Download citation
Download citation
link to html
Exploratory studies in the systems A–Al–Sn (A = K and Rb) yielded the clathrates K8AlxSn46–x (potassium aluminium stannide) and Rb8AlxSn46–x (rubidium aluminium stannide), both with the cubic type-I structure (space group Pm\overline{3}n, No. 223; a ≃ 12.0 Å). The Al:Sn ratio is close to the idealized A8Al8Sn38 com­position and it is shown that it can be varied slightly, in the range of ca ±1.5, depending on the experimental conditions. Both the (Sn,Al)20 and the (Sn,Al)24 cages in the structure are fully occupied by the guest alkali metal atoms, i.e. K or Rb. The A8Al8Sn38 formula has a valence electron count that obeys the valence rules and represents an intrinsic semiconductor, while the experimentally determined com­positions A8AlxSn38∓x suggest the synthesized materials to be nearly charge-balanced Zintl phases, i.e. they are likely to behave as heavily doped p- or n-type semiconductors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup1.cif
Contains datablocks I, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961901427X/wp30011sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961901427X/wp30012sup3.hkl
Contains datablock 2

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup4.cif
Data for first entry in Table 1

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup5.cif
Data for third entry in Table 1

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup6.cif
Data for fourth entry in Table 1

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup7.cif
Data for sixth entry in Table 1

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup8.cif
Data for seventh entry in Table 1

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961901427X/wp3001sup9.cif
Data for eighth entry in Table 1

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961901427X/wp3001sup10.pdf
Additional figure

CCDC references: 1960512; 1960513

Computing details top

For both structures, data collection: SMART (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Potassium aluminium stannide (I) top
Crystal data top
K8Al6.35Sn39.65Mo Kα radiation, λ = 0.71073 Å
Mr = 5190.18Cell parameters from 5252 reflections
Cubic, Pm3nθ = 2.4–28.4°
a = 11.9948 (5) ŵ = 14.61 mm1
V = 1725.8 (2) Å3T = 200 K
Z = 1Irregular, silver
F(000) = 22170.12 × 0.09 × 0.08 mm
Dx = 4.994 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
396 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.2°, θmin = 2.4°
Tmin = 0.170, Tmax = 0.263h = 1515
22084 measured reflectionsk = 1515
411 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0227P)2 + 15.4686P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.31Δρmax = 1.76 e Å3
411 reflectionsΔρmin = 1.10 e Å3
18 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.2500000.5000000.0000000.062 (2)
K20.0000000.0000000.0000000.0201 (14)
Sn10.0000000.31471 (4)0.11802 (4)0.01328 (19)0.93 (2)
Al10.0000000.31471 (4)0.11802 (4)0.01328 (19)0.07 (2)
Sn20.18288 (3)0.18288 (3)0.18288 (3)0.0116 (2)0.97 (2)
Al20.18288 (3)0.18288 (3)0.18288 (3)0.0116 (2)0.03 (2)
Sn30.2500000.0000000.5000000.0142 (7)0.310 (13)
Al30.2500000.0000000.5000000.0142 (7)0.690 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.028 (3)0.079 (3)0.079 (3)0.0000.0000.000
K20.0201 (14)0.0201 (14)0.0201 (14)0.0000.0000.000
Sn10.0118 (3)0.0159 (3)0.0122 (3)0.0000.0000.00138 (19)
Al10.0118 (3)0.0159 (3)0.0122 (3)0.0000.0000.00138 (19)
Sn20.0116 (2)0.0116 (2)0.0116 (2)0.00072 (11)0.00072 (11)0.00072 (11)
Al20.0116 (2)0.0116 (2)0.0116 (2)0.00072 (11)0.00072 (11)0.00072 (11)
Sn30.0130 (12)0.0149 (9)0.0149 (9)0.0000.0000.000
Al30.0130 (12)0.0149 (9)0.0149 (9)0.0000.0000.000
Geometric parameters (Å, º) top
K1—Sn1i3.9920 (4)K2—Sn2viii3.7993 (6)
K1—Sn1ii3.9920 (4)K2—Sn2xi3.7993 (6)
K1—Sn13.9920 (4)K2—Sn2iii3.7993 (6)
K1—Sn1iii3.9920 (4)K2—Sn2xii3.7993 (6)
K1—Sn1iv3.9920 (4)K2—Sn2xiii3.7993 (6)
K1—Sn1v3.9920 (4)K2—Sn2xiv3.7993 (6)
K1—Sn1vi3.9920 (4)K2—Sn23.7994 (6)
K1—Sn1vii3.9920 (4)Sn1—Sn1iii2.8312 (10)
K2—Sn1viii4.0316 (5)Sn1—Sn2xii2.8138 (4)
K2—Sn14.0316 (5)Sn1—Sn22.8138 (4)
K2—Sn1ix4.0316 (5)Sn1—Sn3xv2.7287 (5)
K2—Sn2x3.7993 (6)Sn2—Sn2xvi2.7892 (11)
Sn1i—K1—Sn1iii163.565 (15)Sn2viii—K2—Sn2xiii70.5
Sn1iii—K1—Sn1vii99.753 (11)Sn2x—K2—Sn2xii109.5
Sn1ii—K1—Sn1163.565 (15)Sn2iii—K2—Sn2xiii180.000 (16)
Sn1i—K1—Sn1v41.540 (14)Sn2xiii—K2—Sn2xi109.5
Sn1iv—K1—Sn1vii163.565 (15)Sn2viii—K2—Sn2x109.5
Sn1iii—K1—Sn1v124.352 (6)Sn2viii—K2—Sn2180.000 (16)
Sn1ii—K1—Sn1iv124.352 (6)Sn2iii—K2—Sn2x109.5
Sn1i—K1—Sn1vi124.352 (6)Sn2xiv—K2—Sn2109.5
Sn1vi—K1—Sn1vii124.352 (6)Sn2xiii—K2—Sn2x70.5
Sn1iii—K1—Sn1vi67.663 (13)Sn2xiv—K2—Sn2xii70.5
Sn1iii—K1—Sn141.540 (14)Sn2viii—K2—Sn2xiv70.5
Sn1v—K1—Sn1vi163.565 (15)Sn2iii—K2—Sn2xi70.5
Sn1vii—K1—Sn1124.352 (6)Sn2iii—K2—Sn2xiv70.5
Sn1i—K1—Sn1ii67.663 (13)Sn2xii—K2—Sn270.5
Sn1i—K1—Sn1vii82.614 (11)Sn2xiii—K2—Sn2xiv109.5
Sn1iii—K1—Sn1ii124.352 (6)Sn2xii—K2—Sn2xi180.0
Sn1v—K1—Sn1vii67.663 (13)Sn2x—K2—Sn2xiv180.0
Sn1v—K1—Sn1ii82.614 (11)Sn2iii—K2—Sn270.5
Sn1ii—K1—Sn1vii41.540 (14)Sn2viii—K2—Sn2xii109.5
Sn1vi—K1—Sn1ii99.753 (11)Sn2x—K2—Sn270.5
Sn1i—K1—Sn1124.352 (6)Sn2iii—K2—Sn2xii109.5
Sn1i—K1—Sn1iv99.753 (11)Sn2xiii—K2—Sn2xii70.5
Sn1v—K1—Sn199.753 (11)Sn2x—K2—Sn2xi70.5
Sn1iii—K1—Sn1iv82.614 (11)K1—Sn1—K1vi97.385 (11)
Sn1iv—K1—Sn167.663 (13)K1—Sn1—K2113.377 (9)
Sn1v—K1—Sn1iv124.352 (6)K1vi—Sn1—K2113.377 (9)
Sn1vi—K1—Sn1iv41.540 (14)Sn1iii—Sn1—K169.230 (7)
Sn1vi—K1—Sn182.614 (11)Sn1iii—Sn1—K1vi69.230 (7)
Sn1viii—K2—Sn1ix109.194 (6)Sn1iii—Sn1—K269.444 (7)
Sn1—K2—Sn1ix70.805 (6)Sn2—Sn1—K1vi175.225 (18)
Sn1—K2—Sn1viii180.0Sn2xii—Sn1—K1vi79.941 (6)
Sn2viii—K2—Sn1138.015 (4)Sn2xii—Sn1—K1175.225 (18)
Sn2xiii—K2—Sn1109.746 (6)Sn2—Sn1—K179.940 (6)
Sn2xiii—K2—Sn1ix70.253 (6)Sn2—Sn1—K264.589 (15)
Sn2—K2—Sn1viii138.015 (4)Sn2xii—Sn1—K264.587 (15)
Sn2viii—K2—Sn1ix138.015 (4)Sn2xii—Sn1—Sn1iii106.049 (12)
Sn2xi—K2—Sn1138.015 (4)Sn2—Sn1—Sn1iii106.050 (12)
Sn2xiv—K2—Sn1ix138.015 (4)Sn2xii—Sn1—Sn2102.44 (2)
Sn2iii—K2—Sn170.254 (6)Sn3xv—Sn1—K175.656 (9)
Sn2xi—K2—Sn1ix109.747 (6)Sn3xv—Sn1—K1vi75.656 (9)
Sn2xi—K2—Sn1viii41.985 (4)Sn3xv—Sn1—K2165.096 (18)
Sn2x—K2—Sn1109.746 (6)Sn3xv—Sn1—Sn1iii125.461 (11)
Sn2xiv—K2—Sn170.254 (6)Sn3xv—Sn1—Sn2107.298 (17)
Sn2viii—K2—Sn1viii41.985 (4)Sn3xv—Sn1—Sn2xii107.299 (17)
Sn2iii—K2—Sn1ix109.747 (6)Sn1ix—Sn2—K273.426 (15)
Sn2iii—K2—Sn1viii109.747 (6)Sn1xvii—Sn2—K273.426 (15)
Sn2x—K2—Sn1ix41.985 (4)Sn1—Sn2—K273.426 (15)
Sn2xiii—K2—Sn1viii70.253 (6)Sn1xvii—Sn2—Sn1ix112.207 (13)
Sn2xii—K2—Sn1ix70.253 (6)Sn1—Sn2—Sn1xvii112.207 (13)
Sn2x—K2—Sn1viii70.253 (6)Sn1—Sn2—Sn1ix112.206 (13)
Sn2—K2—Sn1ix41.985 (4)Sn2xvi—Sn2—K2180.00 (3)
Sn2xiv—K2—Sn1viii109.747 (6)Sn2xvi—Sn2—Sn1106.574 (15)
Sn2—K2—Sn141.985 (4)Sn2xvi—Sn2—Sn1ix106.574 (15)
Sn2xii—K2—Sn1viii138.015 (4)Sn2xvi—Sn2—Sn1xvii106.574 (15)
Sn2xii—K2—Sn141.985 (4)Sn1xviii—Sn3—Sn1xix109.08 (2)
Sn2xi—K2—Sn2109.5Sn1xx—Sn3—Sn1xix109.669 (11)
Sn2viii—K2—Sn2xi70.5Sn1ix—Sn3—Sn1xix109.669 (11)
Sn2xiii—K2—Sn2109.5Sn1ix—Sn3—Sn1xx109.08 (2)
Sn2viii—K2—Sn2iii109.5Sn1xviii—Sn3—Sn1xx109.669 (11)
Sn2xiv—K2—Sn2xi109.5Sn1ix—Sn3—Sn1xviii109.669 (11)
Symmetry codes: (i) x+1/2, z+1/2, y+1/2; (ii) x+1/2, z+1/2, y1/2; (iii) x, y, z; (iv) x, y+1, z; (v) x+1/2, z+1/2, y+1/2; (vi) x, y+1, z; (vii) x+1/2, z+1/2, y1/2; (viii) x, y, z; (ix) z, x, y; (x) x, y, z; (xi) x, y, z; (xii) x, y, z; (xiii) x, y, z; (xiv) x, y, z; (xv) z1/2, y+1/2, x+1/2; (xvi) y+1/2, x+1/2, z+1/2; (xvii) y, z, x; (xviii) z+1/2, y+1/2, x+1/2; (xix) z+1/2, y1/2, x+1/2; (xx) z, x, y+1.
Rubidium aluminium stannide (2) top
Crystal data top
Rb8Al7.51Sn38.49Mo Kα radiation, λ = 0.71073 Å
Mr = 5454.76Cell parameters from 4577 reflections
Cubic, Pm3nθ = 2.4–29.6°
a = 12.0123 (13) ŵ = 19.25 mm1
V = 1733.3 (6) Å3T = 200 K
Z = 1Block, silver
F(000) = 23180.16 × 0.14 × 0.1 mm
Dx = 5.226 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
459 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 29.6°, θmin = 2.4°
Tmin = 0.159, Tmax = 0.264h = 1616
19123 measured reflectionsk = 1616
471 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0081P)2 + 4.7593P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.028Δρmax = 0.55 e Å3
S = 1.18Δρmin = 0.59 e Å3
471 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
19 parametersExtinction coefficient: 0.00203 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.2500000.5000000.0000000.0401 (3)
Rb20.0000000.0000000.0000000.0156 (3)
Sn10.0000000.31315 (2)0.11813 (2)0.01184 (10)0.880 (4)
Al10.0000000.31315 (2)0.11813 (2)0.01184 (10)0.120 (4)
Sn20.18325 (2)0.18325 (2)0.18325 (2)0.01129 (11)0.935 (5)
Al20.18325 (2)0.18325 (2)0.18325 (2)0.01129 (11)0.065 (5)
Sn30.2500000.0000000.5000000.0138 (3)0.400 (4)
Al30.2500000.0000000.5000000.0138 (3)0.600 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0217 (5)0.0494 (5)0.0494 (5)0.0000.0000.000
Rb20.0156 (3)0.0156 (3)0.0156 (3)0.0000.0000.000
Sn10.01202 (15)0.01214 (15)0.01136 (15)0.0000.0000.00044 (10)
Al10.01202 (15)0.01214 (15)0.01136 (15)0.0000.0000.00044 (10)
Sn20.01129 (11)0.01129 (11)0.01129 (11)0.00044 (7)0.00044 (7)0.00044 (7)
Al20.01129 (11)0.01129 (11)0.01129 (11)0.00044 (7)0.00044 (7)0.00044 (7)
Sn30.0140 (5)0.0138 (4)0.0138 (4)0.0000.0000.000
Al30.0140 (5)0.0138 (4)0.0138 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Rb1—Sn14.0087 (5)Rb2—Sn2xiv3.8128 (5)
Rb1—Sn1i4.0088 (5)Rb2—Sn2xv3.8128 (5)
Rb1—Sn1ii4.0088 (5)Rb2—Sn2xi3.8128 (5)
Rb1—Sn1iii4.0088 (5)Rb2—Sn2xvi3.8128 (5)
Rb1—Sn1iv4.0088 (5)Rb2—Sn23.8128 (5)
Rb1—Sn1v4.0088 (5)Rb2—Sn2xvii3.8128 (5)
Rb1—Sn1vi4.0088 (5)Rb2—Sn2xviii3.8128 (5)
Rb1—Sn1vii4.0088 (5)Rb2—Sn2v3.8128 (5)
Rb1—Sn3viii4.2470 (5)Sn1—Sn1v2.8380 (6)
Rb1—Sn3ix4.2470 (5)Sn1—Sn22.8093 (4)
Rb1—Sn3x4.2470 (5)Sn1—Sn2xvi2.8093 (4)
Rb2—Sn1xi4.0204 (5)Sn1—Sn3xix2.7472 (4)
Rb2—Sn1xii4.0204 (5)Sn2—Sn2xx2.7774 (7)
Rb2—Sn1xiii4.0204 (5)
Sn1—Rb1—Sn1iii124.139 (4)Sn2—Rb2—Sn2xi180.0
Sn1iii—Rb1—Sn1ii99.485 (6)Sn2xvi—Rb2—Sn2v109.5
Sn1vi—Rb1—Sn1vii68.099 (7)Sn2—Rb2—Sn2xvii70.5
Sn1—Rb1—Sn1v41.462 (7)Sn2xviii—Rb2—Sn2xv109.5
Sn1iv—Rb1—Sn1ii41.462 (7)Sn2xi—Rb2—Sn2xvii109.5
Sn1iii—Rb1—Sn1v163.254 (8)Sn2xvii—Rb2—Sn2v109.5
Sn1i—Rb1—Sn1iv99.485 (6)Sn2—Rb2—Sn2xviii109.5
Sn1—Rb1—Sn1vi99.486 (6)Sn2xi—Rb2—Sn2xiv70.5
Sn1vi—Rb1—Sn1ii124.138 (4)Sn2xi—Rb2—Sn2xviii70.5
Sn1iii—Rb1—Sn1vi41.462 (7)Sn2xv—Rb2—Sn2xiv109.5
Sn1iii—Rb1—Sn1vii82.970 (6)Sn2xvii—Rb2—Sn2xviii180.0
Sn1v—Rb1—Sn1vi124.138 (4)Sn2xvi—Rb2—Sn2xv180.0
Sn1ii—Rb1—Sn1vii163.254 (8)Sn2—Rb2—Sn2xvi70.5
Sn1—Rb1—Sn1i163.254 (8)Sn2xi—Rb2—Sn2v109.5
Sn1—Rb1—Sn1ii68.099 (7)Sn2xi—Rb2—Sn2xvi109.5
Sn1iii—Rb1—Sn1i68.099 (7)Sn2xviii—Rb2—Sn2v70.5
Sn1v—Rb1—Sn1ii82.970 (6)Sn2xvii—Rb2—Sn2xvi109.5
Sn1v—Rb1—Sn1i124.138 (4)Sn2xv—Rb2—Sn2v70.5
Sn1i—Rb1—Sn1ii124.138 (4)Sn2xviii—Rb2—Sn2xvi70.5
Sn1vi—Rb1—Sn1i82.970 (6)Sn2xvii—Rb2—Sn2xiv70.5
Sn1—Rb1—Sn1vii124.138 (4)Sn2—Rb2—Sn2xv109.5
Sn1—Rb1—Sn1iv82.970 (6)Sn2xvi—Rb2—Sn2xiv70.5
Sn1v—Rb1—Sn1vii99.485 (6)Sn2xi—Rb2—Sn2xv70.5
Sn1iii—Rb1—Sn1iv124.138 (4)Sn2xvii—Rb2—Sn2xv70.5
Sn1iv—Rb1—Sn1vii124.138 (4)Sn2—Rb2—Sn2xiv109.5
Sn1v—Rb1—Sn1iv68.099 (7)Rb1—Sn1—Rb1iv97.031 (6)
Sn1vi—Rb1—Sn1iv163.254 (8)Rb1iv—Sn1—Rb2113.512 (5)
Sn1i—Rb1—Sn1vii41.462 (7)Rb1—Sn1—Rb2113.512 (5)
Sn1—Rb1—Sn3viii73.774 (3)Sn1v—Sn1—Rb169.270 (4)
Sn1iii—Rb1—Sn3x73.775 (3)Sn1v—Sn1—Rb1iv69.270 (4)
Sn1iv—Rb1—Sn3ix97.689 (3)Sn1v—Sn1—Rb269.332 (4)
Sn1iii—Rb1—Sn3viii157.764 (4)Sn2—Sn1—Rb179.779 (4)
Sn1iv—Rb1—Sn3x157.764 (4)Sn2xvi—Sn1—Rb1175.237 (9)
Sn1v—Rb1—Sn3viii38.738 (4)Sn2—Sn1—Rb1iv175.237 (9)
Sn1vii—Rb1—Sn3ix73.775 (3)Sn2xvi—Sn1—Rb1iv79.779 (4)
Sn1vi—Rb1—Sn3viii157.764 (4)Sn2—Sn1—Rb265.078 (8)
Sn1vi—Rb1—Sn3x38.738 (4)Sn2xvi—Sn1—Rb265.079 (8)
Sn1i—Rb1—Sn3viii97.689 (3)Sn2xvi—Sn1—Sn1v106.169 (6)
Sn1vii—Rb1—Sn3x38.738 (4)Sn2—Sn1—Sn1v106.169 (6)
Sn1iv—Rb1—Sn3viii38.738 (4)Sn2—Sn1—Sn2xvi103.177 (11)
Sn1ii—Rb1—Sn3ix97.689 (3)Sn3xix—Sn1—Rb175.324 (5)
Sn1ii—Rb1—Sn3viii73.775 (3)Sn3xix—Sn1—Rb1iv75.324 (5)
Sn1—Rb1—Sn3x97.689 (3)Sn3xix—Sn1—Rb2165.455 (10)
Sn1vii—Rb1—Sn3viii97.689 (3)Sn3xix—Sn1—Sn1v125.213 (6)
Sn1v—Rb1—Sn3x97.689 (3)Sn3xix—Sn1—Sn2107.050 (9)
Sn1—Rb1—Sn3ix157.764 (4)Sn3xix—Sn1—Sn2xvi107.050 (9)
Sn1i—Rb1—Sn3x73.775 (3)Sn1xii—Sn2—Rb272.992 (8)
Sn1iii—Rb1—Sn3ix38.738 (4)Sn1—Sn2—Rb272.992 (8)
Sn1ii—Rb1—Sn3x157.764 (4)Sn1xxi—Sn2—Rb272.992 (8)
Sn1v—Rb1—Sn3ix157.764 (4)Sn1xxi—Sn2—Sn1xii111.818 (7)
Sn1vi—Rb1—Sn3ix73.775 (3)Sn1xxi—Sn2—Sn1111.819 (7)
Sn1i—Rb1—Sn3ix38.738 (4)Sn1xii—Sn2—Sn1111.818 (7)
Sn3viii—Rb1—Sn3ix120.0Sn2xx—Sn2—Rb2180.000 (19)
Sn3viii—Rb1—Sn3x120.0Sn2xx—Sn2—Sn1107.008 (8)
Sn3ix—Rb1—Sn3x90.0Sn2xx—Sn2—Sn1xii107.008 (8)
Sn1xii—Rb2—Sn1xiii180.0Sn2xx—Sn2—Sn1xxi107.008 (8)
Sn1xi—Rb2—Sn1xii109.284 (3)Rb1xxii—Sn3—Rb1xxiii90.0
Sn1xi—Rb2—Sn1xiii70.716 (3)Rb1xxiii—Sn3—Rb1xxiv120.0
Sn2xv—Rb2—Sn1xiii109.658 (3)Rb1xxv—Sn3—Rb1xxiii120.0
Sn2xi—Rb2—Sn1xiii41.929 (2)Rb1xxv—Sn3—Rb1xxiv90.0
Sn2xviii—Rb2—Sn1xi109.658 (3)Rb1xxv—Sn3—Rb1xxii120.0
Sn2—Rb2—Sn1xi138.071 (2)Rb1xxii—Sn3—Rb1xxiv120.0
Sn2xviii—Rb2—Sn1xiii70.342 (3)Sn1xxvi—Sn3—Rb1xxii80.212 (6)
Sn2v—Rb2—Sn1xii41.929 (2)Sn1xxi—Sn3—Rb1xxii170.212 (6)
Sn2xvii—Rb2—Sn1xi70.342 (3)Sn1xxvii—Sn3—Rb1xxiv170.212 (6)
Sn2xvi—Rb2—Sn1xi138.071 (2)Sn1xxvii—Sn3—Rb1xxii65.938 (4)
Sn2xv—Rb2—Sn1xii70.342 (3)Sn1xxii—Sn3—Rb1xxiv80.212 (6)
Sn2xiv—Rb2—Sn1xiii41.929 (2)Sn1xxvi—Sn3—Rb1xxv65.938 (4)
Sn2xiv—Rb2—Sn1xii138.071 (2)Sn1xxi—Sn3—Rb1xxv65.938 (4)
Sn2v—Rb2—Sn1xi109.658 (3)Sn1xxi—Sn3—Rb1xxiii80.212 (6)
Sn2—Rb2—Sn1xiii138.071 (2)Sn1xxi—Sn3—Rb1xxiv65.938 (4)
Sn2xiv—Rb2—Sn1xi70.342 (3)Sn1xxii—Sn3—Rb1xxiii65.938 (4)
Sn2xvii—Rb2—Sn1xiii109.658 (3)Sn1xxvi—Sn3—Rb1xxiv65.938 (4)
Sn2—Rb2—Sn1xii41.929 (2)Sn1xxvi—Sn3—Rb1xxiii170.212 (6)
Sn2xvi—Rb2—Sn1xiii70.342 (3)Sn1xxii—Sn3—Rb1xxii65.938 (4)
Sn2xi—Rb2—Sn1xii138.071 (2)Sn1xxvii—Sn3—Rb1xxiii65.938 (4)
Sn2v—Rb2—Sn1xiii138.071 (2)Sn1xxvii—Sn3—Rb1xxv80.212 (6)
Sn2xvii—Rb2—Sn1xii70.342 (3)Sn1xxii—Sn3—Rb1xxv170.212 (6)
Sn2xv—Rb2—Sn1xi41.929 (2)Sn1xxii—Sn3—Sn1xxvii109.576 (11)
Sn2xviii—Rb2—Sn1xii109.658 (3)Sn1xxii—Sn3—Sn1xxvi109.419 (6)
Sn2xvi—Rb2—Sn1xii109.658 (3)Sn1xxi—Sn3—Sn1xxvi109.576 (11)
Sn2xi—Rb2—Sn1xi41.929 (2)Sn1xxvi—Sn3—Sn1xxvii109.419 (6)
Sn2v—Rb2—Sn2xiv180.0Sn1xxi—Sn3—Sn1xxvii109.419 (6)
Sn2—Rb2—Sn2v70.5Sn1xxi—Sn3—Sn1xxii109.419 (6)
Sn2xviii—Rb2—Sn2xiv109.5
Symmetry codes: (i) x+1/2, z+1/2, y1/2; (ii) x, y+1, z; (iii) x+1/2, z+1/2, y+1/2; (iv) x, y+1, z; (v) x, y, z; (vi) x+1/2, z+1/2, y+1/2; (vii) x+1/2, z+1/2, y1/2; (viii) z+1/2, y+1/2, x1/2; (ix) y+1/2, x+1/2, z1/2; (x) y+1/2, x+1/2, z+1/2; (xi) x, y, z; (xii) y, z, x; (xiii) y, z, x; (xiv) x, y, z; (xv) x, y, z; (xvi) x, y, z; (xvii) x, y, z; (xviii) x, y, z; (xix) z1/2, y+1/2, x+1/2; (xx) y+1/2, x+1/2, z+1/2; (xxi) z, x, y; (xxii) z+1/2, y+1/2, x+1/2; (xxiii) z+1/2, y1/2, x+1/2; (xxiv) y1/2, x+1/2, z+1/2; (xxv) y+1/2, x1/2, z+1/2; (xxvi) z, x, y+1; (xxvii) z+1/2, y1/2, x+1/2.
Unit-cell parameters and the corresponding refined occupancies of Sn and Al on the three different Wyckoff positions, i.e. 6c, 16i, and 24k, in all studied clathrate structures. top
Formulaa (Å)Sn1/Al1 (24k)Sn2/Al2 (16i)Sn3/Al3 (6c)
Rb8AlxSn46–x ; x 6.6 (1)12.0184 (7)0.910 (6)/0.0900.957 (6)/0.0420.374 (6)/0.626
Rb8AlxSn46–x ; x 7.5 (1)12.0123 (13)0.880 (4)/0.1200.935 (5)/0.0650.400 (4)/0.600
Rb8AlxSn46–x ; x 7.8 (1)12.0064 (5)0.869 (5)/0.1310.922 (5)/0.0780.439 (5)/0.561
Rb8AlxSn46–x ; x 8.1 (1)12.0130 (5)0.871 (5)/0.1290.926 (5)/0.0740.368 (4)/0.632
K8AlxSn46–x ; x 6.4 (1)11.9948 (5)0.93 (2)/0.070.97 (2)/0.030.310 (13)/0.690
K8AlxSn46–x ; x 8.2 (1)11.9826 (5)0.868 (11)/0.1320.922 (12)/0.0780.373 (7)/0.627
K8AlxSn46–x ; x 8.5 (1)11.9873 (5)0.870 (11)/0.1300.920 (11)/0.0800.317 (6)/0.683
K8AlxSn46–x ; x 9.7 (1)11.9860 (4)0.836 (11)/0.1640.891 (12)/0.1090.332 (7)/0.668
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds