Download citation
Download citation
link to html
The title compound, C14H14Br2Si, has been used for more than 50 years as a synthon for the preparation of organosilicon polymers, but no structural data for this mol­ecule have been available until now. The compound crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. In both mol­ecules the Si atoms show tetra­hedral coordination. The angles between the two benzene rings are 80.6 (2)° and 84.0 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033077/wn2167sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033077/wn2167Isup2.hkl
Contains datablock I

CCDC reference: 657756

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.099
  • Data-to-parameter ratio = 17.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C26
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

During our work on dipolar ferrocenylsilanes (Beyer et al., 2002) we have prepared the title compound as a precursor for further syntheses. To our surprise, there were no structural data of the title compound available. The structure of bis(p-bromophenyl)dimethylsilicon has been determined to fill this gap.

Fig. 1 shows the molecular structure of the title compound and the atomic labelling scheme. It crystallizes with eight molecules in the unit cell. There are two crystallographically independent molecules in the asymmetric unit. Both silicon atoms are tetrahedrally coordinated. The angles between the benzene rings are contracted to 106.2 (1) (C9—Si1—C3) and 105.8 (1)° (C23—Si2—C17) respectively. The other bond angles at silicon are in the range 109.7 (2) to 111.3 (2)°. The Si—C bonds are in the typical range from 1.85 to 1.88 Å. The angles between the least-squares planes of the benzene rings are 80.6 (2)° for plane(C3—C8)-plane(C9—C14) and 84.0 (2)° for plane(C17—C22)-plane(C23—C28).

Related literature top

Bromophenyl-substituted organosilanes are of considerable interest for the preparation of organosilicon polymers (Speck, 1953; Ohshita et al., 1994; Berger et al., 1997; Kwak & Masuda, 2002a,b). These can be used as functionalized materials such as photoresistors, precursors of ceramics, and conducting or photoconducting materials (Ohshita et al., 1994). Furthermore, the title compound has been used as a synthon for the synthesis of the first silicon- and tin-containing paracyclophane (Zobel & Jurkschat, 1998). For related literature, see: Beyer et al. (2002); Doi et al. (1993); van Walree et al. (1995).

Experimental top

The preparation of the title compound was performed according to methods described in the literature (Doi et al., 1993; van Walree et al., 1995) by reaction of p-dibromobenzene with n-butyllithium in diethyl ether followed by addition of dichlorodimethylsilane.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for Csp2 and 0.96 for methyl. Uiso(H) = xUeq(C), where x = 1.2 for Csp2 and 1.5 for methyl.

Structure description top

During our work on dipolar ferrocenylsilanes (Beyer et al., 2002) we have prepared the title compound as a precursor for further syntheses. To our surprise, there were no structural data of the title compound available. The structure of bis(p-bromophenyl)dimethylsilicon has been determined to fill this gap.

Fig. 1 shows the molecular structure of the title compound and the atomic labelling scheme. It crystallizes with eight molecules in the unit cell. There are two crystallographically independent molecules in the asymmetric unit. Both silicon atoms are tetrahedrally coordinated. The angles between the benzene rings are contracted to 106.2 (1) (C9—Si1—C3) and 105.8 (1)° (C23—Si2—C17) respectively. The other bond angles at silicon are in the range 109.7 (2) to 111.3 (2)°. The Si—C bonds are in the typical range from 1.85 to 1.88 Å. The angles between the least-squares planes of the benzene rings are 80.6 (2)° for plane(C3—C8)-plane(C9—C14) and 84.0 (2)° for plane(C17—C22)-plane(C23—C28).

Bromophenyl-substituted organosilanes are of considerable interest for the preparation of organosilicon polymers (Speck, 1953; Ohshita et al., 1994; Berger et al., 1997; Kwak & Masuda, 2002a,b). These can be used as functionalized materials such as photoresistors, precursors of ceramics, and conducting or photoconducting materials (Ohshita et al., 1994). Furthermore, the title compound has been used as a synthon for the synthesis of the first silicon- and tin-containing paracyclophane (Zobel & Jurkschat, 1998). For related literature, see: Beyer et al. (2002); Doi et al. (1993); van Walree et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of the title compound, drawn with 50% probability displacement ellipsoids.
bis(p-bromophenyl)dimethylsilane top
Crystal data top
C14H14Br2SiF(000) = 1456
Mr = 370.16Dx = 1.611 Mg m3
Monoclinic, P21/nMelting point: 348 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.4981 (3) ÅCell parameters from 6677 reflections
b = 14.7956 (3) ŵ = 5.37 mm1
c = 16.5144 (4) ÅT = 298 K
β = 91.208 (1)°Prism, colourless
V = 3053.11 (12) Å30.35 × 0.26 × 0.22 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5380 independent reflections
Radiation source: sealed tube4174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 1414
Tmin = 0.205, Tmax = 0.312k = 1717
53137 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099Only H-atom coordinates refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0431P)2 + 2.6376P]
where P = (Fo2 + 2Fc2)/3
5380 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C14H14Br2SiV = 3053.11 (12) Å3
Mr = 370.16Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.4981 (3) ŵ = 5.37 mm1
b = 14.7956 (3) ÅT = 298 K
c = 16.5144 (4) Å0.35 × 0.26 × 0.22 mm
β = 91.208 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5380 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
4174 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.312Rint = 0.031
53137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099Only H-atom coordinates refined
S = 1.07Δρmax = 0.66 e Å3
5380 reflectionsΔρmin = 0.69 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.31077 (7)0.11971 (6)0.03855 (5)0.0470 (2)
Si20.02672 (7)0.37821 (6)0.19184 (5)0.0503 (2)
Br10.31205 (5)0.56124 (3)0.00621 (3)0.1027 (2)
Br20.08391 (4)0.06111 (4)0.28851 (4)0.0979 (2)
Br30.04008 (4)0.82134 (3)0.20446 (4)0.1059 (2)
Br40.28563 (6)0.30113 (4)0.50780 (4)0.1204 (3)
C10.2837 (3)0.0633 (3)0.0603 (2)0.0642 (9)
H1A0.34470.06980.09410.096*
H1B0.22240.09070.08630.096*
H1C0.26980.00030.05140.096*
C20.4368 (3)0.0766 (3)0.0852 (2)0.0669 (10)
H2A0.49590.09340.05220.100*
H2B0.43330.01190.08920.100*
H2C0.44640.10210.13830.100*
C30.3194 (2)0.2454 (2)0.02488 (18)0.0462 (7)
C40.3785 (3)0.2994 (3)0.0782 (3)0.0730 (11)
H40.41960.27210.11890.088*
C50.3781 (4)0.3925 (3)0.0726 (3)0.0812 (12)
H50.41880.42720.10870.097*
C60.3170 (3)0.4332 (2)0.0131 (2)0.0625 (9)
C70.2592 (3)0.3829 (2)0.0409 (2)0.0592 (9)
H70.21880.41090.08170.071*
C80.2608 (3)0.2907 (2)0.0350 (2)0.0546 (8)
H80.22110.25690.07240.066*
C90.1972 (3)0.0994 (2)0.10845 (19)0.0474 (7)
C100.0953 (3)0.0740 (3)0.0818 (2)0.0618 (9)
H100.08270.06430.02680.074*
C110.0122 (3)0.0627 (3)0.1347 (3)0.0684 (10)
H110.05540.04600.11530.082*
C120.0297 (3)0.0760 (2)0.2152 (2)0.0600 (9)
C130.1283 (3)0.1012 (3)0.2450 (2)0.0697 (10)
H130.13950.11050.30030.084*
C140.2106 (3)0.1125 (3)0.1917 (2)0.0617 (9)
H140.27760.12940.21190.074*
C150.0339 (4)0.3369 (3)0.0975 (2)0.0783 (12)
H15A0.03440.27200.09760.117*
H15B0.10590.35890.09440.117*
H15C0.00730.35820.05170.117*
C160.1616 (3)0.3284 (3)0.2059 (3)0.0719 (11)
H16A0.20790.34570.16150.108*
H16B0.19050.35020.25570.108*
H16C0.15600.26380.20790.108*
C170.0353 (3)0.5048 (2)0.18988 (19)0.0492 (7)
C180.0364 (3)0.5578 (3)0.1472 (3)0.0690 (10)
H180.08670.52940.11520.083*
C190.0354 (3)0.6508 (3)0.1507 (3)0.0762 (11)
H190.08440.68450.12170.091*
C200.0386 (3)0.6932 (2)0.1975 (3)0.0674 (11)
C210.1122 (3)0.6443 (3)0.2393 (2)0.0652 (10)
H210.16340.67340.27000.078*
C220.1093 (3)0.5517 (2)0.2355 (2)0.0578 (9)
H220.15900.51890.26460.069*
C230.0625 (3)0.3496 (2)0.2808 (2)0.0490 (8)
C240.1682 (3)0.3776 (3)0.2830 (2)0.0671 (10)
H240.19520.40730.23820.080*
C250.2352 (3)0.3630 (3)0.3493 (3)0.0783 (12)
H250.30600.38230.34930.094*
C260.1948 (4)0.3192 (3)0.4153 (3)0.0724 (12)
C270.0917 (4)0.2892 (3)0.4159 (2)0.0697 (11)
H270.06590.25880.46080.084*
C280.0265 (3)0.3045 (2)0.3493 (2)0.0602 (9)
H280.04390.28410.34980.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0492 (5)0.0458 (5)0.0459 (5)0.0050 (4)0.0004 (4)0.0006 (4)
Si20.0535 (5)0.0484 (5)0.0489 (5)0.0004 (4)0.0003 (4)0.0042 (4)
Br10.1552 (5)0.0477 (2)0.1055 (4)0.0094 (3)0.0104 (3)0.0062 (2)
Br20.0859 (3)0.0874 (3)0.1226 (4)0.0043 (2)0.0512 (3)0.0128 (3)
Br30.1000 (4)0.0501 (2)0.1655 (6)0.0063 (2)0.0449 (4)0.0005 (3)
Br40.1704 (6)0.0775 (3)0.1100 (4)0.0387 (3)0.0790 (4)0.0138 (3)
C10.079 (3)0.058 (2)0.056 (2)0.0001 (19)0.0043 (18)0.0061 (17)
C20.057 (2)0.068 (2)0.075 (2)0.0127 (18)0.0005 (18)0.011 (2)
C30.0475 (17)0.0485 (18)0.0425 (16)0.0016 (14)0.0011 (13)0.0006 (14)
C40.084 (3)0.060 (2)0.074 (3)0.000 (2)0.030 (2)0.000 (2)
C50.099 (3)0.059 (2)0.084 (3)0.014 (2)0.027 (2)0.010 (2)
C60.076 (2)0.0466 (19)0.066 (2)0.0037 (18)0.012 (2)0.0054 (17)
C70.072 (2)0.053 (2)0.052 (2)0.0019 (18)0.0023 (17)0.0105 (16)
C80.063 (2)0.053 (2)0.0478 (19)0.0013 (16)0.0057 (16)0.0006 (15)
C90.0509 (18)0.0404 (16)0.0510 (18)0.0064 (14)0.0016 (14)0.0000 (14)
C100.060 (2)0.069 (2)0.056 (2)0.0047 (18)0.0052 (17)0.0042 (18)
C110.051 (2)0.070 (3)0.084 (3)0.0063 (18)0.0017 (19)0.001 (2)
C120.057 (2)0.0478 (19)0.076 (3)0.0038 (16)0.0183 (18)0.0052 (18)
C130.075 (3)0.080 (3)0.055 (2)0.007 (2)0.0121 (19)0.003 (2)
C140.055 (2)0.075 (2)0.055 (2)0.0011 (18)0.0007 (16)0.0057 (18)
C150.094 (3)0.076 (3)0.065 (2)0.004 (2)0.010 (2)0.016 (2)
C160.061 (2)0.075 (3)0.079 (3)0.015 (2)0.0077 (19)0.006 (2)
C170.0486 (18)0.0526 (19)0.0459 (17)0.0021 (15)0.0067 (14)0.0031 (15)
C180.065 (2)0.061 (2)0.081 (3)0.0014 (19)0.013 (2)0.004 (2)
C190.073 (3)0.061 (2)0.095 (3)0.009 (2)0.001 (2)0.016 (2)
C200.067 (2)0.048 (2)0.086 (3)0.0087 (18)0.030 (2)0.0026 (19)
C210.063 (2)0.059 (2)0.073 (2)0.0178 (19)0.0074 (19)0.0067 (19)
C220.057 (2)0.060 (2)0.056 (2)0.0080 (17)0.0048 (16)0.0040 (17)
C230.0533 (19)0.0374 (16)0.0563 (19)0.0044 (14)0.0010 (15)0.0022 (14)
C240.060 (2)0.063 (2)0.078 (3)0.0062 (18)0.0039 (19)0.014 (2)
C250.067 (2)0.062 (2)0.106 (3)0.002 (2)0.023 (2)0.003 (2)
C260.094 (3)0.047 (2)0.075 (3)0.024 (2)0.029 (2)0.0076 (19)
C270.096 (3)0.054 (2)0.059 (2)0.017 (2)0.001 (2)0.0072 (18)
C280.063 (2)0.053 (2)0.065 (2)0.0066 (17)0.0064 (18)0.0007 (18)
Geometric parameters (Å, º) top
Si1—C21.852 (4)C11—C121.356 (6)
Si1—C11.858 (4)C11—H110.9300
Si1—C91.873 (3)C12—C131.369 (6)
Si1—C31.877 (3)C13—C141.379 (5)
Si2—C151.850 (4)C13—H130.9300
Si2—C161.859 (4)C14—H140.9300
Si2—C231.874 (3)C15—H15A0.9600
Si2—C171.876 (3)C15—H15B0.9600
Br1—C61.899 (4)C15—H15C0.9600
Br2—C121.899 (3)C16—H16A0.9600
Br3—C201.900 (4)C16—H16B0.9600
Br4—C261.903 (4)C16—H16C0.9600
C1—H1A0.9600C17—C221.390 (5)
C1—H1B0.9600C17—C181.394 (5)
C1—H1C0.9600C18—C191.378 (6)
C2—H2A0.9600C18—H180.9300
C2—H2B0.9600C19—C201.369 (6)
C2—H2C0.9600C19—H190.9300
C3—C81.389 (4)C20—C211.369 (6)
C3—C41.390 (5)C21—C221.372 (5)
C4—C51.380 (6)C21—H210.9300
C4—H40.9300C22—H220.9300
C5—C61.371 (6)C23—C241.384 (5)
C5—H50.9300C23—C281.397 (5)
C6—C71.357 (5)C24—C251.381 (6)
C7—C81.368 (5)C24—H240.9300
C7—H70.9300C25—C261.373 (6)
C8—H80.9300C25—H250.9300
C9—C101.390 (5)C26—C271.363 (6)
C9—C141.394 (5)C27—C281.374 (5)
C10—C111.381 (5)C27—H270.9300
C10—H100.9300C28—H280.9300
C2—Si1—C1110.4 (2)C12—C13—C14118.7 (4)
C2—Si1—C9109.7 (2)C12—C13—H13120.6
C1—Si1—C9110.1 (2)C14—C13—H13120.6
C2—Si1—C3109.9 (2)C13—C14—C9122.5 (4)
C1—Si1—C3110.5 (2)C13—C14—H14118.8
C9—Si1—C3106.2 (1)C9—C14—H14118.8
C15—Si2—C16111.3 (2)Si2—C15—H15A109.5
C15—Si2—C23109.7 (2)Si2—C15—H15B109.5
C16—Si2—C23109.8 (2)H15A—C15—H15B109.5
C15—Si2—C17109.9 (2)Si2—C15—H15C109.5
C16—Si2—C17110.2 (2)H15A—C15—H15C109.5
C23—Si2—C17105.8 (1)H15B—C15—H15C109.5
Si1—C1—H1A109.5Si2—C16—H16A109.5
Si1—C1—H1B109.5Si2—C16—H16B109.5
H1A—C1—H1B109.5H16A—C16—H16B109.5
Si1—C1—H1C109.5Si2—C16—H16C109.5
H1A—C1—H1C109.5H16A—C16—H16C109.5
H1B—C1—H1C109.5H16B—C16—H16C109.5
Si1—C2—H2A109.5C22—C17—C18115.8 (3)
Si1—C2—H2B109.5C22—C17—Si2121.8 (3)
H2A—C2—H2B109.5C18—C17—Si2122.2 (3)
Si1—C2—H2C109.5C19—C18—C17122.3 (4)
H2A—C2—H2C109.5C19—C18—H18118.9
H2B—C2—H2C109.5C17—C18—H18118.9
C8—C3—C4116.0 (3)C20—C19—C18119.3 (4)
C8—C3—Si1122.1 (2)C20—C19—H19120.4
C4—C3—Si1121.7 (3)C18—C19—H19120.4
C5—C4—C3122.0 (4)C19—C20—C21120.8 (4)
C5—C4—H4119.0C19—C20—Br3119.9 (3)
C3—C4—H4119.0C21—C20—Br3119.3 (3)
C6—C5—C4119.2 (4)C20—C21—C22119.1 (4)
C6—C5—H5120.4C20—C21—H21120.5
C4—C5—H5120.4C22—C21—H21120.5
C7—C6—C5120.7 (3)C21—C22—C17122.8 (4)
C7—C6—Br1119.5 (3)C21—C22—H22118.6
C5—C6—Br1119.8 (3)C17—C22—H22118.6
C6—C7—C8119.5 (3)C24—C23—C28116.5 (3)
C6—C7—H7120.2C24—C23—Si2120.4 (3)
C8—C7—H7120.2C28—C23—Si2123.1 (3)
C7—C8—C3122.6 (3)C25—C24—C23122.4 (4)
C7—C8—H8118.7C25—C24—H24118.8
C3—C8—H8118.7C23—C24—H24118.8
C10—C9—C14116.1 (3)C26—C25—C24118.5 (4)
C10—C9—Si1123.4 (3)C26—C25—H25120.8
C14—C9—Si1120.5 (3)C24—C25—H25120.8
C11—C10—C9121.9 (3)C27—C26—C25121.5 (4)
C11—C10—H10119.0C27—C26—Br4119.8 (4)
C9—C10—H10119.0C25—C26—Br4118.7 (4)
C12—C11—C10119.6 (4)C26—C27—C28119.0 (4)
C12—C11—H11120.2C26—C27—H27120.5
C10—C11—H11120.2C28—C27—H27120.5
C11—C12—C13121.2 (3)C27—C28—C23122.1 (4)
C11—C12—Br2120.0 (3)C27—C28—H28119.0
C13—C12—Br2118.8 (3)C23—C28—H28119.0
C2—Si1—C3—C8153.4 (3)C15—Si2—C17—C22156.1 (3)
C1—Si1—C3—C831.3 (3)C16—Si2—C17—C2233.1 (3)
C9—Si1—C3—C888.0 (3)C23—Si2—C17—C2285.5 (3)
C2—Si1—C3—C431.8 (3)C15—Si2—C17—C1828.4 (4)
C1—Si1—C3—C4153.9 (3)C16—Si2—C17—C18151.3 (3)
C9—Si1—C3—C486.8 (3)C23—Si2—C17—C1890.0 (3)
C8—C3—C4—C50.6 (6)C22—C17—C18—C191.0 (6)
Si1—C3—C4—C5174.5 (4)Si2—C17—C18—C19174.8 (3)
C3—C4—C5—C60.6 (7)C17—C18—C19—C200.2 (7)
C4—C5—C6—C71.4 (7)C18—C19—C20—C211.0 (6)
C4—C5—C6—Br1178.2 (3)C18—C19—C20—Br3179.1 (3)
C5—C6—C7—C81.0 (6)C19—C20—C21—C221.5 (6)
Br1—C6—C7—C8178.6 (3)Br3—C20—C21—C22178.6 (3)
C6—C7—C8—C30.2 (6)C20—C21—C22—C170.8 (6)
C4—C3—C8—C71.1 (5)C18—C17—C22—C210.4 (5)
Si1—C3—C8—C7174.0 (3)Si2—C17—C22—C21175.4 (3)
C2—Si1—C9—C10141.8 (3)C15—Si2—C23—C2455.8 (3)
C1—Si1—C9—C1020.1 (3)C16—Si2—C23—C24178.4 (3)
C3—Si1—C9—C1099.4 (3)C17—Si2—C23—C2462.7 (3)
C2—Si1—C9—C1440.4 (3)C15—Si2—C23—C28127.9 (3)
C1—Si1—C9—C14162.0 (3)C16—Si2—C23—C285.3 (3)
C3—Si1—C9—C1478.4 (3)C17—Si2—C23—C28113.7 (3)
C14—C9—C10—C110.3 (5)C28—C23—C24—C250.6 (6)
Si1—C9—C10—C11177.6 (3)Si2—C23—C24—C25176.0 (3)
C9—C10—C11—C120.5 (6)C23—C24—C25—C260.2 (6)
C10—C11—C12—C130.5 (6)C24—C25—C26—C271.0 (6)
C10—C11—C12—Br2179.8 (3)C24—C25—C26—Br4178.6 (3)
C11—C12—C13—C140.4 (6)C25—C26—C27—C281.0 (6)
Br2—C12—C13—C14179.6 (3)Br4—C26—C27—C28178.6 (3)
C12—C13—C14—C90.2 (6)C26—C27—C28—C230.2 (5)
C10—C9—C14—C130.1 (5)C24—C23—C28—C270.6 (5)
Si1—C9—C14—C13177.9 (3)Si2—C23—C28—C27175.9 (3)

Experimental details

Crystal data
Chemical formulaC14H14Br2Si
Mr370.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.4981 (3), 14.7956 (3), 16.5144 (4)
β (°) 91.208 (1)
V3)3053.11 (12)
Z8
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.35 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.205, 0.312
No. of measured, independent and
observed [I > 2σ(I)] reflections
53137, 5380, 4174
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.07
No. of reflections5380
No. of parameters311
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.66, 0.69

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Si1—C21.852 (4)Si2—C151.850 (4)
Si1—C11.858 (4)Si2—C161.859 (4)
Si1—C91.873 (3)Si2—C231.874 (3)
Si1—C31.877 (3)Si2—C171.876 (3)
C2—Si1—C1110.4 (2)C15—Si2—C16111.3 (2)
C2—Si1—C9109.7 (2)C15—Si2—C23109.7 (2)
C1—Si1—C9110.1 (2)C16—Si2—C23109.8 (2)
C2—Si1—C3109.9 (2)C15—Si2—C17109.9 (2)
C1—Si1—C3110.5 (2)C16—Si2—C17110.2 (2)
C9—Si1—C3106.2 (1)C23—Si2—C17105.8 (1)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds