Download citation
Download citation
link to html
The title chromium(III) complex, [Cr(C9H6NO)3]·C2H6O, is isomorphous with the manganese(III) compound [Xiong et al. (1995). Acta Cryst. C51, 1978–1980]. Three 8-quinolinolate ligands chelate the CrIII atom to form an approximately octahedral coordination geometry. An ethanol solvent mol­ecule hydrogen bonds to the complex with an O...O distance of 2.758 (5) Å and an O—H...O angle of 167°. The separation distances of 3.426 (19) and 3.368 (4) Å between parallel quinoline rings suggests the existence of π–π stacking between neighboring complex mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008742/wn6150sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008742/wn6150Isup2.hkl
Contains datablock I

CCDC reference: 214573

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.058
  • wR factor = 0.162
  • Data-to-parameter ratio = 13.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

As part of a series of investigations on ππ-stacking interactions in metal complexes, several 8-quinolinolate–metal complexes have been synthesized in the laboratory.

The structure of the title complex, (I), is shown in Fig. 1. Three 8-quinolinolate ligands chelate to the CrIII atom in an octahedral coordination geometry. The planar 8-quinolinolate ligands are almost perpendicular to each other, with dihedral angles of 85.84 (10), 85.40 (11) and 81.91 (14)°. The overlapped disposition of neighboring parallel quinoline rings is shown in Fig. 2. The quinoline plane containing atom N21 is separated from the quinoline plane containing N21(-x, −y, 1 − z) by 3.426 (19) Å. Likewise, the plane containing atom 31 and the plane containing N31(-x, −y, −z) are separated by 3.368 (4) Å. These findings strongly suggest the existence of ππ stacking in the crystal structure.

The ethanol solvent molecule is hydrogen bonded to the CrIII complex, with an O1···O31 distance of 2.758 (5) Å and an O1—H1···O31 angle of 167° (Table 2). Weak C—H···O hydrogen bonding occurs between atom O11 and quinoline atoms C15 and C24.

Experimental top

The title complex was prepared by refluxing an ethanol solution (15 ml) containing CrCl3·6H2O (0.27 g, 1 mmol), 8-quinolinol (0.29 g, 2 mmol) and imidazole (0.14 g, 2 mmol) for 2 h. The resulting solution was filtered at room temperature. Green single crystals were obtained from the filtrate after 2 weeks.

Refinement top

The hydroxyl H atom was located in a difference Fourier map, and included in the final cycles of refinement with fixed positional parameters and displacement parameter Uiso = 0.08 Å2. Other H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement as riding, with Uiso(H) = 1.2Ueq or 1.5Ueq of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the hydrogen bond between the complex and the solvent molecule.
[Figure 2] Fig. 2. A packing diagram, showing the ππ interactions between neighboring quinoline rings.
(I) top
Crystal data top
[Cr(C9H6NO)3]·C2H6OF(000) = 1100
Mr = 530.51Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8818 reflections
a = 11.2683 (11) Åθ = 2.5–24.5°
b = 13.2572 (11) ŵ = 0.50 mm1
c = 16.8041 (18) ÅT = 298 K
β = 94.783 (6)°Prism, green
V = 2501.6 (4) Å30.36 × 0.32 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and ϕ scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 138
Tmin = 0.84, Tmax = 0.91k = 1315
8913 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0725P)2 + 2.5324P]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cr(C9H6NO)3]·C2H6OV = 2501.6 (4) Å3
Mr = 530.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2683 (11) ŵ = 0.50 mm1
b = 13.2572 (11) ÅT = 298 K
c = 16.8041 (18) Å0.36 × 0.32 × 0.20 mm
β = 94.783 (6)°
Data collection top
Bruker SMART CCD
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3346 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.91Rint = 0.039
8913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.10Δρmax = 0.47 e Å3
4362 reflectionsΔρmin = 0.44 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.06841 (5)0.01785 (4)0.25614 (3)0.0387 (2)
O110.1047 (2)0.00813 (19)0.26518 (15)0.0460 (6)
O210.0771 (2)0.15728 (19)0.29316 (15)0.0496 (6)
O310.2358 (2)0.01254 (19)0.22972 (14)0.0465 (6)
N110.0461 (2)0.1328 (2)0.22680 (17)0.0412 (7)
N210.1125 (3)0.0116 (2)0.37607 (17)0.0413 (7)
N310.0427 (3)0.0669 (2)0.14009 (17)0.0438 (7)
C100.1127 (4)0.2590 (3)0.2115 (2)0.0511 (10)
C120.1243 (3)0.2019 (3)0.2089 (2)0.0531 (10)
H120.20380.18370.20760.064*
C130.0902 (4)0.3019 (3)0.1918 (3)0.0635 (12)
H130.14680.34910.17930.076*
C140.0255 (4)0.3296 (3)0.1935 (3)0.0625 (11)
H140.04760.39620.18270.075*
C150.2363 (4)0.2789 (3)0.2140 (3)0.0614 (11)
H150.26540.34400.20530.074*
C160.3117 (4)0.2026 (4)0.2292 (3)0.0632 (12)
H160.39280.21600.22830.076*
C170.2710 (3)0.1040 (3)0.2463 (2)0.0559 (10)
H170.32560.05410.25690.067*
C180.1497 (3)0.0795 (3)0.2476 (2)0.0443 (9)
C190.0724 (3)0.1603 (3)0.2284 (2)0.0407 (8)
C200.1518 (3)0.0819 (3)0.5007 (2)0.0512 (10)
C220.1283 (3)0.0965 (3)0.4162 (2)0.0499 (9)
H220.12090.15720.38850.060*
C230.1558 (4)0.0993 (3)0.4989 (2)0.0571 (11)
H230.16580.16080.52520.069*
C240.1677 (4)0.0116 (3)0.5404 (2)0.0576 (11)
H240.18650.01310.59540.069*
C250.1595 (4)0.1789 (4)0.5374 (3)0.0620 (11)
H250.17870.18450.59210.074*
C260.1388 (4)0.2627 (4)0.4927 (3)0.0630 (12)
H260.14390.32520.51780.076*
C270.1098 (3)0.2593 (3)0.4094 (3)0.0542 (10)
H270.09570.31880.38080.065*
C280.1022 (3)0.1674 (3)0.3702 (2)0.0442 (9)
C290.1237 (3)0.0785 (3)0.4173 (2)0.0407 (8)
C300.1548 (4)0.1113 (3)0.0270 (2)0.0598 (11)
C320.0564 (4)0.0946 (3)0.0987 (2)0.0580 (11)
H320.12830.08830.12170.070*
C330.0565 (5)0.1331 (4)0.0210 (3)0.0720 (13)
H330.12740.15420.00620.086*
C340.0462 (5)0.1396 (4)0.0139 (3)0.0705 (13)
H340.04530.16320.06610.085*
C350.2678 (5)0.1146 (4)0.0028 (3)0.0722 (13)
H350.27550.13770.05430.087*
C360.3654 (5)0.0839 (4)0.0436 (3)0.0759 (15)
H360.43900.08550.02240.091*
C370.3600 (4)0.0495 (3)0.1230 (3)0.0628 (12)
H370.42940.03050.15310.075*
C380.2516 (3)0.0442 (3)0.1559 (2)0.0479 (9)
C390.1486 (3)0.0749 (3)0.1065 (2)0.0447 (9)
O10.4443 (4)0.0801 (4)0.2883 (3)0.1187 (16)
C10.4784 (10)0.0899 (8)0.4279 (6)0.190 (5)
H1A0.47240.13350.47300.284*
H1B0.56020.07110.42460.284*
H1C0.43150.03040.43410.284*
C20.4346 (7)0.1426 (6)0.3549 (5)0.128 (3)
H2A0.35200.16160.35810.153*
H2B0.48060.20370.34920.153*
H10.37690.04870.27770.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0394 (3)0.0414 (4)0.0352 (3)0.0015 (2)0.0024 (2)0.0009 (2)
O110.0432 (13)0.0444 (15)0.0514 (15)0.0050 (11)0.0093 (11)0.0043 (12)
O210.0604 (16)0.0438 (15)0.0439 (15)0.0010 (12)0.0011 (12)0.0030 (12)
O310.0403 (13)0.0575 (16)0.0417 (15)0.0053 (11)0.0023 (11)0.0064 (12)
N110.0432 (16)0.0458 (18)0.0343 (15)0.0015 (14)0.0023 (12)0.0005 (13)
N210.0401 (16)0.0473 (18)0.0367 (16)0.0002 (13)0.0050 (12)0.0017 (13)
N310.0489 (18)0.0455 (18)0.0366 (16)0.0004 (14)0.0007 (14)0.0001 (13)
C100.060 (2)0.048 (2)0.045 (2)0.0069 (19)0.0015 (18)0.0009 (18)
C120.046 (2)0.061 (3)0.052 (2)0.0109 (19)0.0050 (17)0.003 (2)
C130.074 (3)0.046 (3)0.071 (3)0.014 (2)0.009 (2)0.002 (2)
C140.081 (3)0.041 (2)0.065 (3)0.004 (2)0.006 (2)0.001 (2)
C150.069 (3)0.056 (3)0.059 (3)0.023 (2)0.006 (2)0.001 (2)
C160.045 (2)0.081 (3)0.063 (3)0.021 (2)0.0012 (19)0.001 (2)
C170.042 (2)0.076 (3)0.050 (2)0.001 (2)0.0078 (17)0.003 (2)
C180.0406 (19)0.057 (3)0.0359 (19)0.0038 (17)0.0075 (15)0.0014 (17)
C190.0433 (19)0.046 (2)0.0328 (18)0.0040 (16)0.0029 (15)0.0022 (15)
C200.041 (2)0.069 (3)0.044 (2)0.0023 (18)0.0053 (16)0.0053 (19)
C220.052 (2)0.048 (2)0.050 (2)0.0017 (18)0.0098 (18)0.0066 (18)
C230.061 (3)0.067 (3)0.045 (2)0.007 (2)0.0088 (19)0.017 (2)
C240.058 (2)0.078 (3)0.038 (2)0.005 (2)0.0057 (18)0.006 (2)
C250.059 (3)0.078 (3)0.048 (2)0.001 (2)0.0006 (19)0.015 (2)
C260.058 (2)0.061 (3)0.070 (3)0.001 (2)0.007 (2)0.025 (2)
C270.052 (2)0.046 (2)0.066 (3)0.0005 (18)0.0067 (19)0.0065 (19)
C280.0362 (18)0.047 (2)0.049 (2)0.0004 (16)0.0035 (16)0.0013 (17)
C290.0329 (17)0.051 (2)0.0391 (19)0.0006 (15)0.0060 (14)0.0036 (16)
C300.090 (3)0.049 (2)0.042 (2)0.011 (2)0.018 (2)0.0030 (18)
C320.058 (2)0.063 (3)0.051 (2)0.007 (2)0.0047 (19)0.003 (2)
C330.078 (3)0.078 (3)0.056 (3)0.018 (3)0.011 (2)0.006 (2)
C340.100 (4)0.072 (3)0.037 (2)0.007 (3)0.007 (2)0.011 (2)
C350.094 (4)0.075 (3)0.051 (3)0.014 (3)0.025 (3)0.002 (2)
C360.075 (3)0.082 (4)0.077 (3)0.021 (3)0.044 (3)0.010 (3)
C370.052 (2)0.068 (3)0.070 (3)0.013 (2)0.016 (2)0.000 (2)
C380.050 (2)0.043 (2)0.052 (2)0.0094 (17)0.0120 (18)0.0046 (17)
C390.058 (2)0.037 (2)0.039 (2)0.0061 (17)0.0057 (17)0.0024 (15)
O10.079 (3)0.131 (4)0.147 (4)0.028 (2)0.013 (2)0.054 (3)
C10.281 (14)0.162 (9)0.124 (8)0.051 (8)0.005 (8)0.022 (7)
C20.125 (6)0.109 (6)0.153 (7)0.021 (4)0.038 (5)0.060 (5)
Geometric parameters (Å, º) top
Cr—O211.950 (3)C22—H220.930
Cr—O111.974 (3)C23—C241.357 (6)
Cr—O311.975 (2)C23—H230.930
Cr—N312.053 (3)C24—H240.930
Cr—N112.068 (3)C25—C261.350 (6)
Cr—N212.072 (3)C25—H250.930
O11—C181.292 (5)C26—C271.411 (6)
O21—C281.308 (4)C26—H260.930
O31—C381.336 (4)C27—C281.385 (5)
N11—C121.322 (5)C27—H270.930
N11—C191.387 (4)C28—C291.430 (5)
N21—C221.317 (5)C30—C341.404 (7)
N21—C291.381 (5)C30—C351.407 (6)
N31—C321.318 (5)C30—C391.428 (5)
N31—C391.365 (5)C32—C331.402 (6)
C10—C191.407 (5)C32—H320.930
C10—C141.408 (6)C33—C341.343 (7)
C10—C151.421 (6)C33—H330.930
C12—C131.404 (6)C34—H340.930
C12—H120.9300C35—C361.356 (7)
C13—C141.358 (6)C35—H350.930
C13—H130.930C36—C371.417 (7)
C14—H140.930C36—H360.930
C15—C161.360 (6)C37—C381.383 (5)
C15—H150.930C37—H370.930
C16—C171.407 (6)C38—C391.428 (5)
C16—H160.930O1—C21.404 (7)
C17—C181.403 (5)O1—H10.871
C17—H170.930C1—C21.462 (11)
C18—C191.434 (5)C1—H1A0.960
C20—C241.411 (6)C1—H1B0.960
C20—C291.412 (5)C1—H1C0.960
C20—C251.426 (6)C2—H2A0.970
C22—C231.398 (5)C2—H2B0.970
O21—Cr—O1193.51 (11)C24—C23—H23120.2
O21—Cr—O3194.69 (11)C22—C23—H23120.2
O11—Cr—O31169.68 (10)C23—C24—C20120.4 (4)
O21—Cr—N3190.13 (11)C23—C24—H24119.8
O11—Cr—N3191.83 (11)C20—C24—H24119.8
O31—Cr—N3181.91 (11)C26—C25—C20120.0 (4)
O21—Cr—N11173.52 (11)C26—C25—H25120.0
O11—Cr—N1181.62 (11)C20—C25—H25120.0
O31—Cr—N1190.64 (11)C25—C26—C27122.8 (4)
N31—Cr—N1194.28 (12)C25—C26—H26118.6
O21—Cr—N2182.35 (11)C27—C26—H26118.6
O11—Cr—N2194.09 (11)C28—C27—C26120.0 (4)
O31—Cr—N2193.20 (10)C28—C27—H27120.0
N31—Cr—N21170.69 (12)C26—C27—H27120.0
N11—Cr—N2193.69 (12)O21—C28—C27124.1 (4)
C18—O11—Cr114.4 (2)O21—C28—C29118.4 (3)
C28—O21—Cr114.4 (2)C27—C28—C29117.5 (3)
C38—O31—Cr113.7 (2)N21—C29—C20121.9 (3)
C12—N11—C19118.9 (3)N21—C29—C28115.5 (3)
C12—N11—Cr130.8 (3)C20—C29—C28122.5 (3)
C19—N11—Cr110.3 (2)C34—C30—C35126.5 (4)
C22—N21—C29118.6 (3)C34—C30—C39116.1 (4)
C22—N21—Cr132.1 (3)C35—C30—C39117.4 (4)
C29—N21—Cr109.2 (2)N31—C32—C33121.8 (4)
C32—N31—C39119.5 (3)N31—C32—H32119.1
C32—N31—Cr129.4 (3)C33—C32—H32119.1
C39—N31—Cr111.0 (2)C34—C33—C32119.8 (4)
C19—C10—C14116.3 (4)C34—C33—H33120.1
C19—C10—C15117.9 (4)C32—C33—H33120.1
C14—C10—C15125.8 (4)C33—C34—C30121.1 (4)
N11—C12—C13121.6 (4)C33—C34—H34119.5
N11—C12—H12119.2C30—C34—H34119.5
C13—C12—H12119.2C36—C35—C30120.1 (4)
C14—C13—C12119.9 (4)C36—C35—H35120.0
C14—C13—H13120.1C30—C35—H35120.0
C12—C13—H13120.1C35—C36—C37122.8 (4)
C13—C14—C10120.9 (4)C35—C36—H36118.6
C13—C14—H14119.6C37—C36—H36118.6
C10—C14—H14119.6C38—C37—C36120.0 (4)
C16—C15—C10119.8 (4)C38—C37—H37120.0
C16—C15—H15120.1C36—C37—H37120.0
C10—C15—H15120.1O31—C38—C37125.2 (4)
C15—C16—C17122.1 (4)O31—C38—C39117.6 (3)
C15—C16—H16118.9C37—C38—C39117.1 (4)
C17—C16—H16118.9N31—C39—C30121.7 (4)
C18—C17—C16121.2 (4)N31—C39—C38115.7 (3)
C18—C17—H17119.4C30—C39—C38122.6 (4)
C16—C17—H17119.4C2—O1—H1108.7
O11—C18—C17125.1 (4)C2—C1—H1A109.5
O11—C18—C19119.3 (3)C2—C1—H1B109.5
C17—C18—C19115.6 (4)H1A—C1—H1B109.5
N11—C19—C10122.3 (3)C2—C1—H1C109.5
N11—C19—C18114.4 (3)H1A—C1—H1C109.5
C10—C19—C18123.3 (3)H1B—C1—H1C109.5
C24—C20—C29116.8 (4)O1—C2—C1110.1 (7)
C24—C20—C25126.0 (4)O1—C2—H2A109.6
C29—C20—C25117.3 (4)C1—C2—H2A109.6
N21—C22—C23122.7 (4)O1—C2—H2B109.6
N21—C22—H22118.6C1—C2—H2B109.6
C23—C22—H22118.6H2A—C2—H2B108.2
C24—C23—C22119.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O310.871.902.758 (5)167
C15—H15···O11i0.932.523.377 (5)153
C24—H24···O11ii0.932.593.401 (4)146
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cr(C9H6NO)3]·C2H6O
Mr530.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.2683 (11), 13.2572 (11), 16.8041 (18)
β (°) 94.783 (6)
V3)2501.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.36 × 0.32 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.84, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
8913, 4362, 3346
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.10
No. of reflections4362
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cr—O211.950 (3)Cr—N312.053 (3)
Cr—O111.974 (3)Cr—N112.068 (3)
Cr—O311.975 (2)Cr—N212.072 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O310.871.902.758 (5)167
C15—H15···O11i0.932.523.377 (5)153
C24—H24···O11ii0.932.593.401 (4)146
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds