Download citation
Download citation
link to html
The structure of the title compound {systematic name: di­chloro­bis­[2-(phenyl­imino­methyl)­pyridine]­iron(II) aceto­nitrile solvate}, cis-(2-C5H4NCH=NPh)2FeCl2·C2H3N, consists of an iron centre bound by two bidentate pyridyl­imine ligands and two cis-disposed chloride ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012467/wn6165sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012467/wn6165Isup2.hkl
Contains datablock I

CCDC reference: 217370

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.083
  • Data-to-parameter ratio = 14.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The synthesis of divalent late transition metal complexes supported by chelating multidentate ligands containing both the imino and pyridine moieties has been the subject of considerable recent research activity due, in part, to their connection to olefin polymerization catalysis (Gibson & Spitzmesser, 2003). In particular, the application of group 10 metals supported by iminopyridine ligands (Laine et al., 1999) and group 8 metals by bis(imino)pyridine ligands (Britovsek et al., 1998) has allowed access to highly active ethylene polymerization catalysts capable of producing a wide variety of polymeric materials.

Here, we report the synthesis and the crystal structure of cis-(2-C5H4NCHNPh)2FeCl2·C2H3N, (I). The positive FAB mass spectrum exhibits a molecular ion peak along with a fragmentation peak corresponding to the loss of chloride from the molecular ion.

The X-ray analysis of (I) shows a distorted octahedral complex in which the Fe atom is bound to two cis-coordinated N,N'-chelating ligands [the pyridyl N atoms being trans; bite angle = 159.60 (6)°] and two chlorides. The Fe—N(pyridine) distances [2.1744 (15) and 2.1799 (16) Å] are similar and notably shorter than the Fe—N(imine) distances [Fe1—N4 = 2.2474 (16) Å and Fe1—N2 = 2.3144 (14) Å]. The explanation for the disparity in the Fe—N(imine) distances is uncertain but it is worthy of note that the corresponding trans Fe—Cl distances [Fe1—Cl1 = 2.3796 (6) Å and Fe1—Cl2 = 2.4120 (5) Å] are also markedly different, with the shorter Fe—N(imine) distance (Fe1—N4) being accompanied by a longer trans Fe—Cl distance (Fe1—Cl1) and vice versa. The two imine linkages, C6—N2 and C18—N4, are both short, reflecting a retention of their double-bond character. The phenyl rings of each ligand are similarly oriented with respect to the pyridyl-imine N—C—C—N planes [43.90 (9) and 46.46 (10)°]. There are no intermolecular packing interactions of note.

Experimental top

Under an atmosphere of nitrogen, a suspension of iron(II) chloride (0.222 g, 1.75 mmol) in tetrahydrofuran (30 ml) was cooled to 195 K and 2-formylpyridineanil (0.600 g, 3.30 mmol) was added to this solution via a solids addition tube. The dark green solution mixture was allowed to reach room temperature and then stirred overnight. The volatiles were removed under reduced pressure and the remaining solid was extracted into acetonitrile (30 ml), stirred for 3 h and then filtered. The solution was layered with hexane (60 ml) and left to crystallize at 248 K. After 3 d, dark green crystals suitable for single-crystal X-ray diffraction analysis were obtained (0.200 g, 24% yield).

Refinement top

All H atoms were refined using a riding model, with bond lengths of 0.98 Å (solvent molecule) and 0.95 Å (all others). For methyl H atoms, Uiso(H) = 1.5Ueq(parent); for all other H atoms, Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 50% displacement ellipsoids. H atoms are drawn as spheres of arbitary radius. For clarity, the acetonitrile solvent molecule has been omitted.
dichlorobis[2-(phenyliminomethyl)pyridine]iron(II) acetonitrile solvate top
Crystal data top
[FeCl2(C12H10N2)2]·C2H3NF(000) = 1096
Mr = 532.24Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7838 (7) ÅCell parameters from 7807 reflections
b = 14.8194 (8) Åθ = 2.2–28.4°
c = 13.8905 (8) ŵ = 0.85 mm1
β = 109.677 (10)°T = 150 K
V = 2477.9 (2) Å3Plate, black
Z = 40.39 × 0.26 × 0.09 mm
Data collection top
Bruker CCD area-detector
diffractometer
4348 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.715, Tmax = 0.928k = 1717
15046 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.2129P]
where P = (Fo2 + 2Fc2)/3
4348 reflections(Δ/σ)max = 0.002
308 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[FeCl2(C12H10N2)2]·C2H3NV = 2477.9 (2) Å3
Mr = 532.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7838 (7) ŵ = 0.85 mm1
b = 14.8194 (8) ÅT = 150 K
c = 13.8905 (8) Å0.39 × 0.26 × 0.09 mm
β = 109.677 (10)°
Data collection top
Bruker CCD area-detector
diffractometer
4348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3811 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.928Rint = 0.027
15046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
4348 reflectionsΔρmin = 0.24 e Å3
308 parameters
Special details top

Experimental. absorption correction based on 11055 reflections (SADABS); Rint 0.065 before correction and 0.025 after.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.83220 (2)0.174761 (16)0.61116 (2)0.02300 (10)
Cl10.71892 (4)0.15322 (3)0.43755 (4)0.02874 (13)
Cl20.87941 (4)0.33207 (3)0.60809 (4)0.03093 (14)
N10.98966 (13)0.13050 (10)0.59950 (11)0.0240 (3)
N20.84753 (13)0.02197 (10)0.64776 (12)0.0227 (3)
N30.68955 (14)0.18127 (9)0.66338 (13)0.0267 (4)
N40.90188 (14)0.16984 (9)0.78276 (12)0.0251 (4)
C11.05732 (17)0.18082 (12)0.56657 (15)0.0286 (5)
H11.03580.24100.54550.034*
C21.15738 (17)0.14935 (13)0.56176 (16)0.0313 (5)
H21.20250.18710.53670.038*
C31.19089 (17)0.06285 (13)0.59358 (15)0.0318 (5)
H31.25990.04040.59210.038*
C41.12186 (16)0.00938 (13)0.62770 (15)0.0292 (4)
H41.14230.05080.64960.035*
C51.02270 (16)0.04513 (12)0.62938 (14)0.0239 (4)
C60.94327 (16)0.00955 (12)0.65872 (14)0.0260 (4)
H60.96310.06840.68590.031*
C70.76967 (16)0.03182 (11)0.67573 (15)0.0243 (4)
C80.65988 (16)0.02873 (12)0.61257 (16)0.0281 (4)
H80.63940.00620.55170.034*
C90.58003 (18)0.07636 (13)0.63796 (17)0.0349 (5)
H90.50470.07420.59430.042*
C100.60912 (19)0.12699 (13)0.72640 (19)0.0390 (5)
H100.55400.15940.74400.047*
C110.7191 (2)0.13026 (14)0.78943 (18)0.0384 (5)
H110.73930.16530.85020.046*
C120.79993 (17)0.08286 (12)0.76466 (15)0.0298 (5)
H120.87530.08530.80810.036*
C130.58320 (18)0.18693 (12)0.60349 (18)0.0323 (5)
H130.56660.19870.53270.039*
C140.49599 (19)0.17618 (13)0.6411 (2)0.0403 (6)
H140.42120.18040.59640.048*
C150.5189 (2)0.15941 (14)0.7431 (2)0.0426 (6)
H150.46030.15070.76980.051*
C160.62814 (19)0.15542 (13)0.80658 (18)0.0366 (5)
H160.64620.14490.87780.044*
C170.71115 (18)0.16717 (12)0.76389 (16)0.0290 (5)
C180.82836 (18)0.16341 (12)0.82645 (16)0.0295 (5)
H180.84990.15630.89850.035*
C191.01578 (17)0.15712 (12)0.84049 (15)0.0275 (4)
C201.09401 (17)0.21387 (13)0.82264 (15)0.0311 (5)
H201.07060.26300.77650.037*
C211.20575 (19)0.19840 (15)0.87234 (17)0.0373 (5)
H211.25930.23750.86080.045*
C221.24008 (19)0.12645 (16)0.93868 (17)0.0431 (6)
H221.31710.11610.97280.052*
C231.1626 (2)0.06962 (15)0.95529 (18)0.0446 (6)
H231.18640.01971.00030.054*
C241.05092 (19)0.08466 (13)0.90705 (16)0.0365 (5)
H240.99790.04550.91920.044*
N50.51858 (18)0.38481 (14)0.48449 (18)0.0540 (6)
C250.5740 (2)0.40563 (15)0.5641 (2)0.0405 (5)
C260.6448 (2)0.43209 (17)0.66485 (18)0.0489 (6)
H26A0.72260.42150.67140.073*
H26B0.62620.39640.71630.073*
H26C0.63380.49630.67530.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02561 (18)0.02037 (16)0.02390 (17)0.00153 (10)0.00949 (13)0.00115 (10)
Cl10.0319 (3)0.0278 (2)0.0249 (3)0.00430 (19)0.0074 (2)0.00137 (19)
Cl20.0382 (3)0.0203 (2)0.0355 (3)0.00026 (19)0.0140 (2)0.00062 (19)
N10.0266 (9)0.0228 (8)0.0222 (9)0.0004 (6)0.0078 (7)0.0019 (6)
N20.0251 (9)0.0210 (7)0.0200 (8)0.0016 (6)0.0051 (7)0.0017 (6)
N30.0313 (10)0.0199 (8)0.0306 (10)0.0004 (7)0.0128 (8)0.0033 (7)
N40.0321 (10)0.0195 (8)0.0242 (9)0.0034 (6)0.0103 (8)0.0030 (6)
C10.0357 (12)0.0243 (10)0.0274 (11)0.0010 (8)0.0126 (10)0.0002 (8)
C20.0327 (12)0.0336 (11)0.0314 (12)0.0039 (9)0.0157 (10)0.0025 (9)
C30.0266 (11)0.0360 (11)0.0336 (12)0.0014 (9)0.0112 (10)0.0067 (9)
C40.0294 (11)0.0259 (10)0.0302 (11)0.0033 (8)0.0072 (9)0.0024 (8)
C50.0267 (10)0.0219 (9)0.0212 (10)0.0004 (8)0.0056 (8)0.0033 (7)
C60.0314 (11)0.0205 (9)0.0248 (11)0.0010 (8)0.0075 (9)0.0016 (8)
C70.0301 (11)0.0166 (9)0.0278 (11)0.0002 (7)0.0117 (9)0.0029 (8)
C80.0309 (11)0.0219 (9)0.0293 (11)0.0009 (8)0.0073 (9)0.0001 (8)
C90.0277 (12)0.0302 (10)0.0446 (13)0.0045 (9)0.0093 (10)0.0047 (10)
C100.0408 (14)0.0289 (11)0.0548 (15)0.0065 (9)0.0259 (12)0.0003 (10)
C110.0517 (15)0.0303 (11)0.0362 (13)0.0019 (10)0.0190 (12)0.0074 (9)
C120.0319 (12)0.0254 (10)0.0294 (11)0.0002 (8)0.0069 (10)0.0016 (8)
C130.0338 (13)0.0235 (10)0.0412 (13)0.0025 (8)0.0149 (11)0.0027 (9)
C140.0307 (13)0.0349 (12)0.0563 (16)0.0013 (9)0.0160 (12)0.0077 (10)
C150.0439 (15)0.0344 (12)0.0626 (17)0.0051 (10)0.0353 (14)0.0103 (11)
C160.0477 (15)0.0278 (10)0.0431 (14)0.0063 (9)0.0271 (12)0.0067 (9)
C170.0381 (13)0.0209 (9)0.0324 (12)0.0038 (8)0.0178 (10)0.0079 (8)
C180.0431 (13)0.0235 (10)0.0238 (11)0.0054 (8)0.0135 (10)0.0048 (8)
C190.0361 (12)0.0255 (9)0.0205 (10)0.0029 (8)0.0089 (9)0.0074 (8)
C200.0375 (13)0.0285 (10)0.0277 (11)0.0034 (9)0.0116 (10)0.0041 (9)
C210.0339 (13)0.0426 (12)0.0359 (13)0.0067 (10)0.0125 (11)0.0091 (10)
C220.0353 (13)0.0491 (13)0.0370 (13)0.0045 (11)0.0016 (11)0.0101 (11)
C230.0520 (16)0.0367 (12)0.0355 (13)0.0058 (11)0.0020 (12)0.0034 (10)
C240.0453 (14)0.0294 (11)0.0310 (12)0.0050 (9)0.0079 (11)0.0013 (9)
N50.0513 (14)0.0601 (14)0.0495 (14)0.0160 (11)0.0155 (12)0.0001 (11)
C250.0431 (15)0.0375 (12)0.0463 (15)0.0118 (10)0.0221 (13)0.0066 (11)
C260.0509 (16)0.0537 (15)0.0427 (15)0.0050 (12)0.0166 (13)0.0005 (12)
Geometric parameters (Å, º) top
Fe1—N12.1744 (15)C10—H100.9500
Fe1—N32.1799 (16)C11—C121.385 (3)
Fe1—N42.2474 (16)C11—H110.9500
Fe1—N22.3144 (14)C12—H120.9500
Fe1—Cl12.3796 (6)C13—C141.390 (3)
Fe1—Cl22.4120 (5)C13—H130.9500
N1—C11.334 (2)C14—C151.370 (3)
N1—C51.354 (2)C14—H140.9500
N2—C61.270 (2)C15—C161.379 (3)
N2—C71.427 (2)C15—H150.9500
N3—C131.336 (3)C16—C171.390 (3)
N3—C171.345 (3)C16—H160.9500
N4—C181.283 (3)C17—C181.458 (3)
N4—C191.419 (3)C18—H180.9500
C1—C21.384 (3)C19—C241.389 (3)
C1—H10.9500C19—C201.391 (3)
C2—C31.376 (3)C20—C211.380 (3)
C2—H20.9500C20—H200.9500
C3—C41.383 (3)C21—C221.381 (3)
C3—H30.9500C21—H210.9500
C4—C51.381 (3)C22—C231.378 (3)
C4—H40.9500C22—H220.9500
C5—C61.460 (2)C23—C241.375 (3)
C6—H60.9500C23—H230.9500
C7—C81.383 (3)C24—H240.9500
C7—C121.388 (3)N5—C251.137 (3)
C8—C91.381 (3)C25—C261.442 (4)
C8—H80.9500C26—H26A0.9800
C9—C101.379 (3)C26—H26B0.9800
C9—H90.9500C26—H26C0.9800
C10—C111.385 (3)
N1—Fe1—N3159.60 (6)C8—C9—H9119.8
N1—Fe1—N491.31 (6)C9—C10—C11119.61 (19)
N3—Fe1—N474.08 (6)C9—C10—H10120.2
N1—Fe1—N273.10 (5)C11—C10—H10120.2
N3—Fe1—N289.35 (5)C10—C11—C12120.6 (2)
N4—Fe1—N276.19 (5)C10—C11—H11119.7
N1—Fe1—Cl198.44 (4)C12—C11—H11119.7
N3—Fe1—Cl192.94 (5)C11—C12—C7119.33 (19)
N4—Fe1—Cl1163.56 (4)C11—C12—H12120.3
N2—Fe1—Cl193.96 (4)C7—C12—H12120.3
N1—Fe1—Cl292.68 (4)N3—C13—C14122.4 (2)
N3—Fe1—Cl2101.86 (4)N3—C13—H13118.8
N4—Fe1—Cl292.17 (4)C14—C13—H13118.8
N2—Fe1—Cl2161.12 (4)C15—C14—C13119.4 (2)
Cl1—Fe1—Cl2100.504 (19)C15—C14—H14120.3
C1—N1—C5117.14 (16)C13—C14—H14120.3
C1—N1—Fe1125.46 (13)C14—C15—C16119.1 (2)
C5—N1—Fe1117.39 (12)C14—C15—H15120.4
C6—N2—C7119.60 (15)C16—C15—H15120.4
C6—N2—Fe1113.14 (12)C15—C16—C17118.4 (2)
C7—N2—Fe1126.23 (11)C15—C16—H16120.8
C13—N3—C17117.79 (18)C17—C16—H16120.8
C13—N3—Fe1125.82 (14)N3—C17—C16122.9 (2)
C17—N3—Fe1115.85 (14)N3—C17—C18115.79 (17)
C18—N4—C19119.93 (17)C16—C17—C18121.3 (2)
C18—N4—Fe1114.35 (14)N4—C18—C17119.01 (19)
C19—N4—Fe1124.66 (12)N4—C18—H18120.5
N1—C1—C2122.99 (18)C17—C18—H18120.5
N1—C1—H1118.5C24—C19—C20119.7 (2)
C2—C1—H1118.5C24—C19—N4121.29 (18)
C3—C2—C1119.41 (18)C20—C19—N4118.79 (17)
C3—C2—H2120.3C21—C20—C19119.7 (2)
C1—C2—H2120.3C21—C20—H20120.2
C2—C3—C4118.57 (18)C19—C20—H20120.2
C2—C3—H3120.7C20—C21—C22120.3 (2)
C4—C3—H3120.7C20—C21—H21119.8
C5—C4—C3118.75 (18)C22—C21—H21119.8
C5—C4—H4120.6C23—C22—C21119.9 (2)
C3—C4—H4120.6C23—C22—H22120.0
N1—C5—C4123.13 (17)C21—C22—H22120.0
N1—C5—C6115.45 (16)C24—C23—C22120.4 (2)
C4—C5—C6121.34 (17)C24—C23—H23119.8
N2—C6—C5119.66 (17)C22—C23—H23119.8
N2—C6—H6120.2C23—C24—C19120.0 (2)
C5—C6—H6120.2C23—C24—H24120.0
C8—C7—C12120.12 (17)C19—C24—H24120.0
C8—C7—N2117.43 (16)N5—C25—C26179.6 (3)
C12—C7—N2122.39 (17)C25—C26—H26A109.5
C9—C8—C7120.05 (19)C25—C26—H26B109.5
C9—C8—H8120.0H26A—C26—H26B109.5
C7—C8—H8120.0C25—C26—H26C109.5
C10—C9—C8120.3 (2)H26A—C26—H26C109.5
C10—C9—H9119.8H26B—C26—H26C109.5

Experimental details

Crystal data
Chemical formula[FeCl2(C12H10N2)2]·C2H3N
Mr532.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.7838 (7), 14.8194 (8), 13.8905 (8)
β (°) 109.677 (10)
V3)2477.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.39 × 0.26 × 0.09
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.715, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
15046, 4348, 3811
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.04
No. of reflections4348
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.24

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1999), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Fe1—N12.1744 (15)Fe1—Cl12.3796 (6)
Fe1—N32.1799 (16)Fe1—Cl22.4120 (5)
Fe1—N42.2474 (16)N2—C61.270 (2)
Fe1—N22.3144 (14)N4—C181.283 (3)
N3—Fe1—N474.08 (6)Cl1—Fe1—Cl2100.504 (19)
N1—Fe1—N273.10 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds