research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two formamidinium hexa­fluorido­phosphate salts, one with batch-dependent disorder

crossmark logo

aDepartment of Chemistry, Hunter College, The City University of New York, New York, 10065 NY, USA, bDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: 'pcorfield@fordham.edu'

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 November 2023; accepted 19 December 2023; online 1 January 2024)

Syntheses of the acyclic amidinium salts, morpholino­formamidinium hexa­fluorido­phosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexa­fluorido­phosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the asymmetric unit. The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in space group Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar unit cell and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric space group Pca21, with two cations and anions in the asymmetric unit. In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the inductive effect of the oxygen atom in the morpholino compound.

1. Chemical context

The stability of N-heterocyclic carbenes and their applications in organic syntheses and in transition-metal catalysis has led in the past to intense inter­est in the syntheses of their precursors: cationic N-heterocyclic amidinium salts (Benhamou et al., 2011[Benhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. (2011). Chem. Rev. 111, 2705-2733.]). Previously, one of us reported a simple and efficient one-pot procedure for the preparation of cyclic amidinium salts by exchange reactions of various orthoesters with primary and secondary α,ω-di­amines in the presence of ammonium tetra­fluorido­borate or ammonium hexa­fluorido­phosphate (Saba et al., 1991[Saba, S., Brescia, A.-M. & Kaloustian, M. K. (1991). Tetrahedron Lett. 32, 5031-5034.]). This approach has been widely used for the preparation of cyclic amidinium salts in which the nitro­gen-flanked carbon atom bears a hydrogen atom and the nitro­gen atoms bear bulky substituents (for example: Funk et al., 2006[Funk, T. W., Berlin, J. M. & Grubbs, R. H. (2006). J. Am. Chem. Soc. 128, 1840-1846.]; Scarborough et al., 2005[Scarborough, C. C., Grady, M. J. W., Guzei, I. A., Gandhi, B. A., Bunel, E. E. & Stahl, S. S. (2005). Angew. Chem. Int. Ed. 44, 5269-5272.]). The use of orthoesters was then extended for the preparation of various acyclic amidinium hexa­fluorido­phosphates as potential carbene precursors (Saba et al., 2005[Saba, S., Kojtari, A., Rivera, M. M., D'Amico, P., Canuso, D. & Kaloustian, M. K. (2005). Abstracts, 37th Middle Atlantic Regional Meeting of the American Chemical Society, New Brunswick, NJ, USA.]). We present here the first single-crystal structure determinations of these types of amidinium salts with N-heterocycles, viz. morpholino­formamidinium hexa­fluorido­phosphate, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate, 2.

[Scheme 1]

2. Structural commentary

The crystal structure of 1 was determined from crystals obtained directly from the original preparation described in the Synthesis section, and also from crystals obtained by recrystallization from ethanol, 1(recryst). The structures of the mol­ecular moieties with atom numbering are shown in Figs. 1[link] and 2[link].

[Figure 1]
Figure 1
The asymmetric unit of 1, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level, while displacement parameters for the H atoms are arbitrary. The minor disordered PF6 component is shown fa­inter. O atoms are colored red, N blue, C and H black, P magenta and F green.
[Figure 2]
Figure 2
The asymmetric unit of 1(recryst), showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level, while displacement parameters for the H atoms are arbitrary. The minor disordered PF6 component is shown fa­inter. Colors are as in Fig. 1[link].

In 1, the length of the delocalized C=N bond of 1.3016 (15) Å for the terminal C7—N8 bond is close to but slightly less than the value of 1.3142 (13) Å found for the bond adjacent to the ring, N1—C7; the angle at the methine C7 atom is 125.98 (10)°. The formamidinium group N1—C7H—N8H2+ is very close to planar with a root-mean-square (r.m.s.) deviation of the six atoms from the plane of 0.0050 Å. This group is not coplanar with the C2–N1–C6 plane of the morpholine group but is tilted by 13.4 (3)° from that plane. The morpholine moiety has the usual chair configuration, with the four atoms C2, C3, C5, C6 rigidly coplanar with an r.m.s. deviation of 0.0048 Å, and the O and N ends tilted by 52.6 (1) and 54.4 (1)°, respectively, from this plane.

Part of the sample was recrystallized from ethanol, in order to obtain larger crystals. Data from these crystals, 1(recryst), indicated essentially the same unit cell but with intensities that did not exactly match those obtained for the original crystal. This intensity difference was shown to be due to disorder in one of the hydrogen-bonded cation chains, discussed in the next section, which lowered the symmetry to space group Pca21 where two independent cations and anions are present. The shape of the cations are the same as found for the original crystal, albeit with somewhat less precision because of the disorder. To our knowledge, such a batch-dependent disorder is not often reported. Solvent-dependent disorder for some cobalt and zinc complexes is discussed in McCormick et al. (2018[McCormick, L. J., Morris, S. A., Teat, S. J., Slawin, A. M. Z. & Morris, R. E. (2018). Crystals, 8, 80100061-8010006/11.]), but in that case there is solvate actually present in the crystal structures.

Fig. 3[link] shows the mol­ecular structures of cations and anions for 2. Here, the lengths of the delocalized C=N bonds in the two independent cations are slightly longer to the terminal nitro­gen atom: The average for the terminal C=N bonds, C6—N7 and C16—N17, is 1.323 (5) Å, while that for the C=N bonds adjacent to the rings, N1—C6 and N11—C16, is 1.293 (5) Å. A slight difference in the delocalized C=N bond lengths might be expected due to the differing inductive effects of the terminal H atoms and the ring atoms; the lower electron density expected on N1 in compound 1 due to the electron withdrawing inductive effect of the ring oxygen might cause the C=N distance adjacent to the ring to be longer in 1 than in 2, and the terminal C=N distance to be shorter. The angles at the methine C6 and C16 atoms in 2 are 122.4 (5) and 123.1 (5)°, slightly smaller than in 1. The five-membered pyrrolidine rings assume an envelope conformation with C4 and C14, respectively, as the flap (puckering parameters Q2 = 0.3982 Å, φ2 = 103.3° for the N1–C5 ring and Q2 = 0.3966, φ2 = 284.0° for the N11–C15 ring; Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The envelope atoms N1, C2, C3, C5 and N11, C12, C13, C15 are coplanar, with deviations of 0.013 Å or less for both cations, and the C3, C4, C5 and C13, C14, C15 flaps make angles of 40.1 (4) and 39.6 (5)°, respectively, with these planes.

[Figure 3]
Figure 3
The asymmetric unit of 2, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level, displacement parameters for the H atoms are arbitrary, and atom colors as in Fig. 1[link].

3. Supra­molecular features

Multiple contacts between the cations and the PF6 anions may be due to either electrostatic or hydrogen-bonding inter­actions. We have applied a 3.25 Å cutoff for C/N ⋯ F distances and a 110o C/N—H ⋯ F angle for possible hydrogen bonds and these inter­actions are listed in Tables 1[link]–3[link][link].

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F4Ai 0.99 2.62 3.183 (2) 116
C2—H2A⋯F4Bi 0.99 2.53 3.126 (11) 119
C2—H2B⋯F3Aii 0.99 2.37 3.1290 (19) 133
C7—H7⋯F2Aiii 0.946 (14) 2.522 (13) 3.0711 (12) 117.1 (9)
N8—H8A⋯F3Aii 0.827 (18) 2.428 (17) 3.141 (2) 144.9 (13)
N8—H8A⋯F5Aiv 0.827 (18) 2.425 (16) 3.0699 (16) 135.4 (13)
N8—H8A⋯F3Bii 0.827 (18) 2.36 (2) 3.105 (12) 150.1 (14)
N8—H8A⋯F5Biv 0.827 (18) 2.331 (18) 3.031 (6) 142.8 (13)
N8—H8B⋯O4v 0.850 (18) 2.018 (18) 2.8572 (13) 168.8 (16)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °) for 1(recryst)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A1⋯F4i 0.99 2.36 3.115 (3) 133
C2A—H2A2⋯F3ii 0.99 2.63 3.189 (3) 116
C6A—H6A2⋯F4B 0.99 2.42 3.17 (2) 132
C7A—H7A⋯F2 0.95 2.53 3.043 (3) 114
N8A—H8A1⋯F4i 0.83 2.40 3.096 (3) 142
N8A—H8A1⋯F5Aiii 0.83 2.45 3.135 (4) 140
N8A—H8A1⋯F5Biii 0.83 2.33 3.043 (15) 144
N8A—H8A2⋯O4Aiv 0.83 2.04 2.864 (3) 169
N8B—H8B1⋯F5v 0.84 2.45 3.153 (4) 141
N8B—H8B2⋯O4Bvi 0.84 2.02 2.855 (5) 169
N8B′—H8C3⋯F6vii 0.88 2.34 3.028 (8) 135
N8B′—H8C4⋯O4Bviii 0.88 1.97 2.839 (12) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [-x+2, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+1, z]; (iv) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y, z]; (vi) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (vii) [-x+1, -y, z+{\script{1\over 2}}]; (viii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7B⋯F1 0.86 2.11 2.966 (5) 177
N7—H7A⋯F3A 0.86 2.47 3.207 (6) 145
N7—H7A⋯F4A 0.86 2.51 2.945 (6) 112
C16—H16⋯F6i 0.95 2.54 3.153 (6) 122
N17—H17A⋯F2 0.79 2.51 2.935 (5) 115
N17—H17A⋯F4 0.79 2.30 3.026 (6) 152
N17—H17B⋯F6Aii 0.79 2.23 3.019 (5) 179
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, y-1, z].

In 1, the PF6 anions are spaced close to half a unit cell apart in all three directions. There are chains of cations along the b-axis direction as seen in Fig. 4[link], linked together via N8—H8⋯O4 hydrogen bonds. N—H⋯F and C—H⋯F hydrogen bonds to PF6 groups on one side of the cation chain augment these cation chains to ribbons of cations and anions parallel to the b axis. Cation chains at z = 1/4 and z = 3/4 are related by a c glide, and point in opposite directions. 1(recryst) shows the same general supra­molecular features, Fig. 5[link], but in this case alternate cation chains are disordered as to direction, and the symmetry of the structure is lowered from the centric space group Pbca to the noncentric space group Pca21, with an inter­change of the b and c axes. 36.1 (4)% of the chains point in a direction opposite to that of their neighbors, as would be required by the centric space group, but the majority disorder component points in the opposite direction. The network of cation⋯anion hydrogen bonds is similar to that in 1, except that there do not appear to be any methine C—H⋯F contacts for either of the disordered cation chains. All inter­molecular H⋯H contacts in 1 are >2.7 Å.

[Figure 4]
Figure 4
Projection of about half of the unit cell of 1 down the a axis. The minor disorder components for the PF6 groups are not shown. The black dotted lines indicate hydrogen bonds in the layer shown, while the blue dotted lines indicate hydrogen bonds to anions half a cell above or below the layer shown. Atom colors are as in Fig. 1[link].
[Figure 5]
Figure 5
Projection of about half of the unit cell of 1(recryst) down the a axis. The minor components for PF6 groups are not shown. Colors of atoms and of hydrogen bonds are as in Fig. 1[link] and Fig. 4[link], respectively.

In 2, cations and anions are each spaced half a unit cell apart in all three directions as seen in Fig. 6[link]. All but one of the N—H⋯F hydrogen-bonds listed in Table 3[link] are within sheets parallel to (101), and are shown for one of these sheets in Fig. 7[link] where hydrogen-bonded cation⋯anion⋯cation chains along the b axis can be seen. Alternate cations in the b-axis direction link to separate ribbons. The hydrogen-bonding pattern in Fig. 7[link] is not dissimilar to that for 1 shown in Fig. 4[link], except that the cation⋯cation hydrogen bonding in Fig. 4[link] is not possible in 2 due to lack of the O acceptor atom in the pyrrolidino ring. The C16—H16⋯F6 hydrogen bonds link the sheets together. The shortest H⋯H contacts are H2A⋯H13A(x − [{1\over 2}], [{3\over 2}] − y, z + [{1\over 2}]) = 2.63 Å and H3A⋯H14A(x − [{1\over 2}], y + [{1\over 2}], z + 1) = 2.63 Å.

[Figure 6]
Figure 6
Projection of 2 down the b axis, showing the cations and anion components arranged in separate stacks along b. Atom colors are as in Fig. 1[link].
[Figure 7]
Figure 7
View of part of the structure of 2 projected approximately on (101), showing hydrogen-bonded cation⋯PF6⋯cation chains in the b-axis direction. Atom colors are as in Fig. 1[link].

4. Database survey

Searches in the Cambridge Structural Database (CSD, version 5.43, update of October 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment C—N—CH=NH2+ led to 17 hits, with just four different chemical species, RC(H/R1)NH2+, with R = Me2N—N=N–, CHO, and two more complex aromatic sulfur containing moieties. Overall, the delocalized C—N distances average to 1.310 (11) Å. Entry FUMGUP (Allenstein et al., 1987[Allenstein, E., Keller, K., Hausen, H.-D. & Weidlein, J. (1987). Z. Anorg. Allg. Chem. 554, 188-196.]) is the aldehyde derivative, where the delocalized C=N distances differ slightly, by 0.02 Å. We did not find any examples of terminal formamidinium groups attached to nitro­gen heterocycles, as in the present structures.

In regards to inter­molecular contacts, we found in the database 1825 N⋯F contacts less than 3.02 Å, the sum of the van der Waals radii. In the present compounds, only two N⋯F contact distances are less than 3.02 Å, while the others are all greater than this. Also, although there are over 35000 C⋯F contacts in the database less than 3.17 Å, the sum of the van der Waals radii, only the C7—H7⋯F2 contacts at 3.14 Å shown in Fig. 3[link] meet this criterion. The weak inter­molecular forces implied by the longer inter­molecular distances in the present crystal structures may be correlated with the disorder in the anions, and the disorder possibilities in the cation chains.

5. Synthesis and crystallization

Compound 1 was prepared by heating an equimolar mixture of morpholine, triethyl orthoformate and ammonium hexa­fluorido­phosphate. Similarly, compound 2 was made by heating an equimolar mixture of pyrrolidine, triethyl orthoformate and ammonium hexa­fluorido­phosphate. Compound 1 precipitated out as the reaction mixture was being heated and was purified by crystallization from ethanol. Compound 2 crystallized as the reaction mixture was cooled, affording sufficiently pure crystals.

Infrared Spectra: FTIR spectra for the two compounds are shown in the supporting information. For compound 2, there are two clear NH2 stretching frequencies at 3474 and 3380 cm−1. The bands at 1716 cm−1 may be due to the resonant N—C=N stretches. For compound 1 and 1(recyst), a similar N—C=N stretching frequency is seen at 1717 cm−1. Here, however, the spectrum in the N—H stretch region is more complex, with multiple bands below the prominent band at 3453 cm−1. Allenstein et al. (1987[Allenstein, E., Keller, K., Hausen, H.-D. & Weidlein, J. (1987). Z. Anorg. Allg. Chem. 554, 188-196.]) include a review of the IR data for their aldehyde complex, with N—H stretches at 3342 and 3240 cm−1, and a band at 1695 cm−1 for the asymmetric N—C=N stretch; further assignments are given in more detail than covered in the present paper.

Nuclear Magnetic Resonance Data: Compound 1:

1H NMR δ (400 MHz, DMSO-d6): 3.50–3.73 (m, 8H), 8.10 (s, 1H), 8.85 (s, br, 2H).

Compound 2: 1H NMR δ (400 MHz, DMSO-d6): 1.80–2.05 (m, 4H), 3.25–3.40 (t, 2H), 3.60–3.69 (t, 2H), 8.10 (s, 1H), 8.70 (s, br, 2H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Methyl­ene H atoms were constrained to expected positions with C—H distances of 0.97 Å and displacement parameters set at 1.5Ueq of the parent C atom for 1 and 2, and 1.2Ueq for 1(recryst). H atoms bonded to N and the methine C atom were refined for 1. For 1(recryst) they were constrained due to the disorder [occupancy ratio of the disordered cation 0.639 (4):0.361 (4)], and they were also constrained for 2, since refinements did not move them from their expected positions. N—H distances in 1(recryst) and 2 were refined, however. Structure 1(recryst) was refined as an inversion twin, although it seems more likely that the crystal had twinning about a mirror plane perpendicular to the c axis. Either twin operation has the same effect on the data analysis.

Table 4
Experimental details

  1 1(recryst) 2
Crystal data
Chemical formula C5H11N2O+·F6P C5H11N2O+·F6P C5H11N2+·F6P
Mr 260.13 260.13 244.13
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pca21 Monoclinic, Cc
Temperature (K) 130 100 130
a, b, c (Å) 10.4638 (3), 13.4495 (4), 13.7340 (4) 10.4504 (14), 13.7170 (16), 13.4157 (14) 12.3588 (3), 12.7942 (3), 12.2759 (3)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 105.400 (1), 90
V3) 1932.83 (10) 1923.1 (4) 1871.38 (8)
Z 8 8 8
Radiation type Cu Kα Mo Kα Cu Kα
μ (mm−1) 3.30 0.36 3.28
Crystal size (mm) 0.29 × 0.09 × 0.06 0.24 × 0.23 × 0.14 0.21 × 0.21 × 0.11
 
Data collection
Diffractometer Bruker D8 with PHOTON III area detector Bruker D8 Venture dual source Bruker D8 with PHOTON III area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.570, 0.754 0.856, 0.971 0.639, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 36889, 1969, 1923 42268, 7300, 5163 17935, 3467, 3450
Rint 0.034 0.040 0.035
(sin θ/λ)max−1) 0.625 0.769 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.12 0.032, 0.088, 1.02 0.049, 0.135, 1.07
No. of reflections 1969 7300 3467
No. of parameters 165 364 257
No. of restraints 0 154 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.28 0.28, −0.40 0.37, −0.35
Absolute structure Twinning involves inversion, so Flack parameter cannot be determined Refined as an inversion twin
Absolute structure parameter 0.5 0.49 (4)
Computer programs: APEX4 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.], 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Initially, several sets of data were collected at room temperature on crystals of both compounds 1 and 2. Room temperature data from all crystals had very few intensities with I > 2σ(I) at higher angles. The positions of the PF6 groups, which dominate the X-ray scattering, lead to whole groups of weak reflections. Even though the room-temperature data were not sufficiently adequate to define the disorder in 1(recryst), there were clear indications that the structure was not the same as in 1: Rint for merged data from 1 and 1(recryst) was 16.4%, compared with Rint values of 3.9% and 4.1% for the individual data sets. For this reason, data collection was repeated at low temperature.

Refinement was complicated by disorder in the hexa­fluorido­phosphate groups. In 1, a minor disorder component was twisted some 45o about the F1A—P1—F2A axis; since the occupancy of this component refined to only 13.0 (8)%, the four F atoms F3B–F6B were refined isotropically. A similar positional disorder exists for one of the PF6 groups in 1(recryst) with an occupancy ratio of 0.876 (19):0.124 (19), where the four F atoms F3B–F6B were refined isotropically. In 2, no disordered model appeared necessary.

Supporting information


Computing details top

Morpholinoformamidinium hexafluorophosphate (1) top
Crystal data top
C5H11N2O+·PF6Dx = 1.788 Mg m3
Mr = 260.13Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9781 reflections
a = 10.4638 (3) Åθ = 4.2–74.6°
b = 13.4495 (4) ŵ = 3.30 mm1
c = 13.7340 (4) ÅT = 130 K
V = 1932.83 (10) Å3Block, colorless
Z = 80.29 × 0.09 × 0.06 mm
F(000) = 1056
Data collection top
Bruker D8 with PHOTON III area detector
diffractometer
1923 reflections with I > 2σ(I)
Radiation source: microfocusRint = 0.034
φ and ω shutterless scansθmax = 74.6°, θmin = 6.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1312
Tmin = 0.570, Tmax = 0.754k = 1616
36889 measured reflectionsl = 1715
1969 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.517P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.29 e Å3
1969 reflectionsΔρmin = 0.28 e Å3
165 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00052 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.17230 (9)0.55859 (6)0.73256 (6)0.01938 (19)
C20.20187 (10)0.51175 (7)0.82640 (7)0.0203 (2)
H2A0.1529030.4492080.8336650.030*
H2B0.1784160.5568280.8805160.030*
C30.34450 (10)0.49023 (8)0.82874 (8)0.0220 (2)
H3A0.3925650.5535330.8253410.033*
H3B0.3666430.4569640.8907870.033*
O40.38048 (9)0.42787 (6)0.74877 (5)0.02532 (19)
C50.34896 (11)0.47236 (9)0.65681 (8)0.0279 (3)
H5A0.3735540.4266560.6035050.042*
H5B0.3980480.5347540.6487850.042*
C60.20684 (12)0.49485 (8)0.64996 (8)0.0266 (2)
H6A0.1570680.4322890.6521360.040*
H6B0.1877310.5291770.5878770.040*
C70.14903 (9)0.65374 (8)0.71986 (8)0.0198 (2)
H70.1387 (12)0.6771 (10)0.6554 (10)0.023 (3)*
N80.13576 (10)0.71972 (7)0.78845 (7)0.0252 (2)
H8A0.1442 (14)0.7058 (12)0.8468 (13)0.035 (3)*
H8B0.1207 (16)0.7800 (13)0.7735 (12)0.035 (3)*
P1A0.39982 (2)0.74360 (2)0.49827 (2)0.01852 (12)0.870 (8)
F1A0.36762 (8)0.75062 (5)0.61181 (5)0.03015 (19)0.870 (8)
F2A0.43172 (8)0.73592 (6)0.38461 (5)0.0350 (2)0.870 (8)
F3A0.2971 (3)0.82864 (17)0.47542 (12)0.0382 (4)0.870 (8)
F4A0.2907 (2)0.66066 (17)0.48512 (12)0.0372 (4)0.870 (8)
F5A0.5015 (2)0.65703 (19)0.52252 (9)0.0372 (5)0.870 (8)
F6A0.5081 (2)0.82470 (19)0.51297 (13)0.0418 (5)0.870 (8)
P1B0.39982 (2)0.74360 (2)0.49827 (2)0.01852 (12)0.130 (8)
F1B0.36762 (8)0.75062 (5)0.61181 (5)0.03015 (19)0.130 (8)
F2B0.43172 (8)0.73592 (6)0.38461 (5)0.0350 (2)0.130 (8)
F3B0.2743 (11)0.8078 (9)0.4866 (8)0.028 (2)*0.130 (8)
F4B0.3249 (11)0.6487 (8)0.4898 (7)0.024 (2)*0.130 (8)
F5B0.5314 (7)0.6899 (8)0.5077 (6)0.0209 (18)*0.130 (8)
F6B0.4809 (8)0.8509 (7)0.4946 (6)0.0246 (19)*0.130 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0225 (4)0.0178 (4)0.0179 (4)0.0003 (3)0.0010 (3)0.0006 (3)
C20.0246 (5)0.0177 (4)0.0187 (4)0.0004 (4)0.0013 (4)0.0030 (4)
C30.0247 (5)0.0201 (5)0.0213 (5)0.0014 (4)0.0003 (4)0.0000 (4)
O40.0317 (4)0.0189 (4)0.0254 (4)0.0059 (3)0.0032 (3)0.0006 (3)
C50.0371 (6)0.0250 (5)0.0215 (5)0.0069 (4)0.0064 (4)0.0000 (4)
C60.0367 (6)0.0230 (5)0.0200 (5)0.0016 (4)0.0026 (4)0.0051 (4)
C70.0169 (5)0.0214 (5)0.0212 (5)0.0003 (4)0.0001 (4)0.0030 (4)
N80.0330 (5)0.0180 (5)0.0246 (5)0.0048 (4)0.0020 (4)0.0018 (4)
P1A0.01731 (18)0.02057 (17)0.01767 (17)0.00065 (9)0.00018 (9)0.00186 (8)
F1A0.0365 (4)0.0350 (4)0.0190 (3)0.0065 (3)0.0023 (3)0.0025 (2)
F2A0.0409 (4)0.0441 (4)0.0202 (3)0.0083 (3)0.0070 (3)0.0029 (3)
F3A0.0463 (9)0.0355 (8)0.0329 (6)0.0184 (7)0.0065 (6)0.0044 (6)
F4A0.0325 (8)0.0400 (7)0.0392 (6)0.0187 (7)0.0066 (6)0.0102 (5)
F5A0.0391 (7)0.0389 (9)0.0336 (5)0.0200 (7)0.0017 (5)0.0011 (5)
F6A0.0385 (7)0.0446 (9)0.0423 (6)0.0229 (7)0.0000 (6)0.0070 (6)
P1B0.01731 (18)0.02057 (17)0.01767 (17)0.00065 (9)0.00018 (9)0.00186 (8)
F1B0.0365 (4)0.0350 (4)0.0190 (3)0.0065 (3)0.0023 (3)0.0025 (2)
F2B0.0409 (4)0.0441 (4)0.0202 (3)0.0083 (3)0.0070 (3)0.0029 (3)
Geometric parameters (Å, º) top
N1—C71.3142 (13)C7—H70.946 (14)
N1—C21.4675 (12)N8—H8A0.827 (18)
N1—C61.4672 (13)N8—H8B0.850 (18)
C2—C31.5206 (14)P1A—F6A1.5856 (10)
C2—H2A0.9900P1A—F3A1.6003 (14)
C2—H2B0.9900P1A—F4A1.6063 (14)
C3—O41.4322 (12)P1A—F5A1.6120 (11)
C3—H3A0.9900P1A—F1A1.5982 (7)
C3—H3B0.9900P1A—F2A1.5997 (7)
O4—C51.4360 (13)P1B—F4B1.502 (12)
C5—C61.5204 (16)P1B—F3B1.581 (13)
C5—H5A0.9900P1B—F5B1.560 (6)
C5—H5B0.9900P1B—F1B1.5982 (7)
C6—H6A0.9900P1B—F2B1.5997 (7)
C6—H6B0.9900P1B—F6B1.674 (8)
C7—N81.3016 (15)
C7—N1—C2125.00 (9)C7—N8—H8B119.6 (11)
C7—N1—C6120.79 (9)H8A—N8—H8B118.0 (15)
C2—N1—C6112.10 (8)F6A—P1A—F3A90.75 (9)
N1—C2—C3107.89 (8)F6A—P1A—F4A179.05 (8)
N1—C2—H2A110.1F3A—P1A—F4A89.83 (10)
C3—C2—H2A110.1F6A—P1A—F5A89.94 (9)
N1—C2—H2B110.1F3A—P1A—F5A179.02 (8)
C3—C2—H2B110.1F4A—P1A—F5A89.47 (8)
H2A—C2—H2B108.4F6A—P1A—F1A89.19 (6)
O4—C3—C2110.69 (8)F3A—P1A—F1A90.44 (7)
O4—C3—H3A109.5F4A—P1A—F1A90.05 (6)
C2—C3—H3A109.5F5A—P1A—F1A88.87 (6)
O4—C3—H3B109.5F6A—P1A—F2A91.12 (6)
C2—C3—H3B109.5F3A—P1A—F2A89.70 (7)
H3A—C3—H3B108.1F4A—P1A—F2A89.64 (6)
C5—O4—C3111.72 (8)F5A—P1A—F2A90.99 (6)
O4—C5—C6111.22 (9)F1A—P1A—F2A179.66 (4)
O4—C5—H5A109.4F4B—P1B—F3B91.3 (5)
C6—C5—H5A109.4F4B—P1B—F5B94.2 (4)
O4—C5—H5B109.4F3B—P1B—F5B174.3 (4)
C6—C5—H5B109.4F4B—P1B—F1B90.9 (4)
H5A—C5—H5B108.0F3B—P1B—F1B83.8 (4)
C5—C6—N1108.02 (9)F5B—P1B—F1B97.6 (3)
C5—C6—H6A110.1F4B—P1B—F2B88.8 (4)
N1—C6—H6A110.1F3B—P1B—F2B96.3 (4)
C5—C6—H6B110.1F5B—P1B—F2B82.4 (3)
N1—C6—H6B110.1F1B—P1B—F2B179.66 (4)
H6A—C6—H6B108.4F4B—P1B—F6B173.7 (5)
N1—C7—N8125.98 (10)F3B—P1B—F6B87.0 (4)
N1—C7—H7118.0 (8)F5B—P1B—F6B87.4 (4)
N8—C7—H7116.0 (8)F1B—P1B—F6B94.9 (3)
C7—N8—H8A122.4 (11)F2B—P1B—F6B85.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F4Ai0.992.623.183 (2)116
C2—H2A···F4Bi0.992.533.126 (11)119
C2—H2B···F3Aii0.992.373.1290 (19)133
C7—H7···F2Aiii0.946 (14)2.522 (13)3.0711 (12)117.1 (9)
N8—H8A···F3Aii0.827 (18)2.428 (17)3.141 (2)144.9 (13)
N8—H8A···F5Aiv0.827 (18)2.425 (16)3.0699 (16)135.4 (13)
N8—H8A···F3Bii0.827 (18)2.36 (2)3.105 (12)150.1 (14)
N8—H8A···F5Biv0.827 (18)2.331 (18)3.031 (6)142.8 (13)
N8—H8B···O4v0.850 (18)2.018 (18)2.8572 (13)168.8 (16)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1/2, y+3/2, z+1; (iv) x1/2, y, z+3/2; (v) x+1/2, y+1/2, z.
Morpholinoformamidinium hexafluorophosphate (1recryst) top
Crystal data top
C5H11N2O+·PF6Dx = 1.797 Mg m3
Mr = 260.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9865 reflections
a = 10.4504 (14) Åθ = 3.4–33.2°
b = 13.7170 (16) ŵ = 0.36 mm1
c = 13.4157 (14) ÅT = 100 K
V = 1923.1 (4) Å3Block, colourless
Z = 80.24 × 0.23 × 0.14 mm
F(000) = 1056
Data collection top
Bruker D8 Venture dual source
diffractometer
7300 independent reflections
Radiation source: microsource5163 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.040
φ and ω scansθmax = 33.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.856, Tmax = 0.971k = 2120
42268 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.039P)2 + 0.260P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.016
S = 1.02Δρmax = 0.28 e Å3
7300 reflectionsΔρmin = 0.40 e Å3
364 parametersAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
154 restraintsAbsolute structure parameter: 0.5
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.8290 (2)0.48239 (16)0.57523 (16)0.0129 (4)
C2A0.8000 (2)0.57601 (18)0.6226 (2)0.0140 (5)
H2A10.8248790.6303060.5780200.017*
H2A20.8485050.5824060.6856930.017*
C3A0.6569 (2)0.57971 (19)0.6434 (2)0.0151 (5)
H3A10.6355560.6416350.6774420.018*
H3A20.6093060.5775430.5796480.018*
O4A0.6192 (2)0.49898 (12)0.70486 (17)0.0177 (4)
C5A0.6500 (2)0.40691 (18)0.6598 (2)0.0193 (5)
H5A10.6014920.3996770.5968230.023*
H5A20.6241780.3534010.7050390.023*
C6A0.7926 (3)0.39933 (17)0.63826 (19)0.0193 (5)
H6A10.8416210.4007020.7013720.023*
H6A20.8114630.3373210.6034860.023*
C7A0.85190 (19)0.47015 (19)0.47963 (18)0.0129 (4)
H7A0.8585860.4050150.4561280.016*
N8A0.8664 (2)0.54034 (17)0.41380 (18)0.0172 (4)
H8A10.8612 (2)0.5984 (15)0.4316 (5)0.021*
H8A20.8807 (4)0.5267 (3)0.3543 (14)0.021*
N1B0.3318 (4)0.0173 (3)0.5727 (3)0.0140 (6)0.639 (4)
C2B0.2939 (4)0.1008 (2)0.6349 (3)0.0194 (7)0.639 (4)
H2B10.3115580.1625400.5991440.023*0.639 (4)
H2B20.3434510.1008250.6977330.023*0.639 (4)
C3B0.1518 (4)0.0928 (3)0.6575 (3)0.0215 (7)0.639 (4)
H3B10.1261710.1465480.7025290.026*0.639 (4)
H3B20.1024900.0993940.5948450.026*0.639 (4)
O4B0.1222 (3)0.0012 (2)0.7034 (2)0.0191 (6)0.639 (4)
C5B0.1604 (5)0.0796 (6)0.6432 (6)0.0179 (10)0.639 (4)
H5B10.1125180.0784280.5794990.022*0.639 (4)
H5B20.1395650.1412300.6780050.022*0.639 (4)
C6B0.3031 (4)0.0758 (5)0.6219 (5)0.0143 (9)0.639 (4)
H6B10.3518040.0810370.6849960.017*0.639 (4)
H6B20.3279460.1307850.5782590.017*0.639 (4)
C7B0.3530 (3)0.0287 (2)0.4776 (2)0.0149 (6)0.639 (4)
H7B0.3590650.0938650.4540130.018*0.639 (4)
N8B0.3668 (3)0.0406 (2)0.4117 (3)0.0192 (6)0.639 (4)
H8B10.3622 (3)0.099 (3)0.4294 (8)0.023*0.639 (4)
H8B20.3804 (7)0.0264 (6)0.352 (3)0.023*0.639 (4)
N1B'0.1687 (8)0.0176 (6)0.6935 (6)0.0199 (15)0.361 (4)
C2B'0.1990 (10)0.0769 (9)0.6440 (12)0.021 (2)0.361 (4)
H2C30.1541380.0819050.5792270.025*0.361 (4)
H2C40.1723590.1322810.6865770.025*0.361 (4)
C3B'0.3421 (9)0.0779 (10)0.6288 (11)0.022 (2)0.361 (4)
H3C30.3858580.0707070.6938200.027*0.361 (4)
H3C40.3684280.1409490.5992150.027*0.361 (4)
O4B'0.3787 (8)0.0008 (5)0.5636 (6)0.0240 (15)0.361 (4)
C5B'0.3445 (8)0.0923 (6)0.6060 (7)0.0241 (17)0.361 (4)
H5C30.3672870.1449610.5587960.029*0.361 (4)
H5C40.3945450.1024770.6678090.029*0.361 (4)
C6B'0.2036 (8)0.0993 (5)0.6303 (6)0.0214 (16)0.361 (4)
H6C30.1856430.1614820.6651020.026*0.361 (4)
H6C40.1526640.0977790.5680730.026*0.361 (4)
C7B'0.1453 (6)0.0285 (6)0.7905 (5)0.0185 (14)0.361 (4)
H7B'0.1339980.0934600.8133390.022*0.361 (4)
N8B'0.1362 (7)0.0380 (5)0.8561 (6)0.0237 (14)0.361 (4)
H8C30.1458140.0995580.8390210.028*0.361 (4)
H8C40.1203030.0225930.9185220.028*0.361 (4)
P11.10174 (10)0.25140 (7)0.38095 (4)0.0133 (2)
F11.1345 (2)0.13771 (15)0.38914 (11)0.0236 (5)
F21.0694 (2)0.36564 (14)0.37324 (14)0.0266 (4)
F31.2054 (2)0.26335 (12)0.29446 (17)0.0293 (5)
F41.2093 (2)0.27439 (14)0.46292 (18)0.0319 (5)
F50.9982 (2)0.24007 (13)0.46808 (17)0.0344 (5)
F60.9944 (2)0.22733 (15)0.29994 (19)0.0364 (5)
P1A0.60169 (10)0.24864 (7)0.38572 (4)0.0148 (2)0.876 (19)
F1A0.5698 (2)0.13505 (16)0.38354 (13)0.0355 (6)0.876 (19)
F2A0.6341 (2)0.36245 (16)0.38891 (11)0.0230 (5)0.876 (19)
F3A0.7033 (5)0.2329 (2)0.2977 (4)0.0302 (8)0.876 (19)
F4A0.7122 (4)0.2274 (3)0.4658 (4)0.0308 (7)0.876 (19)
F5A0.5008 (5)0.2645 (2)0.4755 (4)0.0295 (8)0.876 (19)
F6A0.4912 (5)0.2708 (3)0.3067 (4)0.0333 (8)0.876 (19)
P1B0.60169 (10)0.24864 (7)0.38572 (4)0.0148 (2)0.124 (19)
F1B0.5698 (2)0.13505 (16)0.38354 (13)0.0355 (6)0.124 (19)
F2B0.6341 (2)0.36245 (16)0.38891 (11)0.0230 (5)0.124 (19)
F3B0.723 (2)0.2384 (16)0.3217 (19)0.022 (4)*0.124 (19)
F4B0.690 (2)0.2428 (18)0.4841 (18)0.022 (4)*0.124 (19)
F5B0.4767 (16)0.2571 (11)0.4483 (16)0.013 (3)*0.124 (19)
F6B0.517 (2)0.2531 (16)0.2880 (14)0.018 (4)*0.124 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0147 (9)0.0120 (9)0.0119 (9)0.0017 (8)0.0010 (8)0.0001 (8)
C2A0.0165 (12)0.0132 (10)0.0123 (10)0.0002 (9)0.0010 (10)0.0029 (8)
C3A0.0165 (12)0.0139 (11)0.0150 (11)0.0013 (8)0.0013 (9)0.0003 (9)
O4A0.0202 (9)0.0196 (10)0.0134 (8)0.0006 (7)0.0041 (9)0.0005 (6)
C5A0.0232 (14)0.0156 (12)0.0192 (13)0.0044 (9)0.0054 (9)0.0008 (10)
C6A0.0241 (14)0.0143 (11)0.0194 (13)0.0023 (10)0.0014 (10)0.0061 (8)
C7A0.0096 (9)0.0144 (11)0.0148 (10)0.0003 (7)0.0004 (7)0.0015 (9)
N8A0.0219 (10)0.0173 (10)0.0123 (10)0.0012 (8)0.0035 (9)0.0004 (9)
N1B0.0179 (17)0.0127 (13)0.0114 (12)0.0012 (12)0.0011 (13)0.0010 (10)
C2B0.029 (2)0.0117 (13)0.0179 (17)0.0032 (14)0.0032 (14)0.0058 (11)
C3B0.029 (2)0.0192 (16)0.0169 (16)0.0056 (14)0.0024 (14)0.0024 (12)
O4B0.0243 (17)0.0200 (14)0.0129 (11)0.0027 (12)0.0056 (12)0.0022 (9)
C5B0.018 (2)0.0200 (18)0.0155 (18)0.000 (2)0.009 (2)0.0006 (13)
C6B0.018 (2)0.0133 (15)0.0117 (15)0.0008 (19)0.0031 (19)0.0007 (11)
C7B0.0128 (13)0.0166 (13)0.0153 (13)0.0000 (10)0.0009 (10)0.0001 (10)
N8B0.0199 (14)0.0193 (14)0.0185 (14)0.0009 (11)0.0033 (12)0.0012 (11)
N1B'0.024 (4)0.017 (3)0.019 (3)0.003 (3)0.003 (3)0.001 (2)
C2B'0.028 (5)0.011 (3)0.024 (4)0.003 (4)0.009 (5)0.001 (3)
C3B'0.021 (5)0.024 (4)0.023 (5)0.002 (4)0.001 (4)0.002 (3)
O4B'0.028 (4)0.021 (3)0.024 (3)0.005 (3)0.008 (3)0.004 (2)
C5B'0.030 (4)0.023 (4)0.020 (4)0.002 (3)0.006 (3)0.002 (3)
C6B'0.029 (4)0.014 (3)0.021 (4)0.002 (3)0.012 (3)0.002 (3)
C7B'0.017 (3)0.020 (3)0.019 (3)0.003 (2)0.001 (2)0.005 (3)
N8B'0.033 (4)0.023 (3)0.014 (3)0.001 (3)0.005 (3)0.001 (3)
P10.0120 (5)0.0128 (4)0.0152 (4)0.0003 (3)0.00030 (18)0.00023 (16)
F10.0264 (12)0.0121 (10)0.0323 (13)0.0020 (9)0.0029 (6)0.0027 (5)
F20.0299 (11)0.0138 (9)0.0360 (8)0.0056 (8)0.0105 (7)0.0027 (6)
F30.0357 (12)0.0234 (8)0.0287 (11)0.0025 (7)0.0191 (9)0.0025 (8)
F40.0334 (11)0.0295 (9)0.0328 (11)0.0075 (8)0.0162 (9)0.0048 (8)
F50.0306 (11)0.0319 (10)0.0408 (14)0.0003 (9)0.0209 (11)0.0066 (9)
F60.0336 (11)0.0311 (9)0.0445 (14)0.0029 (8)0.0246 (11)0.0029 (9)
P1A0.0115 (5)0.0135 (4)0.0193 (6)0.0004 (3)0.00038 (17)0.00138 (15)
F1A0.0291 (12)0.0153 (10)0.0620 (16)0.0064 (9)0.0038 (8)0.0005 (7)
F2A0.0240 (12)0.0152 (11)0.0297 (12)0.0021 (9)0.0008 (5)0.0001 (5)
F3A0.0329 (17)0.0286 (12)0.0290 (16)0.0004 (10)0.0151 (14)0.0042 (11)
F4A0.0258 (13)0.0334 (13)0.0333 (16)0.0055 (10)0.0139 (11)0.0052 (12)
F5A0.0275 (14)0.0349 (12)0.0262 (16)0.0025 (10)0.0128 (14)0.0002 (11)
F6A0.0281 (14)0.0353 (13)0.0366 (15)0.0069 (11)0.0193 (12)0.0072 (12)
P1B0.0115 (5)0.0135 (4)0.0193 (6)0.0004 (3)0.00038 (17)0.00138 (15)
F1B0.0291 (12)0.0153 (10)0.0620 (16)0.0064 (9)0.0038 (8)0.0005 (7)
F2B0.0240 (12)0.0152 (11)0.0297 (12)0.0021 (9)0.0008 (5)0.0001 (5)
Geometric parameters (Å, º) top
N1A—C7A1.315 (3)N1B'—C7B'1.333 (10)
N1A—C2A1.465 (3)N1B'—C6B'1.452 (10)
N1A—C6A1.469 (3)N1B'—C2B'1.492 (14)
C2A—C3A1.522 (3)C2B'—C3B'1.509 (12)
C2A—H2A10.9900C2B'—H2C30.9900
C2A—H2A20.9900C2B'—H2C40.9900
C3A—O4A1.436 (3)C3B'—O4B'1.442 (13)
C3A—H3A10.9900C3B'—H3C30.9900
C3A—H3A20.9900C3B'—H3C40.9900
O4A—C5A1.437 (3)O4B'—C5B'1.424 (10)
C5A—C6A1.521 (3)C5B'—C6B'1.511 (10)
C5A—H5A10.9900C5B'—H5C30.9900
C5A—H5A20.9900C5B'—H5C40.9900
C6A—H6A10.9900C6B'—H6C30.9900
C6A—H6A20.9900C6B'—H6C40.9900
C7A—N8A1.315 (3)C7B'—N8B'1.271 (10)
C7A—H7A0.9500C7B'—H7B'0.9500
N8A—H8A10.83 (2)N8B'—H8C30.8800
N8A—H8A20.83 (2)N8B'—H8C40.8800
N1B—C7B1.304 (5)P1—F31.596 (2)
N1B—C6B1.468 (7)P1—F61.596 (2)
N1B—C2B1.472 (5)P1—F11.600 (2)
C2B—C3B1.519 (6)P1—F51.601 (2)
C2B—H2B10.9900P1—F41.604 (2)
C2B—H2B20.9900P1—F21.606 (2)
C3B—O4B1.433 (5)P1A—F6A1.597 (3)
C3B—H3B10.9900P1A—F1A1.594 (2)
C3B—H3B20.9900P1A—F3A1.602 (3)
O4B—C5B1.428 (8)P1A—F2A1.598 (2)
C5B—C6B1.519 (7)P1A—F4A1.604 (3)
C5B—H5B10.9900P1A—F5A1.615 (3)
C5B—H5B20.9900P1B—F4B1.61 (2)
C6B—H6B10.9900P1B—F3B1.54 (2)
C6B—H6B20.9900P1B—F5B1.558 (15)
C7B—N8B1.306 (4)P1B—F6B1.583 (18)
C7B—H7B0.9500P1B—F1B1.594 (2)
N8B—H8B10.84 (4)P1B—F2B1.598 (2)
N8B—H8B20.84 (4)
C7A—N1A—C2A124.9 (2)N1B'—C2B'—H2C4110.5
C7A—N1A—C6A120.6 (2)C3B'—C2B'—H2C4110.5
C2A—N1A—C6A112.1 (2)H2C3—C2B'—H2C4108.7
N1A—C2A—C3A108.1 (2)O4B'—C3B'—C2B'109.8 (9)
N1A—C2A—H2A1110.1O4B'—C3B'—H3C3109.7
C3A—C2A—H2A1110.1C2B'—C3B'—H3C3109.7
N1A—C2A—H2A2110.1O4B'—C3B'—H3C4109.7
C3A—C2A—H2A2110.1C2B'—C3B'—H3C4109.7
H2A1—C2A—H2A2108.4H3C3—C3B'—H3C4108.2
O4A—C3A—C2A110.4 (2)C5B'—O4B'—C3B'110.5 (9)
O4A—C3A—H3A1109.6O4B'—C5B'—C6B'112.8 (7)
C2A—C3A—H3A1109.6O4B'—C5B'—H5C3109.0
O4A—C3A—H3A2109.6C6B'—C5B'—H5C3109.0
C2A—C3A—H3A2109.6O4B'—C5B'—H5C4109.0
H3A1—C3A—H3A2108.1C6B'—C5B'—H5C4109.0
C3A—O4A—C5A112.0 (2)H5C3—C5B'—H5C4107.8
O4A—C5A—C6A111.1 (2)N1B'—C6B'—C5B'108.7 (7)
O4A—C5A—H5A1109.4N1B'—C6B'—H6C3109.9
C6A—C5A—H5A1109.4C5B'—C6B'—H6C3109.9
O4A—C5A—H5A2109.4N1B'—C6B'—H6C4109.9
C6A—C5A—H5A2109.4C5B'—C6B'—H6C4109.9
H5A1—C5A—H5A2108.0H6C3—C6B'—H6C4108.3
N1A—C6A—C5A108.1 (2)N8B'—C7B'—N1B'127.6 (8)
N1A—C6A—H6A1110.1N8B'—C7B'—H7B'116.2
C5A—C6A—H6A1110.1N1B'—C7B'—H7B'116.2
N1A—C6A—H6A2110.1C7B'—N8B'—H8C3120.0
C5A—C6A—H6A2110.1C7B'—N8B'—H8C4120.0
H6A1—C6A—H6A2108.4H8C3—N8B'—H8C4120.0
N8A—C7A—N1A125.6 (2)F3—P1—F690.19 (14)
N8A—C7A—H7A117.2F3—P1—F190.29 (10)
N1A—C7A—H7A117.2F6—P1—F189.73 (11)
C7A—N8A—H8A1120.0F3—P1—F5179.60 (14)
C7A—N8A—H8A2120.0F6—P1—F590.11 (17)
H8A1—N8A—H8A2120.0F1—P1—F589.99 (11)
C7B—N1B—C6B125.4 (4)F3—P1—F490.14 (15)
C7B—N1B—C2B120.4 (3)F6—P1—F4179.35 (13)
C6B—N1B—C2B111.5 (4)F1—P1—F489.70 (11)
N1B—C2B—C3B108.7 (3)F5—P1—F489.57 (13)
N1B—C2B—H2B1110.0F3—P1—F289.75 (10)
C3B—C2B—H2B1110.0F6—P1—F290.58 (12)
N1B—C2B—H2B2110.0F1—P1—F2179.68 (14)
C3B—C2B—H2B2110.0F5—P1—F289.97 (10)
H2B1—C2B—H2B2108.3F4—P1—F289.99 (12)
O4B—C3B—C2B111.1 (3)F6A—P1A—F1A91.31 (16)
O4B—C3B—H3B1109.4F6A—P1A—F3A90.92 (18)
C2B—C3B—H3B1109.4F1A—P1A—F3A89.64 (15)
O4B—C3B—H3B2109.4F6A—P1A—F2A89.14 (15)
C2B—C3B—H3B2109.4F1A—P1A—F2A179.49 (12)
H3B1—C3B—H3B2108.0F3A—P1A—F2A90.60 (15)
C5B—O4B—C3B112.2 (4)F6A—P1A—F4A179.36 (17)
O4B—C5B—C6B110.7 (5)F1A—P1A—F4A89.15 (16)
O4B—C5B—H5B1109.5F3A—P1A—F4A89.5 (2)
C6B—C5B—H5B1109.5F2A—P1A—F4A90.40 (16)
O4B—C5B—H5B2109.5F6A—P1A—F5A89.85 (18)
C6B—C5B—H5B2109.5F1A—P1A—F5A90.47 (15)
H5B1—C5B—H5B2108.1F3A—P1A—F5A179.22 (18)
N1B—C6B—C5B108.4 (4)F2A—P1A—F5A89.28 (15)
N1B—C6B—H6B1110.0F4A—P1A—F5A89.69 (16)
C5B—C6B—H6B1110.0F4B—P1B—F3B88.9 (10)
N1B—C6B—H6B2110.0F4B—P1B—F5B92.3 (9)
C5B—C6B—H6B2110.0F3B—P1B—F5B178.4 (8)
H6B1—C6B—H6B2108.4F4B—P1B—F6B178.9 (9)
N1B—C7B—N8B126.4 (3)F3B—P1B—F6B90.2 (9)
N1B—C7B—H7B116.8F5B—P1B—F6B88.6 (7)
N8B—C7B—H7B116.8F4B—P1B—F1B94.9 (9)
C7B—N8B—H8B1120.0F3B—P1B—F1B94.2 (8)
C7B—N8B—H8B2120.0F5B—P1B—F1B84.7 (6)
H8B1—N8B—H8B2120.0F6B—P1B—F1B84.6 (7)
C7B'—N1B'—C6B'122.1 (8)F4B—P1B—F2B84.6 (8)
C7B'—N1B'—C2B'124.8 (10)F3B—P1B—F2B85.9 (8)
C6B'—N1B'—C2B'111.0 (8)F5B—P1B—F2B95.2 (6)
N1B'—C2B'—C3B'106.2 (9)F6B—P1B—F2B95.9 (7)
N1B'—C2B'—H2C3110.5F1B—P1B—F2B179.49 (12)
C3B'—C2B'—H2C3110.5
C7A—N1A—C2A—C3A103.6 (3)C7B—N1B—C6B—C5B102.8 (6)
C6A—N1A—C2A—C3A59.2 (3)C2B—N1B—C6B—C5B58.6 (6)
N1A—C2A—C3A—O4A57.4 (3)O4B—C5B—C6B—N1B57.7 (7)
C2A—C3A—O4A—C5A58.2 (3)C6B—N1B—C7B—N8B8.3 (6)
C3A—O4A—C5A—C6A57.9 (3)C2B—N1B—C7B—N8B168.2 (3)
C7A—N1A—C6A—C5A105.2 (3)C7B'—N1B'—C2B'—C3B'101.5 (12)
C2A—N1A—C6A—C5A58.4 (3)C6B'—N1B'—C2B'—C3B'62.1 (13)
O4A—C5A—C6A—N1A56.3 (3)N1B'—C2B'—C3B'—O4B'62.4 (14)
C2A—N1A—C7A—N8A7.9 (4)C2B'—C3B'—O4B'—C5B'60.8 (13)
C6A—N1A—C7A—N8A169.3 (2)C3B'—O4B'—C5B'—C6B'56.5 (10)
C7B—N1B—C2B—C3B104.8 (4)C7B'—N1B'—C6B'—C5B'106.4 (9)
C6B—N1B—C2B—C3B57.8 (4)C2B'—N1B'—C6B'—C5B'57.7 (10)
N1B—C2B—C3B—O4B55.8 (4)O4B'—C5B'—C6B'—N1B'54.5 (10)
C2B—C3B—O4B—C5B57.4 (5)C6B'—N1B'—C7B'—N8B'166.6 (8)
C3B—O4B—C5B—C6B58.3 (7)C2B'—N1B'—C7B'—N8B'4.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A1···F4i0.992.363.115 (3)133
C2A—H2A2···F3ii0.992.633.189 (3)116
C6A—H6A2···F4B0.992.423.17 (2)132
C7A—H7A···F20.952.533.043 (3)114
N8A—H8A1···F4i0.832.403.096 (3)142
N8A—H8A1···F5Aiii0.832.453.135 (4)140
N8A—H8A1···F5Biii0.832.333.043 (15)144
N8A—H8A2···O4Aiv0.832.042.864 (3)169
N8B—H8B1···F5v0.842.453.153 (4)141
N8B—H8B2···O4Bvi0.842.022.855 (5)169
N8B—H8C3···F6vii0.882.343.028 (8)135
N8B—H8C4···O4Bviii0.881.972.839 (12)168
Symmetry codes: (i) x1/2, y+1, z; (ii) x+2, y+1, z+1/2; (iii) x+1/2, y+1, z; (iv) x+3/2, y, z1/2; (v) x1/2, y, z; (vi) x+1/2, y, z1/2; (vii) x+1, y, z+1/2; (viii) x+1/2, y, z+1/2.
Pyrrolidinoformamidinium hexafluorophosphate (2) top
Crystal data top
C5H11N2+·PF6F(000) = 992
Mr = 244.13Dx = 1.733 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
a = 12.3588 (3) ÅCell parameters from 9886 reflections
b = 12.7942 (3) Åθ = 3.7–74.5°
c = 12.2759 (3) ŵ = 3.28 mm1
β = 105.400 (1)°T = 130 K
V = 1871.38 (8) Å3Block, colourless
Z = 80.21 × 0.21 × 0.11 mm
Data collection top
Bruker D8 with PHOTON III area detector
diffractometer
3450 reflections with I > 2σ(I)
Radiation source: microfocusRint = 0.035
φ and ω shutterless scansθmax = 74.6°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1514
Tmin = 0.639, Tmax = 0.754k = 1515
17935 measured reflectionsl = 1515
3467 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.085P)2 + 2.020P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.049(Δ/σ)max = 0.004
wR(F2) = 0.135Δρmax = 0.37 e Å3
S = 1.07Δρmin = 0.35 e Å3
3467 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
257 parametersExtinction coefficient: 0.0014 (4)
2 restraintsAbsolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.49 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3206 (4)0.7280 (3)0.7550 (3)0.0306 (9)
C20.3205 (5)0.8419 (4)0.7666 (5)0.0359 (11)
H2A0.2917590.8761890.6921520.054*
H2B0.3967550.8685710.8027540.054*
C30.2414 (5)0.8601 (4)0.8420 (4)0.0397 (11)
H3A0.2837850.8635140.9225720.059*
H3B0.1984120.9257070.8211780.059*
C40.1646 (4)0.7661 (4)0.8193 (4)0.0358 (9)
H4A0.1057980.7739840.7471620.054*
H4B0.1282450.7554160.8812460.054*
C50.2435 (4)0.6762 (4)0.8132 (4)0.0337 (10)
H5A0.2840910.6511920.8894040.050*
H5B0.2028820.6170230.7684570.050*
C60.3770 (4)0.6777 (4)0.6965 (4)0.0347 (10)
H60.3702950.6037900.6912840.042*
N70.4439 (4)0.7258 (3)0.6435 (4)0.0409 (10)
H7A0.4509 (6)0.792 (4)0.6473 (4)0.049*
H7B0.480 (2)0.690 (2)0.606 (2)0.049*
N110.7698 (3)0.2303 (3)0.3159 (3)0.0252 (7)
C120.7633 (4)0.3449 (4)0.2985 (4)0.0321 (10)
H12A0.7930060.3826480.3706030.048*
H12B0.6849950.3674750.2641470.048*
C130.8362 (4)0.3633 (4)0.2184 (4)0.0374 (11)
H13A0.8057890.4207750.1651240.056*
H13B0.9140310.3806890.2607270.056*
C140.8322 (4)0.2588 (4)0.1552 (4)0.0349 (9)
H14A0.7615200.2516730.0945430.052*
H14B0.8966700.2518230.1221800.052*
C150.8383 (4)0.1797 (4)0.2476 (4)0.0340 (10)
H15A0.8056070.1118780.2163900.051*
H15B0.9166600.1686100.2927390.051*
C160.7173 (4)0.1803 (4)0.3774 (4)0.0314 (10)
H160.7229670.1062940.3807220.038*
N170.6562 (4)0.2270 (3)0.4358 (4)0.0385 (9)
H17A0.6505 (5)0.289 (4)0.4342 (4)0.046*
H17B0.6253 (18)0.194 (2)0.473 (2)0.046*
P10.52748 (8)0.48090 (9)0.50675 (8)0.0281 (3)
F10.5597 (3)0.6020 (2)0.5039 (3)0.0491 (8)
F20.4952 (3)0.3602 (2)0.5089 (3)0.0473 (8)
F30.5479 (6)0.4896 (4)0.6384 (4)0.0758 (15)
F40.6561 (3)0.4490 (3)0.5209 (4)0.0666 (11)
F50.5090 (5)0.4728 (3)0.3746 (4)0.0730 (14)
F60.4008 (3)0.5132 (3)0.4886 (5)0.0678 (13)
P20.55335 (8)0.97931 (9)0.55060 (8)0.0294 (3)
F1A0.5774 (4)0.9564 (4)0.6830 (3)0.0566 (9)
F2A0.5294 (5)1.0049 (3)0.4195 (3)0.0607 (11)
F3A0.4242 (3)0.9567 (3)0.5382 (3)0.0530 (9)
F4A0.5735 (4)0.8594 (3)0.5287 (4)0.0611 (11)
F5A0.6830 (3)1.0047 (3)0.5650 (4)0.0552 (10)
F6A0.5350 (3)1.1002 (2)0.5742 (3)0.0440 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0326 (19)0.032 (2)0.0275 (17)0.0026 (15)0.0078 (14)0.0001 (14)
C20.044 (3)0.025 (2)0.041 (2)0.0009 (18)0.017 (2)0.0006 (18)
C30.051 (3)0.037 (2)0.039 (2)0.004 (2)0.025 (2)0.002 (2)
C40.032 (2)0.043 (2)0.0352 (19)0.0038 (18)0.0133 (16)0.0034 (18)
C50.040 (3)0.033 (2)0.029 (2)0.001 (2)0.0112 (19)0.0001 (18)
C60.036 (2)0.032 (2)0.037 (2)0.0017 (17)0.0116 (19)0.0001 (17)
N70.046 (2)0.038 (2)0.048 (2)0.0020 (17)0.0283 (18)0.0008 (17)
N110.0262 (17)0.0227 (19)0.0269 (15)0.0001 (13)0.0071 (13)0.0027 (13)
C120.037 (2)0.023 (2)0.037 (2)0.0015 (17)0.013 (2)0.0007 (17)
C130.043 (3)0.027 (2)0.043 (3)0.003 (2)0.013 (2)0.003 (2)
C140.035 (2)0.040 (2)0.0323 (19)0.0024 (17)0.0131 (16)0.0027 (17)
C150.034 (2)0.027 (2)0.043 (3)0.0035 (18)0.013 (2)0.0013 (19)
C160.035 (2)0.0262 (19)0.032 (2)0.0009 (17)0.0079 (17)0.0040 (16)
N170.045 (2)0.035 (2)0.044 (2)0.0030 (16)0.0280 (18)0.0047 (16)
P10.0305 (6)0.0272 (5)0.0297 (6)0.0008 (4)0.0135 (4)0.0002 (4)
F10.066 (2)0.0324 (14)0.0631 (19)0.0144 (15)0.0411 (17)0.0115 (15)
F20.0448 (16)0.0285 (14)0.075 (2)0.0023 (12)0.0280 (15)0.0067 (13)
F30.125 (5)0.073 (3)0.033 (2)0.002 (3)0.027 (2)0.0007 (15)
F40.0359 (18)0.054 (2)0.112 (3)0.0018 (17)0.0221 (19)0.021 (2)
F50.131 (4)0.055 (2)0.036 (2)0.010 (2)0.028 (2)0.0084 (15)
F60.0331 (19)0.0443 (19)0.124 (4)0.0071 (14)0.018 (2)0.002 (2)
P20.0316 (6)0.0291 (6)0.0310 (6)0.0036 (4)0.0144 (4)0.0005 (4)
F1A0.066 (2)0.068 (2)0.0366 (17)0.0045 (19)0.0160 (15)0.0150 (16)
F2A0.092 (3)0.062 (2)0.0289 (18)0.004 (2)0.0164 (18)0.0007 (14)
F3A0.0310 (17)0.0565 (19)0.072 (2)0.0083 (15)0.0144 (15)0.0127 (17)
F4A0.089 (3)0.0304 (15)0.087 (3)0.0103 (17)0.064 (2)0.0006 (16)
F5A0.0379 (19)0.061 (2)0.075 (3)0.0070 (16)0.0291 (18)0.0190 (18)
F6A0.0541 (18)0.0309 (13)0.0541 (17)0.0011 (13)0.0269 (13)0.0058 (13)
Geometric parameters (Å, º) top
N1—C61.296 (7)C13—C141.540 (7)
N1—C51.490 (7)C13—H13A0.9900
N1—C21.465 (5)C13—H13B0.9900
C2—C31.531 (7)C14—C151.506 (7)
C2—H2A0.9900C14—H14A0.9900
C2—H2B0.9900C14—H14B0.9900
C3—C41.512 (7)C15—H15A0.9900
C3—H3A0.9900C15—H15B0.9900
C3—H3B0.9900C16—N171.315 (6)
C4—C51.523 (6)C16—H160.9500
C4—H4A0.9900N17—H17A0.79 (5)
C4—H4B0.9900N17—H17B0.79 (5)
C5—H5A0.9900P1—F51.580 (4)
C5—H5B0.9900P1—F31.572 (4)
C6—N71.331 (7)P1—F61.576 (4)
C6—H60.9500P1—F21.597 (3)
N7—H7A0.86 (5)P1—F41.606 (4)
N7—H7B0.86 (5)P1—F11.602 (3)
N11—C161.289 (6)P2—F3A1.589 (3)
N11—C121.481 (5)P2—F2A1.591 (4)
N11—C151.489 (6)P2—F5A1.598 (4)
C12—C131.517 (7)P2—F1A1.600 (3)
C12—H12A0.9900P2—F4A1.588 (3)
C12—H12B0.9900P2—F6A1.601 (3)
C6—N1—C5123.5 (4)C15—C14—C13102.5 (4)
C6—N1—C2124.2 (5)C15—C14—H14A111.3
C5—N1—C2112.2 (4)C13—C14—H14A111.3
N1—C2—C3103.1 (4)C15—C14—H14B111.3
N1—C2—H2A111.1C13—C14—H14B111.3
C3—C2—H2A111.1H14A—C14—H14B109.2
N1—C2—H2B111.1N11—C15—C14102.1 (4)
C3—C2—H2B111.1N11—C15—H15A111.4
H2A—C2—H2B109.1C14—C15—H15A111.4
C4—C3—C2103.8 (4)N11—C15—H15B111.4
C4—C3—H3A111.0C14—C15—H15B111.4
C2—C3—H3A111.0H15A—C15—H15B109.2
C4—C3—H3B111.0N11—C16—N17123.1 (5)
C2—C3—H3B111.0N11—C16—H16118.5
H3A—C3—H3B109.0N17—C16—H16118.5
C3—C4—C5103.3 (4)C16—N17—H17A120.0
C3—C4—H4A111.1C16—N17—H17B120.0
C5—C4—H4A111.1H17A—N17—H17B120.0
C3—C4—H4B111.1F5—P1—F3179.1 (4)
C5—C4—H4B111.1F5—P1—F690.3 (3)
H4A—C4—H4B109.1F3—P1—F690.5 (3)
N1—C5—C4100.8 (4)F5—P1—F289.2 (2)
N1—C5—H5A111.6F3—P1—F291.4 (2)
C4—C5—H5A111.6F6—P1—F290.73 (19)
N1—C5—H5B111.6F5—P1—F487.9 (3)
C4—C5—H5B111.6F3—P1—F491.3 (3)
H5A—C5—H5B109.4F6—P1—F4178.1 (3)
N1—C6—N7122.4 (5)F2—P1—F489.8 (2)
N1—C6—H6118.8F5—P1—F190.5 (2)
N7—C6—H6118.8F3—P1—F188.9 (2)
C6—N7—H7A120.0F6—P1—F189.2 (2)
C6—N7—H7B120.0F2—P1—F1179.7 (2)
H7A—N7—H7B120.0F4—P1—F190.2 (2)
C16—N11—C12124.0 (4)F3A—P2—F2A91.6 (3)
C16—N11—C15124.4 (4)F3A—P2—F5A178.5 (2)
C12—N11—C15111.5 (4)F2A—P2—F5A88.9 (3)
N11—C12—C13103.2 (4)F3A—P2—F1A88.5 (2)
N11—C12—H12A111.1F2A—P2—F1A178.7 (3)
C13—C12—H12A111.1F5A—P2—F1A90.8 (2)
N11—C12—H12B111.1F3A—P2—F4A90.4 (2)
C13—C12—H12B111.1F2A—P2—F4A91.3 (2)
H12A—C12—H12B109.1F5A—P2—F4A91.0 (2)
C14—C13—C12104.3 (4)F1A—P2—F4A90.0 (2)
C14—C13—H13A110.9F3A—P2—F6A90.4 (2)
C12—C13—H13A110.9F2A—P2—F6A89.3 (2)
C14—C13—H13B110.9F5A—P2—F6A88.3 (2)
C12—C13—H13B110.9F1A—P2—F6A89.4 (2)
H13A—C13—H13B108.9F4A—P2—F6A179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7B···F10.862.112.966 (5)177
N7—H7A···F3A0.862.473.207 (6)145
N7—H7A···F4A0.862.512.945 (6)112
C16—H16···F6i0.952.543.153 (6)122
N17—H17A···F20.792.512.935 (5)115
N17—H17A···F40.792.303.026 (6)152
N17—H17B···F6Aii0.792.233.019 (5)179
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1, z.
 

Acknowledgements

We are grateful to the Office of the Dean and the Department of Chemistry at Fordham University for their generous support of the X-ray facility. We thank Nicholas Verniero for preparing compounds 1 and 2 and Nurul Eisha for obtaining the FTIR spectra.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE1625732 to Parkin); Air Force Office of Scientific Research (grant No. FA9550-20-1-0158 to Neary).

References

First citationAllenstein, E., Keller, K., Hausen, H.-D. & Weidlein, J. (1987). Z. Anorg. Allg. Chem. 554, 188–196.  CrossRef CAS Google Scholar
First citationBenhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. (2011). Chem. Rev. 111, 2705–2733.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFunk, T. W., Berlin, J. M. & Grubbs, R. H. (2006). J. Am. Chem. Soc. 128, 1840–1846.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcCormick, L. J., Morris, S. A., Teat, S. J., Slawin, A. M. Z. & Morris, R. E. (2018). Crystals, 8, 80100061–8010006/11.  Google Scholar
First citationSaba, S., Brescia, A.-M. & Kaloustian, M. K. (1991). Tetrahedron Lett. 32, 5031–5034.  CrossRef CAS Google Scholar
First citationSaba, S., Kojtari, A., Rivera, M. M., D'Amico, P., Canuso, D. & Kaloustian, M. K. (2005). Abstracts, 37th Middle Atlantic Regional Meeting of the American Chemical Society, New Brunswick, NJ, USA.  Google Scholar
First citationScarborough, C. C., Grady, M. J. W., Guzei, I. A., Gandhi, B. A., Bunel, E. E. & Stahl, S. S. (2005). Angew. Chem. Int. Ed. 44, 5269–5272.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds