Download citation
Download citation
link to html
The crystal structure of potassium tetratin(II) tris­(ortho­phosphate), KSn4(PO4)3, obtained by hydro­thermal synthesis, has been determined from single-crystal X-ray diffraction data. The structure consists of [Sn4(PO4)3] units sharing common corners, which leads to a three-dimensional network structure and generates cages along the c direction. The cages are occupied by K atoms on threefold axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680401966X/wm6028sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680401966X/wm6028Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](P-O) = 0.004 Å
  • R factor = 0.017
  • wR factor = 0.041
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.88 PLAT430_ALERT_2_A Short Inter D...A Contact O1 .. O3 .. 2.47 Ang.
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.33 Ratio PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.83 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.833 Tmax scaled 0.349 Tmin scaled 0.290 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.23 From the CIF: _reflns_number_total 936 Count of symmetry unique reflns 557 Completeness (_total/calc) 168.04% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 379 Fraction of Friedel pairs measured 0.680 Are heavy atom types Z>Si present yes
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996-2001); software used to prepare material for publication: SHELXL97.

Potassium tetratin(II) tris(orthophosphate) top
Crystal data top
KSn4(PO4)3Dx = 3.962 Mg m3
Mr = 798.77Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 4440 reflections
Hall symbol: R 3 -2"cθ = 2.9–28.2°
a = 9.7342 (5) ŵ = 8.10 mm1
c = 24.4754 (14) ÅT = 293 K
V = 2008.4 (3) Å3Trigonal prism, colourless
Z = 60.16 × 0.13 × 0.13 mm
F(000) = 2160
Data collection top
Bruker SMART Apex 2000
diffractometer
936 independent reflections
Radiation source: fine-focus sealed tube927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.290, Tmax = 0.349k = 1112
4440 measured reflectionsl = 3231
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0167P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.041Δρmax = 0.94 e Å3
S = 1.25Δρmin = 0.69 e Å3
936 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
62 parametersExtinction coefficient: 0.00092 (5)
1 restraintAbsolute structure: Flack (1983), with 446 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.00001.00000.82700 (2)0.01923 (15)
Sn21.14901 (4)0.73914 (4)0.630155 (11)0.01765 (11)
P0.67206 (14)0.87550 (14)0.75941 (5)0.0119 (2)
O11.2176 (4)0.9535 (4)0.58913 (16)0.0249 (8)
O20.8366 (3)1.0149 (4)0.77424 (14)0.0186 (7)
O31.1921 (4)0.8698 (4)0.70307 (13)0.0187 (7)
O40.6269 (5)0.7469 (4)0.80247 (15)0.0231 (8)
K1.00001.00000.67666 (9)0.0208 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0222 (2)0.0222 (2)0.0133 (3)0.01110 (11)0.0000.000
Sn20.01883 (18)0.01411 (18)0.02176 (17)0.00954 (15)0.00202 (12)0.00066 (13)
P0.0103 (5)0.0113 (5)0.0135 (5)0.0049 (5)0.0034 (4)0.0018 (4)
O10.0206 (17)0.0146 (18)0.024 (2)0.0030 (14)0.0038 (14)0.0044 (14)
O20.0094 (16)0.0117 (15)0.0319 (19)0.0032 (13)0.0005 (14)0.0019 (14)
O30.0204 (18)0.0150 (18)0.0163 (17)0.0055 (14)0.0028 (14)0.0021 (14)
O40.034 (2)0.0142 (18)0.0155 (18)0.0082 (16)0.0065 (15)0.0032 (13)
K0.0189 (6)0.0189 (6)0.0247 (10)0.0094 (3)0.0000.000
Geometric parameters (Å, º) top
Sn1—O22.110 (3)O2—K2.913 (4)
Sn1—O2i2.110 (3)O3—Pi1.541 (3)
Sn1—O2ii2.110 (3)O3—K2.809 (4)
Sn1—K3.680 (2)O4—Sn2vii2.095 (4)
Sn2—O4iii2.095 (4)O4—Kv2.747 (4)
Sn2—O12.101 (3)K—O4iii2.747 (4)
Sn2—O32.108 (4)K—O4vi2.747 (4)
Sn2—K3.6784 (9)K—O4viii2.747 (4)
P—O41.523 (4)K—O3i2.809 (4)
P—O1iv1.524 (4)K—O3ii2.809 (4)
P—O21.538 (3)K—O2ii2.913 (4)
P—O3ii1.541 (3)K—O2i2.913 (4)
P—K3.4485 (17)K—O22.913 (4)
P—Kv3.5383 (17)K—O1ii3.200 (4)
O1—Pvi1.524 (4)K—O1i3.200 (4)
O1—K3.200 (4)K—O13.200 (4)
O2—Sn1—O2i86.44 (13)O4viii—K—O3i75.47 (10)
O2—Sn1—O2ii86.44 (13)O4iii—K—O3ii75.47 (10)
O2i—Sn1—O2ii86.44 (13)O4vi—K—O3ii168.69 (13)
O2—Sn1—K52.26 (9)O4viii—K—O3ii61.41 (11)
O2i—Sn1—K52.26 (9)O3i—K—O3ii114.87 (6)
O2ii—Sn1—K52.26 (9)O4iii—K—O361.41 (11)
O4iii—Sn2—O188.16 (15)O4vi—K—O375.47 (10)
O4iii—Sn2—O384.92 (14)O4viii—K—O3168.69 (13)
O1—Sn2—O386.39 (14)O3i—K—O3114.87 (6)
O4iii—Sn2—K47.69 (10)O3ii—K—O3114.87 (6)
O1—Sn2—K60.10 (11)O4iii—K—O2ii130.42 (12)
O3—Sn2—K49.46 (10)O4vi—K—O2ii76.99 (12)
O4—P—O1iv112.0 (2)O4viii—K—O2ii118.17 (11)
O4—P—O2107.9 (2)O3i—K—O2ii52.31 (9)
O1iv—P—O2110.5 (2)O3ii—K—O2ii109.71 (12)
O4—P—O3ii109.0 (2)O3—K—O2ii73.04 (10)
O1iv—P—O3ii107.3 (2)O4iii—K—O2i76.99 (12)
O2—P—O3ii110.17 (18)O4vi—K—O2i118.17 (11)
O2—Sn1—O2i86.44 (13)O4viii—K—O2i130.42 (12)
O2—Sn1—O2ii86.44 (13)O3i—K—O2i109.71 (12)
O2i—Sn1—O2ii86.44 (13)O3ii—K—O2i73.04 (10)
O2—Sn1—K52.26 (9)O3—K—O2i52.31 (9)
O2i—Sn1—K52.26 (9)O2ii—K—O2i59.47 (11)
O2ii—Sn1—K52.26 (9)O4iii—K—O2118.17 (11)
O4iii—Sn2—O188.16 (15)O4vi—K—O2130.42 (12)
O4iii—Sn2—O384.92 (14)O4viii—K—O276.99 (12)
O1—Sn2—O386.39 (14)O3i—K—O273.04 (10)
O4iii—Sn2—K47.69 (10)O3ii—K—O252.31 (9)
O1—Sn2—K60.10 (11)O3—K—O2109.71 (12)
O3—Sn2—K49.46 (10)O2ii—K—O259.47 (11)
O4—P—O1iv112.0 (2)O2i—K—O259.47 (11)
O4—P—O2107.9 (2)O4iii—K—O1ii49.55 (11)
O1iv—P—O2110.5 (2)O4vi—K—O1ii116.40 (15)
O4—P—O3ii109.0 (2)O4viii—K—O1ii58.20 (11)
O1iv—P—O3ii107.3 (2)O3i—K—O1ii131.13 (10)
O2—P—O3ii110.17 (18)O3ii—K—O1ii56.84 (10)
O4—P—K122.08 (15)O3—K—O1ii110.56 (10)
O1iv—P—K125.84 (16)O2ii—K—O1ii166.53 (11)
O2—P—K57.04 (13)O2i—K—O1ii111.73 (10)
O3ii—P—K53.15 (14)O2—K—O1ii107.68 (9)
O4—P—Kv47.40 (16)O4iii—K—O158.20 (11)
O1iv—P—Kv64.74 (15)O4vi—K—O149.55 (10)
O2—P—Kv129.06 (14)O4viii—K—O1116.40 (15)
O3ii—P—Kv119.72 (15)O3i—K—O1110.56 (10)
K—P—Kv167.36 (4)O3ii—K—O1131.13 (10)
Pvi—O1—Sn2140.7 (2)O3—K—O156.84 (10)
Pvi—O1—K89.74 (16)O2ii—K—O1111.73 (10)
Sn2—O1—K85.21 (12)O2i—K—O1107.68 (9)
P—O2—Sn1124.9 (2)O2—K—O1166.53 (10)
P—O2—K96.67 (15)O1ii—K—O180.08 (11)
Sn1—O2—K92.80 (11)O4iii—K—O1i116.40 (15)
Pi—O3—Sn2124.6 (2)O4vi—K—O1i58.20 (11)
Pi—O3—K100.82 (17)O4viii—K—O1i49.55 (11)
Sn2—O3—K95.78 (13)O3i—K—O1i56.84 (10)
P—O4—Sn2vii131.1 (2)O3ii—K—O1i110.56 (10)
P—O4—Kv108.5 (2)O3—K—O1i131.13 (10)
Sn2vii—O4—Kv97.98 (13)O2ii—K—O1i107.68 (9)
O4iii—K—O4vi107.53 (11)O2i—K—O1i166.53 (10)
O4iii—K—O4viii107.53 (11)O2—K—O1i111.73 (10)
O4vi—K—O4viii107.53 (11)O1ii—K—O1i80.08 (11)
O4iii—K—O3i168.69 (13)O1—K—O1i80.08 (11)
O4vi—K—O3i61.41 (11)
Symmetry codes: (i) y+2, xy+1, z; (ii) x+y+1, x+2, z; (iii) y+5/3, x+4/3, z1/6; (iv) x2/3, xy+2/3, z+1/6; (v) x+y+1/3, y1/3, z+1/6; (vi) x+2/3, xy+4/3, z1/6; (vii) y+4/3, x+5/3, z+1/6; (viii) x+y+2/3, y+1/3, z1/6.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds