017 (5)0.0025 (5)
C2020.0163 (7)0.0177 (7)0.0191 (7)0.0008 (5)0.0009 (5)0.0020 (5)
C2030.0189 (7)0.0214 (7)0.0241 (8)0.0029 (6)0.0077 (6)0.0017 (6)
C2040.0127 (7)0.0201 (7)0.0326 (8)0.0004 (6)0.0050 (6)0.0015 (6)
C2050.0143 (7)0.0204 (7)0.0279 (8)0.0018 (6)0.0026 (6)0.0028 (6)
C2060.0165 (7)0.0141 (6)0.0214 (7)0.0002 (5)0.0014 (6)0.0020 (5)
C3010.0130 (6)0.0136 (6)0.0155 (6)0.0004 (5)0.0022 (5)0.0015 (5)
C3020.0182 (7)0.0157 (7)0.0190 (7)0.0004 (5)0.0032 (5)0.0002 (5)
C3030.0221 (8)0.0184 (7)0.0244 (8)0.0056 (6)0.0051 (6)0.0018 (6)
C3040.0273 (8)0.0132 (7)0.0247 (8)0.0041 (6)0.0009 (6)0.0007 (6)
C3050.0244 (8)0.0170 (7)0.0184 (7)0.0019 (6)0.0017 (6)0.0021 (5)
C3060.0158 (7)0.0163 (7)0.0168 (7)0.0005 (5)0.0012 (5)0.0015 (5)
C4010.0119 (6)0.0153 (6)0.0178 (7)0.0003 (5)0.0032 (5)0.0011 (5)
C4020.0168 (7)0.0214 (7)0.0238 (7)0.0010 (6)0.0026 (6)0.0050 (6)
C4030.0203 (8)0.0216 (8)0.0402 (10)0.0056 (6)0.0084 (7)0.0066 (7)
C4040.0164 (7)0.0247 (8)0.0431 (10)0.0085 (6)0.0053 (7)0.0054 (7)
C4050.0129 (7)0.0286 (8)0.0254 (8)0.0000 (6)0.0008 (6)0.0080 (6)
C4060.0134 (6)0.0180 (7)0.0184 (7)0.0009 (5)0.0024 (5)0.0019 (5)
C5010.0133 (6)0.0139 (6)0.0158 (6)0.0007 (5)0.0002 (5)0.0036 (5)
C5020.0152 (7)0.0195 (7)0.0203 (7)0.0005 (5)0.0019 (5)0.0015 (6)
C5030.0146 (7)0.0253 (8)0.0287 (8)0.0030 (6)0.0020 (6)0.0050 (6)
C5040.0200 (7)0.0187 (7)0.0324 (9)0.0067 (6)0.0037 (6)0.0033 (6)
C5050.0259 (8)0.0169 (7)0.0252 (8)0.0015 (6)0.0013 (6)0.0024 (6)
C5060.0165 (7)0.0170 (7)0.0194 (7)0.0003 (5)0.0009 (5)0.0007 (5)
O10.0447 (8)0.0305 (6)0.0238 (6)0.0133 (6)0.0043 (5)0.0050 (5)
O20.0319 (6)0.0287 (6)0.0254 (6)0.0058 (5)0.0033 (5)0.0098 (5)
Fe10.01263 (11)0.01467 (11)0.01291 (11)0.00076 (7)0.00095 (7)0.00002 (7)
Geometric parameters (Å, º) top
C1—C21.4328 (19)C201—C2021.394 (2)
C1—C51.4430 (19)C202—C2031.389 (2)
C1—C1011.4859 (18)C202—H2020.9500
C1—Fe12.1360 (13)C203—C2041.389 (2)
C2—C31.4294 (18)C203—H2030.9500
C2—C2011.4887 (19)C204—C2051.387 (2)
C2—Fe12.1295 (14)C204—H2040.9500
C3—C41.4373 (18)C205—C2061.391 (2)
C3—C3011.4868 (19)C205—H2050.9500
C3—Fe12.1467 (13)C206—H2060.9500
C4—C51.4415 (19)C301—C3021.3952 (19)
C4—C4011.4822 (19)C301—C3061.3968 (19)
C4—Fe12.1366 (13)C302—C3031.388 (2)
C5—C5011.4863 (19)C302—H3020.9500
C5—Fe12.1649 (14)C303—C3041.388 (2)
C6—O11.1502 (19)C303—H3030.9500
C6—Fe11.7552 (16)C304—C3051.387 (2)
C7—O21.1480 (19)C304—H3040.9500
C7—Fe11.7552 (15)C305—C3061.390 (2)
C11—C121.524 (2)C305—H3050.9500
C11—Fe12.0812 (15)C306—H3060.9500
C11—H11A0.9900C401—C4061.396 (2)
C11—H11B0.9900C401—C4021.397 (2)
C12—C131.533 (2)C402—C4031.387 (2)
C12—H12A0.9900C402—H4020.9500
C12—H12B0.9900C403—C4041.388 (2)
C13—C141.515 (3)C403—H4030.9500
C13—H13A0.9900C404—C4051.385 (2)
C13—H13B0.9900C404—H4040.9500
C14—H14A0.9800C405—C4061.394 (2)
C14—H14B0.9800C405—H4050.9500
C14—H14C0.9800C406—H4060.9500
C101—C1021.396 (2)C501—C5061.399 (2)
C101—C1061.3963 (19)C501—C5021.4022 (19)
C102—C1031.385 (2)C502—C5031.394 (2)
C102—H1020.9500C502—H5020.9500
C103—C1041.389 (2)C503—C5041.388 (2)
C103—H1030.9500C503—H5030.9500
C104—C1051.387 (2)C504—C5051.386 (2)
C104—H1040.9500C504—H5040.9500
C105—C1061.392 (2)C505—C5061.387 (2)
C105—H1050.9500C505—H5050.9500
C106—H1060.9500C506—H5060.9500
C201—C2061.392 (2)
C2—C1—C5108.52 (12)C204—C205—H205119.8
C2—C1—C101125.27 (12)C206—C205—H205119.8
C5—C1—C101125.97 (12)C205—C206—C201120.55 (14)
C2—C1—Fe170.13 (8)C205—C206—H206119.7
C5—C1—Fe171.48 (8)C201—C206—H206119.7
C101—C1—Fe1128.59 (9)C302—C301—C306118.76 (13)
C3—C2—C1107.84 (12)C302—C301—C3121.54 (12)
C3—C2—C201125.44 (12)C306—C301—C3119.34 (12)
C1—C2—C201126.27 (12)C303—C302—C301120.54 (13)
C3—C2—Fe171.12 (8)C303—C302—H302119.7
C1—C2—Fe170.62 (8)C301—C302—H302119.7
C201—C2—Fe1129.80 (10)C304—C303—C302120.30 (14)
C2—C3—C4108.37 (12)C304—C303—H303119.9
C2—C3—C301124.66 (12)C302—C303—H303119.9
C4—C3—C301126.42 (12)C305—C304—C303119.64 (14)
C2—C3—Fe169.82 (8)C305—C304—H304120.2
C4—C3—Fe170.01 (8)C303—C304—H304120.2
C301—C3—Fe1132.53 (9)C304—C305—C306120.24 (14)
C3—C4—C5108.00 (11)C304—C305—H305119.9
C3—C4—C401122.86 (12)C306—C305—H305119.9
C5—C4—C401128.59 (12)C305—C306—C301120.51 (13)
C3—C4—Fe170.78 (8)C305—C306—H306119.7
C5—C4—Fe171.49 (7)C301—C306—H306119.7
C401—C4—Fe1129.91 (10)C406—C401—C402118.91 (13)
C4—C5—C1107.20 (11)C406—C401—C4120.03 (12)
C4—C5—C501126.25 (12)C402—C401—C4120.61 (13)
C1—C5—C501125.86 (12)C403—C402—C401120.25 (14)
C4—C5—Fe169.36 (7)C403—C402—H402119.9
C1—C5—Fe169.32 (8)C401—C402—H402119.9
C501—C5—Fe1133.81 (10)C402—C403—C404120.52 (15)
O1—C6—Fe1179.31 (15)C402—C403—H403119.7
O2—C7—Fe1177.45 (14)C404—C403—H403119.7
C12—C11—Fe1120.45 (11)C405—C404—C403119.70 (14)
C12—C11—H11A107.2C405—C404—H404120.2
Fe1—C11—H11A107.2C403—C404—H404120.2
C12—C11—H11B107.2C404—C405—C406120.12 (15)
Fe1—C11—H11B107.2C404—C405—H405119.9
H11A—C11—H11B106.8C406—C405—H405119.9
C11—C12—C13112.75 (15)C405—C406—C401120.47 (14)
C11—C12—H12A109.0C405—C406—H406119.8
C13—C12—H12A109.0C401—C406—H406119.8
C11—C12—H12B109.0C506—C501—C502117.87 (13)
C13—C12—H12B109.0C506—C501—C5119.08 (12)
H12A—C12—H12B107.8C502—C501—C5122.90 (13)
C14—C13—C12113.84 (17)C503—C502—C501120.70 (14)
C14—C13—H13A108.8C503—C502—H502119.6
C12—C13—H13A108.8C501—C502—H502119.6
C14—C13—H13B108.8C504—C503—C502120.36 (14)
C12—C13—H13B108.8C504—C503—H503119.8
H13A—C13—H13B107.7C502—C503—H503119.8
C13—C14—H14A109.5C505—C504—C503119.54 (14)
C13—C14—H14B109.5C505—C504—H504120.2
H14A—C14—H14B109.5C503—C504—H504120.2
C13—C14—H14C109.5C504—C505—C506120.23 (14)
H14A—C14—H14C109.5C504—C505—H505119.9
H14B—C14—H14C109.5C506—C505—H505119.9
C102—C101—C106118.48 (13)C505—C506—C501121.28 (14)
C102—C101—C1121.60 (13)C505—C506—H506119.4
C106—C101—C1119.81 (12)C501—C506—H506119.4
C103—C102—C101120.89 (14)C6—Fe1—C791.40 (7)
C103—C102—H102119.6C6—Fe1—C1185.92 (7)
C101—C102—H102119.6C7—Fe1—C1188.54 (6)
C102—C103—C104120.13 (14)C6—Fe1—C2107.57 (6)
C102—C103—H103119.9C7—Fe1—C2108.35 (6)
C104—C103—H103119.9C11—Fe1—C2157.64 (6)
C105—C104—C103119.69 (14)C6—Fe1—C194.00 (6)
C105—C104—H104120.2C7—Fe1—C1146.96 (6)
C103—C104—H104120.2C11—Fe1—C1124.33 (6)
C104—C105—C106120.13 (14)C2—Fe1—C139.25 (5)
C104—C105—H105119.9C6—Fe1—C4155.60 (6)
C106—C105—H105119.9C7—Fe1—C4113.00 (6)
C105—C106—C101120.64 (13)C11—Fe1—C494.23 (6)
C105—C106—H106119.7C2—Fe1—C466.04 (5)
C101—C106—H106119.7C1—Fe1—C465.83 (5)
C206—C201—C202118.68 (13)C6—Fe1—C3145.32 (6)
C206—C201—C2122.40 (13)C7—Fe1—C392.62 (6)
C202—C201—C2118.87 (13)C11—Fe1—C3128.60 (6)
C203—C202—C201120.82 (14)C2—Fe1—C339.05 (5)
C203—C202—H202119.6C1—Fe1—C365.38 (5)
C201—C202—H202119.6C4—Fe1—C339.21 (5)
C202—C203—C204120.09 (14)C6—Fe1—C5116.45 (6)
C202—C203—H203120.0C7—Fe1—C5152.13 (6)
C204—C203—H203120.0C11—Fe1—C592.33 (6)
C205—C204—C203119.47 (14)C2—Fe1—C565.84 (5)
C205—C204—H204120.3C1—Fe1—C539.20 (5)
C203—C204—H204120.3C4—Fe1—C539.15 (5)
C204—C205—C206120.36 (14)C3—Fe1—C565.39 (5)
C5—C1—C2—C30.24 (15)C3—C2—C201—C206126.66 (15)
C101—C1—C2—C3174.43 (12)C1—C2—C201—C20662.0 (2)
Fe1—C1—C2—C361.74 (9)Fe1—C2—C201—C20632.30 (19)
C5—C1—C2—C201172.81 (13)C3—C2—C201—C20255.7 (2)
C101—C1—C2—C2011.9 (2)C1—C2—C201—C202115.59 (16)
Fe1—C1—C2—C201125.70 (14)Fe1—C2—C201—C202150.09 (11)
C5—C1—C2—Fe161.50 (9)C206—C201—C202—C2030.9 (2)
C101—C1—C2—Fe1123.83 (13)C2—C201—C202—C203176.79 (13)
C1—C2—C3—C41.79 (15)C201—C202—C203—C2040.4 (2)
C201—C2—C3—C4174.44 (13)C202—C203—C204—C2051.0 (2)
Fe1—C2—C3—C459.62 (9)C203—C204—C205—C2060.3 (2)
C1—C2—C3—C301170.16 (12)C204—C205—C206—C2011.0 (2)
C201—C2—C3—C3012.5 (2)C202—C201—C206—C2051.6 (2)
Fe1—C2—C3—C301128.42 (13)C2—C201—C206—C205175.99 (13)
C1—C2—C3—Fe161.41 (9)C2—C3—C301—C30246.1 (2)
C201—C2—C3—Fe1125.94 (14)C4—C3—C301—C302143.44 (14)
C2—C3—C4—C52.66 (15)Fe1—C3—C301—C30247.69 (19)
C301—C3—C4—C5169.11 (12)C2—C3—C301—C306127.07 (15)
Fe1—C3—C4—C562.17 (9)C4—C3—C301—C30643.4 (2)
C2—C3—C4—C401174.79 (12)Fe1—C3—C301—C306139.19 (12)
C301—C3—C4—C4013.0 (2)C306—C301—C302—C3030.9 (2)
Fe1—C3—C4—C401125.71 (13)C3—C301—C302—C303172.28 (14)
C2—C3—C4—Fe159.50 (9)C301—C302—C303—C3040.3 (2)
C301—C3—C4—Fe1128.72 (14)C302—C303—C304—C3050.4 (2)
C3—C4—C5—C12.48 (15)C303—C304—C305—C3060.5 (2)
C401—C4—C5—C1174.02 (13)C304—C305—C306—C3010.1 (2)
Fe1—C4—C5—C159.23 (9)C302—C301—C306—C3050.8 (2)
C3—C4—C5—C501168.41 (13)C3—C301—C306—C305172.50 (13)
C401—C4—C5—C5013.1 (2)C3—C4—C401—C406118.24 (15)
Fe1—C4—C5—C501129.88 (13)C5—C4—C401—C40652.2 (2)
C3—C4—C5—Fe161.71 (9)Fe1—C4—C401—C406150.09 (11)
C401—C4—C5—Fe1126.76 (14)C3—C4—C401—C40253.96 (19)
C2—C1—C5—C41.39 (15)C5—C4—C401—C402135.63 (15)
C101—C1—C5—C4176.02 (12)Fe1—C4—C401—C40237.71 (19)
Fe1—C1—C5—C459.25 (9)C406—C401—C402—C4032.1 (2)
C2—C1—C5—C501169.55 (13)C4—C401—C402—C403170.18 (14)
C101—C1—C5—C5015.1 (2)C401—C402—C403—C4041.3 (2)
Fe1—C1—C5—C501129.81 (13)C402—C403—C404—C4050.1 (3)
C2—C1—C5—Fe160.64 (9)C403—C404—C405—C4060.6 (2)
C101—C1—C5—Fe1124.73 (13)C404—C405—C406—C4010.3 (2)
Fe1—C11—C12—C13173.47 (13)C402—C401—C406—C4051.6 (2)
C11—C12—C13—C1462.4 (2)C4—C401—C406—C405170.73 (13)
C2—C1—C101—C102138.63 (14)C4—C5—C501—C506131.50 (14)
C5—C1—C101—C10247.6 (2)C1—C5—C501—C50637.7 (2)
Fe1—C1—C101—C10246.80 (18)Fe1—C5—C501—C506132.89 (13)
C2—C1—C101—C10645.2 (2)C4—C5—C501—C50243.9 (2)
C5—C1—C101—C106128.52 (15)C1—C5—C501—C502146.88 (14)
Fe1—C1—C101—C106137.06 (12)Fe1—C5—C501—C50251.7 (2)
C106—C101—C102—C1032.2 (2)C506—C501—C502—C5032.0 (2)
C1—C101—C102—C103173.98 (13)C5—C501—C502—C503177.41 (13)
C101—C102—C103—C1041.0 (2)C501—C502—C503—C5041.4 (2)
C102—C103—C104—C1050.8 (2)C502—C503—C504—C5050.1 (2)
C103—C104—C105—C1061.4 (2)C503—C504—C505—C5061.1 (2)
C104—C105—C106—C1010.2 (2)C504—C505—C506—C5010.5 (2)
C102—C101—C106—C1051.6 (2)C502—C501—C506—C5051.0 (2)
C1—C101—C106—C105174.65 (13)C5—C501—C506—C505176.63 (13)
Comparison of important bond parameters (Å, °) of compounds 14 and some related structures from the CSD top
1234SIRMIPMARFETMARFIXPUYDESHOZWICCECKUS01
Fe—Ct (Å)1.7403 (8)1.7625 (10)1.7586 (7)1.7603 (7)1.738 (5)1.7464 (10)1.7360 (12)/1.7306 (12)1.715 (3)1.7301.730
Fe—Cα(R) (Å)2.073 (2)2.022 (2)2.1188 (17)2.0810 (16)n.a.n.a.n.a.n.a.2.069 (10)2.002 (2)
Fe—C(CO) (Å)1.751 (2) 1.754 (2)1.755 (2) 1.760 (2)1.745 (2) 1.756 (2)1.755 (2) 1.755 (2)1.812 (5) 1.786 (5)1.803 (3) 1.813 (3)1.714 (6) 1.715 (6)1.739 (11) 1.751 (11)1.756 (1)
C—O (Å)1.149 (2) 1.136 (2)1.152 (3) 1.148 (3)1.145 (3) 1.148 (2)1.150 (1) 1.148 (2)1.052 (6) 1.097 (6)1.133 (3) 1.137 (4)1.131 (4)/1.126 (4)1.137 (3)/1.132 (4)1.182 (7)1.187 (7)1.153 (13)1.139 (14)1.151 (2)
IR: νCO (cm-1)1993; 19412009; 19681991; 19391993; 19392033; 1993*1872; 1806*1987; 1933*1994; 1937*
(Ci,Ph–Cp)av. (Å)0.1220.1880.1440.1600.150.1470.144/0.145n.a.n.a.
(Cp;Ph)av (°)50.348.550.650.258.752.351.8/51.453.4n.a.n.a.
[Cα—Fe—Ct—CCp]min9.3526.465.1332.19n.a.n.a.n.a.n.a.1.440.0
Ct—Fe—Cα—Cβ (°)n.a.95.8 79.8141.1 91.8167.4n.a.n.a.n.a.n.a.179.987.5
CSD refcodes: : SIRMIP is [(C5Ph5)Fe(CO)2Br] (Field et al., 1989), MARFET is [(C5Ph5)Fe(CO)2FBF3] (Hemming et al., 2018), MARFIX is [(C5Ph5)Fe(CO)2(H2O)]+BF4- (Hemming et al., 2018), PUYDES is [(C5Ph5)Fe(CO)2]-PPN+ (Carter et al., 2002), HOZWIC is [(C5Me5)Fe(CO)2C5H11] (Hill et al., 1999) and CECKUS01 is [(C5Me5)Fe(CO)2Ph] (Kalman et al., 2013). Notes: Ct is the centroid of the cyclopentadienyl ring. (Ci,Ph–Cp)av is the average distance of the phenyl ipso-C atoms from plane of the the Cp ring. (Cp;Ph)av is the average dihedral angle of the five phenyl rings with the Cp ring, [Cα—Fe—Ct—CCp]min is the smallest torsion angle between the α-alkyl/aryl C atom, the Fe atom, the the centroid of the cyclopentadienyl ring and a Cp ring C atom; n.a. denotes not applicable. The asterisk (*) denotes solution spectra.
Nonclassical C—H···O contacts in 14 top
CompoundAtom pairDistance (Å)Symmetry code
1H504···O12.597-x+1/2, -y+1, z+1/2
H104···O22.611-x+1/2, y-1/2, z
O1···H3042.703-x+1/2, y-1/2, z
2O1···H4042.475-x+1/2, y-1/2, -z+3/2
3H14···O22.694-x+1/2, y-1/2, -z+1/2
H56···O12.430-x+1, -y+2, -z+1
4O2···H5042.589-x+3/2, y-1/2, -z+3/2
 

Acknowledgements

We thank Dr P. Mayer for performing the data collections. Open access funding enabled and organized by Projekt DEAL.

References

First citationArgouarch, G., Grelaud, G., Roisnel, T., Humphrey, M. G. & Paul, F. (2012). Tetrahedron Lett. 53, 5015–5018.  CSD CrossRef CAS Google Scholar
First citationBrégaint, P., Hamon, J.-R. & Lapinte, C. (1990). J. Organomet. Chem. 398, C25—C28.  Google Scholar
First citationBrégaint, P., Hamon, J.-R. & Lapinte, C. (1992). Organometallics, 11, 1417–1419.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarter, B. T., Castellani, M. P., Rheingold, A. L., Hwang, S., Longacre, S. E. & Richmond, M. G. (2002). Organometallics, 21, 373–379.  CSD CrossRef CAS Google Scholar
First citationConnelly, N. G. & Manners, I. (1989). J. Chem. Soc. Dalton Trans. pp. 283–288.  CrossRef Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationField, L. D., Hambley, T. W., Lindall, C. M. & Masters, A. F. (1989). Polyhedron, 8, 2425–2430.  CSD CrossRef CAS Google Scholar
First citationField, L. D., Lindall, C. M., Masters, A. F. & Clentsmith, G. K. B. (2011). Coord. Chem. Rev. 255, 1733–1790.  CrossRef CAS Google Scholar
First citationFukumoto, K., Kasa, M. & Nakazawa, H. (2015). Inorg. Chim. Acta, 431, 219–221.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemming, E. B., Chan, B., Turner, P., Corcilius, L., Price, J. R., Gardiner, M. G., Masters, A. F. & Maschmeyer, T. (2018). Appl. Catal. Environ. 223, 234–241.  CSD CrossRef CAS Google Scholar
First citationHill, R. O., Marais, C. F., Moss, J. R. & Naidoo, K. J. (1999). J. Organomet. Chem. 587, 28–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalman, S. E., Petit, A., Gunnoe, T. B., Ess, D. H., Cundari, T. R. & Sabat, M. (2013). Organometallics, 32, 1797–1806.  CSD CrossRef CAS Google Scholar
First citationKlein-Heßling, C., Blockhaus, T. & Sünkel, K. (2021). J. Organomet. Chem. 943, 121833.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuksis, I. & Baird, M. C. (1994). Organometallics, 13, 1551–1553.  CrossRef CAS Google Scholar
First citationKuksis, I., Kovács, I., Baird, M. C. & Preston, K. F. (1996). Organometallics, 15, 4991–5002.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcVey, S. M. & Pauson, P. L. (1965). J. Chem. Soc. pp. 4312–4318.  CrossRef Google Scholar
First citationMohler, D. L., Barnhardt, E. K. & Hurley, A. L. (2002). J. Org. Chem. 67, 4982–4984.  CrossRef PubMed CAS Google Scholar
First citationMohler, D. L. & Shell, T. A. (2005). Bioorg. Med. Chem. Lett. 15, 4785–4788.  CrossRef Google Scholar
First citationPannell, K. H. & Sharma, H. K. (2010). Organometallics, 29, 4741–4745.  CrossRef CAS Google Scholar
First citationRuble, J. C., Latham, H. A. & Fu, G. C. (1997). J. Am. Chem. Soc. 119, 1492–1493.  CrossRef CAS Google Scholar
First citationSchulte, Y., Weinert, H., Wölper, C. & Schulz, S. (2020). Organometallics, 39, 206–216.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSünkel, K., Weigand, S., Hoffmann, A., Blomeyer, S., Reuter, C. G., Vishnevskiy, Y. V. & Mitzel, N. W. (2015). J. Am. Chem. Soc. 137, 126–129.  PubMed Google Scholar
First citationYasuda, S., Yorimitsu, H. & Oshima, K. (2008). Organometallics, 27, 4025–4027.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds