research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-phenyl­diazene, (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-methyl­phen­yl)diazene, (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-meth­­oxy­phen­yl)diazene and (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(3-methyl­phen­yl)diazene

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Engineering and Applied Sciences, Azerbaijan State University of Economics, M. Mukhtarov 194, Baku AZ1001, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, fDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, gDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, and hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 May 2023; accepted 8 June 2023; online 13 June 2023)

The crystal structures and Hirshfeld surface analyses of four similar azo compounds are reported. (E)-1-[1-(4-tert-Butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-phenyl­diazene, C18H18Cl2N2, (I), and (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-methyl­phen­yl)diazene, C19H20Cl2N2, (II), crystallize in the monoclinic space group C2/c with Z = 8, and (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-meth­oxy­phen­yl)diazene, C19H20Cl2N2O, (III), in the monoclinic space group P21/c with Z = 4. (E)-1-[1-(4-tert-Butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(3-methyl­phen­yl)diazene, C19H20Cl2N2, (IV), crystallizes in the triclinic space group P[\overline{1}] with Z = 4 and comprises two mol­ecules (A and B) in the asymmetric unit. In the crystal structures of (I) and (II), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming layers parallel to ([\overline{2}]02), while mol­ecules of (III) are linked by C—H⋯O contacts, C—H⋯π and C—Cl⋯π inter­actions forming layers parallel to ([\overline{3}]02). The stability of the mol­ecular packing is ensured by van der Waals forces between these layers. In the crystal structure of (IV), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming a tri-periodic network.

1. Chemical context

The synthesis of polyfunctional compounds and the study of their structures and properties are one of the directions in organic chemistry that have been studied in detail in recent years. In this regard, the synthesis of dihalogendi­aza­butadienes from the reaction of N-substituted hydrazones of benzaldehyde derivatives with polyhalo­methanes (CCI4, CBr4) in the presence of a CuCI catalyst (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shikhaliyev et al., 2019a[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019a). CrystEngComm, 21, 5032-5038.],b[Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A. & Nenajdenko, V. G. (2019b). Arkivoc, part vi, 64-73.], 2021a[Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191-193.],b[Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M. & Nenajdenko, V. G. (2021b). Arkivoc, part iii, 67-75.]; Nenajdenko et al., 2020[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013.], 2022[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Atakishiyeva, G. T., Niyazova, A. A., Mammadova, N. A., Novikov, A. S., Buslov, I. V., Khrustalev, V. N. & Tskhovrebov, A. G. (2022). Molecules, 27, 5110.]), the investigation of their structural features by the RQA method (Shikhaliyev et al., 2021c[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Ahmadova, N. E., Askerov, R. K. & Bhattarai, A. (2021c). Acta Cryst. E77, 814-818.],d[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021d). Acta Cryst. E77, 965-970.],e[Shikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021e). Acta Cryst. E77, 1158-1163.]; Atioğlu et al., 2020[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Mlowe, S. (2020). Acta Cryst. E76, 1291-1295.]) and the investigation of the factors affecting the direction of the reaction are distinguished by their relevance.

The presence of an attached di­aza­diene system in dihalogendi­aza­butadiene derivatives leads to their application as a new class of diazo dyes, and the reaction of heminal halogen atoms with various nucleophiles results in important compounds such as azido­triazoles, hydrozo derivatives of α-ketoethers and other nitro­gen-containing heterocyclic compounds (Shikhaliyev et al., 2021f[Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babazade, A. A., Nenajdenko, V. G., Khrustalev, V. N., Novikov, A. S. & Tskhovrebov, A. G. (2021f). Mendeleev Commun. 31, 677-679.]; Tsyrenova et al., 2021[Tsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140-8152.]).

[Scheme 1]

In this context, the corresponding azo dyes were synthesized based on 4-(tert-but­yl)benzaldehyde (Fig. 1[link]), their crystal structures determined and their Hirshfeld surface analysed, and the results of these studies are reported in the current communication.

[Figure 1]
Figure 1
Reaction scheme for the synthesis of compounds (I), (II), (III) and (IV).

2. Structural commentary

In the crystal structure of (I), the central fragment of the mol­ecule, C1/C2/N1/N2/C3/C13/Cl1/Cl2, is almost planar (Fig. 2[link]), with an r.m.s. deviation of fitted atoms of 0.0625 Å from the least-squares plane. This plane forms a dihedral angles of 26.86 (7) and 66.71 (5)° with the planes of the phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings, respectively. In the crystal structure of (II), the central fragment (C1/C2/N2/N1/C3/C13/Cl1/Cl2; r.m.s. deviation of fitted atoms = 0.0779 Å) of the mol­ecule (Fig. 3[link]) makes dihedral angles of 42.41 (5) and 65.31 (4)° with the planes of the 4-methyl­phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings, respectively. In the crystal structure of (III), the central fragment (C1/C2/N1/N2/C3/C13/Cl1/Cl2; r.m.s. deviation of fitted atoms = 0.0324 Å) of the mol­ecule (Fig. 4[link]) forms dihedral angles of 10.75 (3) and 82.00 (3)° with the planes of the 4-meth­oxy­phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of (II) with displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of (III) with displacement ellipsoids drawn at the 50% probability level.

In the crystal structure of (IV), the asymmetric unit comprises two mol­ecules (A and B), Fig. 5[link]. The central fragments (C1/C2/N1/N2/C3/C13/Cl1/Cl2 and C20/C21/N3/N4/C22/C32/Cl3/Cl4) of the mol­ecules A and B are almost planar with the r.m.s. deviations of fitted atoms being 0.0336 for A and 0.0243 Å for B. The central fragment of mol­ecule A forms dihedral angles of 13.45 (4) and 67.03 (5)°, respectively, with the planes of the 3-methyl­phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings. The central fragment of mol­ecule B forms dihedral angles of 3.45 (2) and 84.00 (5)°, respectively, with the planes of the 3-methyl­phenyl (C32–C37) and 4-tert-butyl­phenyl (C22–C27) rings.

[Figure 5]
Figure 5
View of the two mol­ecules (A and B) in the asymmetric unit of (IV) with displacement ellipsoids drawn at the 30% probability level.

Bond lengths and angles in all compounds are in agreement with those reported for the related azo compounds discussed in the Database survey section.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structures of (I) and (II), mol­ecules are mainly connected by C—Cl⋯π inter­actions [for (I), C2—Cl1⋯Cg1i = 3.5617 (8) Å; 158.39 (8)°; symmetry code: (i) 1 − x, −y, 1 − z, and for (II), C2—Cl1⋯Cg1i = 3.6343 (1) Å; 160.79 (1)°, with Cg1 being the centroid of the 4-tert-butyl­phenyl ring (C3–C8); symmetry code: (i) 1 − x, −y, 1 − z]. These inter­actions, together with C—H⋯Cg1 inter­actions (Tables 1[link] and 2[link]), lead to the formation of layers parallel to ([\overline{2}]02), Figs. 6[link] and 7[link]. In the crystal structure of (III), mol­ecules are connected by C—H⋯O and C—H⋯π inter­actions (Table 3[link]) and additional C—Cl⋯π [C2—Cl1⋯Cg1i = 3.7693 (1) Å; 146.35 (1) Å; Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8); symmetry code: (i) 1 − x, −y, 1 − z], forming layers parallel to ([\overline{3}]02) (Table 3[link], Fig. 8[link]). van der Waals forces between these layers maintain the stability of the mol­ecular packing. In the crystal structure of (IV), mol­ecules are connected via C—H⋯π (Table 4[link]) and C—Cl⋯π [C2—Cl2⋯Cg3ii = 3.9515 (9) Å; C2—Cl2⋯Cg3ii = 165.48 (1)°; symmetry code: (ii) −x, y, −1 + z; Cg3 is the centroid of the 4-tert-butyl­phenyl ring (C22–C27) of mol­ecule (IVB)] inter­actions, creating a tri-periodic network (Fig. 9[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.95 3.476 (2) 116
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.88 3.675 (2) 142
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.95 2.39 3.2753 (17) 155
C19—H19BCg1ii 0.98 2.87 3.4276 (17) 117
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg1 and Cg2 are the centroids of the 4-tert-butyl­phenyl rings [(IVA: C3–C8 and (IVB): C13–C18]. Cg4 is the centroid of the 3-methyl­phenyl ring (C32–C37) of mol­ecule (IVB).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg4i 0.95 2.91 3.768 (2) 151
C24—H24⋯Cg2ii 0.95 2.97 3.824 (2) 150
C29—H29BCg1iii 0.98 2.78 3.706 (2) 157
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1].
[Figure 6]
Figure 6
The C—Cl⋯π and C—H⋯π contacts (solid lines) of (I), shown along the b axis.
[Figure 7]
Figure 7
The C—Cl⋯π and C—H⋯π contacts (solid lines) of (II), shown along the b axis.
[Figure 8]
Figure 8
The C—H⋯O, C—Cl⋯π and C—H⋯π contacts (dashed lines) of (III), shown along the a axis.
[Figure 9]
Figure 9
The C—Cl⋯π and C—H⋯π contacts (dashed lines) of (IV), shown along the a axis.

To qu­antify inter­molecular inter­actions between mol­ecules (I), (II), (III), (IVA) and (IVB) in their respective crystal structures, Hirshfeld surface analyses were performed, and the two-dimensional fingerprint plots generated with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The two-dimensional fingerprint plots are shown in Fig. 10[link]. Comparative inter­actions calculated for each compound are given in Table 5[link]. The dominant inter­actions of all compounds are H⋯H [(I): 45.3%, (II): 47.1%, (III): 43.6%, (IVA): 47.0% and (IVB): 44.2%], Cl⋯H/H⋯Cl [(I): 22.8%, (II): 22.2%, (III): 21.3%, (IVA): 20.1% and (IVB): 19.8%] and C⋯H/H⋯C [(I) 17.5%, (II): 18.6%, (III): 17.0%, (IVA): 20.7% and (IVB): 21.1%]. These inter­actions play a crucial role in the overall stabilization of the crystal packing. The presence of different functional groups in the compounds leads to some differences in the remaining weak inter­actions.

Table 5
Percentage contributions of inter­atomic contacts to the Hirshfeld surface in the crystal structure

Contact Percentage contribution
  (I) (II) (III) (IVA) (IVB)
H⋯H 45.3 47.1 43.6 47.0 44.2
Cl⋯H/H⋯Cl 22.8 22.2 21.3 20.1 19.8
C⋯H/H⋯C 17.5 18.6 17.0 20.7 21.1
N⋯H/H⋯N 5.3 5.8 3.7 7.2 8.3
O⋯H/H⋯O 5.1
Cl⋯C/C⋯Cl 3.2 2.8 2.7 2.4 3.3
C⋯C 2.4 1.2 1.7 0.3 0.3
N⋯C/C⋯N 1.5 0.7 1.4
Cl⋯N/N⋯Cl 1.2 0.5 2.9
Cl⋯Cl 0.8 1.2 0.6 2.3 3.0
[Figure 10]
Figure 10
Two-dimensional fingerprint graphs showing the H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C inter­actions of (I), (II), (III), (IVA) and (IV B).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene moiety resulted in 32 hits. Fourteen compounds are closely related to the title compound, viz. those with CSD refcodes TAZDIL (Atioğlu et al., 2022a[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022a). Acta Cryst. E78, 530-535.]), HEHKEO (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]), ECUDAL (Atioğlu et al., 2022b[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804-808.]), PAXDOL (Çelikesir et al., 2022[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404-408.]), CANVUM, (Shikhaliyev et al., 2021d[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021d). Acta Cryst. E77, 965-970.]), EBUCUD (Shikhaliyev et al., 2021d[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021d). Acta Cryst. E77, 965-970.]), GUPHIL (Özkaraca et al., 2020a[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251-1254.]), DULTAI (Özkaraca et al., 2020b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]), XIZREG (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), HODQAV (Shikhaliyev et al., 2019c[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019c). Acta Cryst. E75, 465-469.]), HONBUK (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HONBOE (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), LEQXOX (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and LEQXIR (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

The mol­ecules in TAZDIL are joined into layers parallel to (011) by C—H⋯O and C—H⋯F hydrogen bonds. C—Br⋯π and C—F⋯π contacts, as well as ππ stacking inter­actions strengthen the crystal packing. C—H⋯Br inter­actions connect the mol­ecules in the crystal of the polymorph-1 of HEHKEO, resulting in zigzag C(8) chains along [100]. These chains are connected by C—Br⋯π inter­actions into layers parallel to (001). van der Waals inter­actions between the layers contribute to the crystal cohesion. In the crystals of ECUDAL, C—H⋯O hydrogen bonds link mol­ecules into chains. These chains are linked by face-to-face ππ stacking inter­actions, resulting in a layered structure. Short inter­molecular Br⋯O contacts and van der Waals inter­actions between the layers aid in the cohesion of the crystal packing. The mol­ecules in the crystal of PAXDOL are connected into chains running parallel to [001] by C—H⋯O hydrogen bonds. C—F⋯π contacts and ππ stacking inter­actions help to consolidate the crystal packing, and short Br⋯O [2.9828 (13) Å] distances are also observed. In CANVUM, the mol­ecules are linked by C—H⋯N inter­actions along [100], forming a C(6) chain. The mol­ecules are further connected by C—Cl⋯π inter­actions and face-to-face ππ stacking inter­actions, resulting in ribbons along [100]. The crystal structure of EBUCUD features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions. In GUPHIL, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In XIZREG, the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In HODQAV, mol­ecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In HONBUK and HONBOE, mol­ecules are linked through weak X⋯Cl contacts (X = Cl for HONBUK and Br for HONBOE), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to (001). Additional van der Waals inter­actions consolidate the three-dimensional packing. In the crystals of LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed and in LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur.

5. Synthesis and crystallization

Dyes (I), (II), (III) and (IV) were synthesized according to a literature protocol (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

For (I), a 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-(4-(tert-but­yl)benzyl­idene)-2-phenyl­hydrazine (252 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3× ≃ 20 ml). The combined organic phase was washed with water (3× ≃ 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v: 3/1–1/1). Red solid (yield 69%); m.p. 361 K. Analysis calculated for C18H18Cl2N2 (M = 333.26): 1H NMR (300 MHz, CDCl3) δ 7.87 (dd, J = 6.6, 2.9 Hz, 2H), 7.54–7.47 (m, 5H), 7.21 (d, J = 8.3 Hz, 2H), 1.44 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 162.3, 153.0, 152.2, 151.6, 135.1, 131.5, 129.7, 129.3, 129.0, 125.1, 123.3, 31.4, 29.8.

For (II), the procedure was the same as that for (I) using (E)-1-(4-(tert-but­yl)benzyl­idene)-2-(p-tol­yl)hydrazine (266 mg, 1 mmol). A red solid was obtained (yield 71%); mp 369 K. Analysis calculated for C19H20Cl2N2 (M = 347.28): 1H NMR (300 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.3 Hz, 2H), 2.42 (s, 3H), 1.39 (s, 9H). 13C NMR (75 MHz, CDCl3) 152.1, 151.5, 151.1, 142.2, 134.2, 129.7, 129.7, 129.4, 125.0, 123.3, 34.8, 31.3, 21.6.

For (III), the procedure was the same as that for (I) using (E)-1-(4-(tert-but­yl)benzyl­idene)-2-(4-meth­oxy­phen­yl)hydrazine (276 mg, 1 mmol). An orange solid was obtained (yield 63%); mp 400 K. Analysis calculated for C19H20Cl2N2O (M = 363.28): 1H NMR (300 MHz, CDCl3) δ 7.83 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 3.88 (s, 3H), 1.41 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 162.5, 152.0, 151.4, 147.4, 132.9, 129.7, 129.6, 125.2, 125.0, 114.1, 55.5, 34.7, 31.3.

For (IV), the procedure was the same as that for (I) using (E)-1-(4-(tert-but­yl)benzyl­idene)-2-(m-tol­yl)hydrazine (276 mg, 1 mmol). An orange solid was obtained (yield 63%); mp 339 K. Analysis calculated for C19H20Cl2N2 (M = 347.28): 1 H NMR (300 MHz, CDCl3) δ 7.66 (s, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.37 (dd, J = 9.7, 6.0 Hz, 1H), 7.31 (s, 1H), 7.19 (d, J = 8.3 Hz, 2H), 2.45 (s, 3H), 1.43 (s, 9H). 13C NMR (75 MHz, CDCl3) δ δ 153.0, 152.2, 151.5, 138.9, 134.7, 132.3, 129.7, 129.3, 128.8, 125.1, 124.0, 120.3, 34.8, 31.3, 21.3.

Compounds (I), (II), (III) and (IV) were dissolved in di­chloro­methane and then left at room temperature for slow evaporation; red crystals of all compounds suitable for X-rays started to form after ca 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. For all structures, H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 6
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C18H18Cl2N2 C19H20Cl2N2 C19H20Cl2N2O C19H20Cl2N2
Mr 333.24 347.27 363.27 347.27
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100 100 100
a, b, c (Å) 31.7847 (8), 6.0289 (1), 23.7220 (6) 30.9062 (6), 6.27248 (5), 23.3475 (4) 13.8738 (2), 12.5946 (2), 11.3013 (1) 9.8352 (2), 11.8401 (2), 16.3964 (2)
α, β, γ (°) 90, 132.669 (4), 90 90, 127.223 (3), 90 90, 112.505 (1), 90 98.397 (1), 96.189 (1), 107.149 (1)
V3) 3342.4 (2) 3604.08 (15) 1824.35 (4) 1781.77 (5)
Z 8 8 4 4
Radiation type Cu Kα Cu Kα Cu Kα Cu Kα
μ (mm−1) 3.46 3.23 3.26 3.27
Crystal size (mm) 0.23 × 0.18 × 0.15 0.19 × 0.17 × 0.14 0.24 × 0.20 × 0.18 0.25 × 0.22 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.339, 0.580 0.464, 0.630 0.431, 0.550 0.328, 0.550
No. of measured, independent and observed [I > 2σ(I)] reflections 25151, 3543, 3242 28692, 3805, 3643 25894, 3843, 3603 53607, 7515, 6948
Rint 0.074 0.047 0.076 0.071
(sin θ/λ)max−1) 0.634 0.633 0.634 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.08 0.033, 0.090, 1.10 0.043, 0.118, 1.06 0.058, 0.171, 1.04
No. of reflections 3543 3805 3843 7515
No. of parameters 202 213 221 423
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.36 0.29, −0.30 0.53, −0.33 0.93, −0.63
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) top
Crystal data top
C18H18Cl2N2F(000) = 1392
Mr = 333.24Dx = 1.324 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 31.7847 (8) ÅCell parameters from 12999 reflections
b = 6.0289 (1) Åθ = 3.7–77.3°
c = 23.7220 (6) ŵ = 3.46 mm1
β = 132.669 (4)°T = 100 K
V = 3342.4 (2) Å3Prism, red
Z = 80.23 × 0.18 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3242 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.074
φ and ω scansθmax = 77.7°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 4033
Tmin = 0.339, Tmax = 0.580k = 77
25151 measured reflectionsl = 3030
3543 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0617P)2 + 1.5568P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3543 reflectionsΔρmax = 0.34 e Å3
202 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41113 (6)0.3707 (3)0.34806 (7)0.0190 (3)
C20.44632 (6)0.2439 (3)0.34891 (8)0.0202 (3)
C30.40396 (6)0.3436 (2)0.40351 (8)0.0181 (3)
C40.42175 (6)0.5130 (3)0.45571 (8)0.0209 (3)
H40.4396780.6412380.4568240.025*
C50.41349 (6)0.4962 (2)0.50612 (8)0.0202 (3)
H50.4260290.6133270.5412850.024*
C60.38719 (6)0.3110 (2)0.50615 (7)0.0174 (3)
C70.37085 (6)0.1406 (3)0.45491 (8)0.0202 (3)
H70.3538290.0105310.4546390.024*
C80.37887 (6)0.1563 (3)0.40417 (8)0.0202 (3)
H80.3670820.0379810.3697120.024*
C90.37725 (6)0.2913 (2)0.56103 (8)0.0190 (3)
C100.37583 (8)0.5188 (3)0.58853 (10)0.0298 (4)
H10A0.4130670.5915100.6179260.045*
H10B0.3674730.4998000.6211330.045*
H10C0.3460430.6105810.5441160.045*
C110.32022 (7)0.1755 (3)0.52144 (9)0.0276 (3)
H11A0.2893870.2517510.4732420.041*
H11B0.3125330.1797210.5550560.041*
H11C0.3222790.0208660.5107180.041*
C120.42652 (7)0.1554 (3)0.63116 (9)0.0290 (4)
H12A0.4279980.0094390.6143650.044*
H12B0.4201950.1367030.6659810.044*
H12C0.4627770.2332420.6578600.044*
C130.31598 (6)0.8111 (3)0.23028 (8)0.0190 (3)
C140.33920 (6)0.9139 (3)0.20375 (8)0.0223 (3)
H140.3732140.8580340.2179100.027*
C150.31215 (7)1.0977 (3)0.15666 (9)0.0263 (3)
H150.3279761.1694100.1389470.032*
C160.26201 (7)1.1785 (3)0.13505 (8)0.0258 (3)
H160.2439261.3056620.1030790.031*
C170.23826 (6)1.0734 (3)0.16015 (8)0.0260 (3)
H170.2034761.1263550.1443140.031*
C180.26553 (6)0.8909 (3)0.20839 (8)0.0231 (3)
H180.2498450.8205630.2264710.028*
Cl10.48464 (2)0.02700 (6)0.41131 (2)0.02358 (12)
Cl20.45673 (2)0.28133 (7)0.28705 (2)0.02385 (12)
N10.38241 (5)0.5414 (2)0.29193 (7)0.0193 (3)
N20.34302 (5)0.6330 (2)0.28416 (6)0.0199 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (6)0.0199 (7)0.0164 (6)0.0021 (5)0.0123 (5)0.0010 (5)
C20.0205 (7)0.0230 (7)0.0170 (6)0.0001 (5)0.0127 (5)0.0002 (5)
C30.0195 (6)0.0190 (7)0.0164 (6)0.0016 (5)0.0123 (5)0.0006 (5)
C40.0251 (7)0.0194 (7)0.0208 (6)0.0038 (5)0.0165 (6)0.0018 (6)
C50.0245 (7)0.0186 (7)0.0184 (6)0.0035 (5)0.0149 (6)0.0044 (5)
C60.0193 (6)0.0179 (7)0.0161 (6)0.0022 (5)0.0124 (5)0.0014 (5)
C70.0245 (7)0.0177 (7)0.0214 (6)0.0027 (5)0.0168 (6)0.0021 (5)
C80.0246 (7)0.0179 (7)0.0198 (6)0.0018 (5)0.0157 (6)0.0039 (5)
C90.0256 (7)0.0175 (7)0.0190 (6)0.0018 (5)0.0171 (6)0.0012 (5)
C100.0499 (10)0.0213 (8)0.0375 (8)0.0005 (7)0.0373 (8)0.0022 (7)
C110.0296 (8)0.0337 (9)0.0284 (7)0.0040 (7)0.0232 (7)0.0027 (7)
C120.0323 (8)0.0366 (9)0.0246 (7)0.0103 (7)0.0218 (7)0.0099 (7)
C130.0204 (6)0.0203 (7)0.0154 (6)0.0014 (5)0.0118 (5)0.0025 (5)
C140.0238 (7)0.0233 (7)0.0223 (6)0.0001 (6)0.0167 (6)0.0008 (6)
C150.0295 (8)0.0250 (8)0.0261 (7)0.0028 (6)0.0196 (6)0.0012 (6)
C160.0282 (8)0.0217 (8)0.0198 (6)0.0029 (6)0.0133 (6)0.0017 (6)
C170.0223 (7)0.0308 (8)0.0216 (7)0.0048 (6)0.0136 (6)0.0002 (6)
C180.0218 (7)0.0291 (8)0.0197 (6)0.0007 (6)0.0145 (6)0.0021 (6)
Cl10.0259 (2)0.0243 (2)0.02326 (19)0.00553 (13)0.01777 (16)0.00450 (13)
Cl20.0253 (2)0.0312 (2)0.02177 (19)0.00330 (13)0.01869 (16)0.00240 (13)
N10.0210 (6)0.0201 (6)0.0174 (5)0.0001 (5)0.0132 (5)0.0006 (5)
N20.0212 (6)0.0217 (6)0.0181 (5)0.0003 (5)0.0138 (5)0.0009 (5)
Geometric parameters (Å, º) top
C1—C21.344 (2)C10—H10C0.9800
C1—N11.4205 (19)C11—H11A0.9800
C1—C31.4886 (19)C11—H11B0.9800
C2—Cl11.7146 (15)C11—H11C0.9800
C2—Cl21.7240 (15)C12—H12A0.9800
C3—C81.388 (2)C12—H12B0.9800
C3—C41.396 (2)C12—H12C0.9800
C4—C51.391 (2)C13—C181.394 (2)
C4—H40.9500C13—C141.398 (2)
C5—C61.395 (2)C13—N21.4269 (19)
C5—H50.9500C14—C151.383 (2)
C6—C71.396 (2)C14—H140.9500
C6—C91.5381 (19)C15—C161.390 (2)
C7—C81.393 (2)C15—H150.9500
C7—H70.9500C16—C171.391 (2)
C8—H80.9500C16—H160.9500
C9—C111.532 (2)C17—C181.388 (2)
C9—C101.532 (2)C17—H170.9500
C9—C121.536 (2)C18—H180.9500
C10—H10A0.9800N1—N21.2628 (18)
C10—H10B0.9800
C2—C1—N1115.21 (13)H10A—C10—H10C109.5
C2—C1—C3123.29 (13)H10B—C10—H10C109.5
N1—C1—C3121.45 (13)C9—C11—H11A109.5
C1—C2—Cl1122.94 (12)C9—C11—H11B109.5
C1—C2—Cl2123.42 (12)H11A—C11—H11B109.5
Cl1—C2—Cl2113.64 (9)C9—C11—H11C109.5
C8—C3—C4118.41 (13)H11A—C11—H11C109.5
C8—C3—C1122.15 (13)H11B—C11—H11C109.5
C4—C3—C1119.42 (13)C9—C12—H12A109.5
C5—C4—C3120.69 (14)C9—C12—H12B109.5
C5—C4—H4119.7H12A—C12—H12B109.5
C3—C4—H4119.7C9—C12—H12C109.5
C4—C5—C6121.41 (13)H12A—C12—H12C109.5
C4—C5—H5119.3H12B—C12—H12C109.5
C6—C5—H5119.3C18—C13—C14120.28 (14)
C5—C6—C7117.28 (13)C18—C13—N2115.83 (13)
C5—C6—C9121.94 (13)C14—C13—N2123.75 (13)
C7—C6—C9120.78 (13)C15—C14—C13119.32 (14)
C8—C7—C6121.63 (14)C15—C14—H14120.3
C8—C7—H7119.2C13—C14—H14120.3
C6—C7—H7119.2C14—C15—C16120.54 (15)
C3—C8—C7120.55 (13)C14—C15—H15119.7
C3—C8—H8119.7C16—C15—H15119.7
C7—C8—H8119.7C15—C16—C17120.12 (15)
C11—C9—C10107.75 (13)C15—C16—H16119.9
C11—C9—C12109.54 (13)C17—C16—H16119.9
C10—C9—C12108.60 (13)C18—C17—C16119.81 (14)
C11—C9—C6110.65 (12)C18—C17—H17120.1
C10—C9—C6111.93 (12)C16—C17—H17120.1
C12—C9—C6108.33 (12)C17—C18—C13119.91 (14)
C9—C10—H10A109.5C17—C18—H18120.0
C9—C10—H10B109.5C13—C18—H18120.0
H10A—C10—H10B109.5N2—N1—C1113.43 (12)
C9—C10—H10C109.5N1—N2—C13113.31 (12)
N1—C1—C2—Cl1179.36 (10)C7—C6—C9—C1137.58 (18)
C3—C1—C2—Cl13.2 (2)C5—C6—C9—C1023.30 (19)
N1—C1—C2—Cl20.05 (19)C7—C6—C9—C10157.77 (14)
C3—C1—C2—Cl2177.52 (11)C5—C6—C9—C1296.41 (16)
C2—C1—C3—C867.0 (2)C7—C6—C9—C1282.52 (17)
N1—C1—C3—C8115.67 (16)C18—C13—C14—C151.1 (2)
C2—C1—C3—C4114.42 (17)N2—C13—C14—C15174.40 (14)
N1—C1—C3—C462.90 (18)C13—C14—C15—C160.8 (2)
C8—C3—C4—C51.2 (2)C14—C15—C16—C170.6 (2)
C1—C3—C4—C5177.40 (13)C15—C16—C17—C181.6 (2)
C3—C4—C5—C60.2 (2)C16—C17—C18—C131.3 (2)
C4—C5—C6—C71.7 (2)C14—C13—C18—C170.1 (2)
C4—C5—C6—C9179.38 (13)N2—C13—C18—C17175.75 (13)
C5—C6—C7—C81.8 (2)C2—C1—N1—N2169.00 (13)
C9—C6—C7—C8179.25 (13)C3—C1—N1—N213.47 (19)
C4—C3—C8—C71.1 (2)C1—N1—N2—C13177.31 (11)
C1—C3—C8—C7177.48 (13)C18—C13—N2—N1168.30 (13)
C6—C7—C8—C30.4 (2)C14—C13—N2—N116.0 (2)
C5—C6—C9—C11143.50 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 4-tert-butylphenyl ring (C3–C8).
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.952.953.476 (2)116
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) top
Crystal data top
C19H20Cl2N2F(000) = 1456
Mr = 347.27Dx = 1.280 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 30.9062 (6) ÅCell parameters from 19033 reflections
b = 6.27248 (5) Åθ = 3.6–77.1°
c = 23.3475 (4) ŵ = 3.23 mm1
β = 127.223 (3)°T = 100 K
V = 3604.08 (15) Å3Prism, red
Z = 80.19 × 0.17 × 0.14 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3643 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.047
φ and ω scansθmax = 77.5°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 3838
Tmin = 0.464, Tmax = 0.630k = 67
28692 measured reflectionsl = 2929
3805 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.047P)2 + 2.8P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.29 e Å3
3805 reflectionsΔρmin = 0.30 e Å3
213 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00017 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48998 (2)0.03552 (5)0.41749 (2)0.02454 (11)
Cl20.46363 (2)0.25942 (5)0.29246 (2)0.02446 (11)
N10.39101 (4)0.51844 (18)0.30369 (6)0.0208 (2)
N20.35039 (5)0.59579 (18)0.29674 (6)0.0222 (2)
C10.41805 (5)0.3591 (2)0.35785 (7)0.0201 (3)
C20.45276 (5)0.2354 (2)0.35637 (7)0.0208 (3)
C30.40920 (5)0.3421 (2)0.41360 (7)0.0195 (3)
C40.42254 (6)0.5155 (2)0.45907 (7)0.0227 (3)
H40.4381590.6394400.4550030.027*
C50.41316 (6)0.5082 (2)0.51023 (7)0.0220 (3)
H50.4225230.6278030.5406670.026*
C60.39028 (5)0.3292 (2)0.51781 (7)0.0191 (3)
C70.37776 (5)0.1560 (2)0.47236 (7)0.0211 (3)
H70.3628190.0307530.4770020.025*
C80.38657 (5)0.1621 (2)0.42057 (7)0.0209 (3)
H80.3770880.0429300.3899290.025*
C90.38015 (5)0.3145 (2)0.57443 (7)0.0206 (3)
C100.38607 (6)0.5300 (2)0.60923 (8)0.0284 (3)
H10A0.4232630.5827660.6340720.043*
H10B0.3783000.5132090.6439230.043*
H10C0.3604540.6321360.5719820.043*
C110.32232 (6)0.2333 (3)0.53954 (8)0.0295 (3)
H11A0.2961010.3257940.4990320.044*
H11B0.3151900.2349630.5751280.044*
H11C0.3187340.0873450.5221850.044*
C120.42191 (6)0.1599 (3)0.63358 (8)0.0315 (3)
H12A0.4178020.0193110.6124960.047*
H12B0.4159340.1478960.6701700.047*
H12C0.4586670.2137870.6558510.047*
C130.32527 (5)0.7652 (2)0.24618 (7)0.0199 (3)
C140.35328 (5)0.8930 (2)0.22966 (7)0.0221 (3)
H140.3903740.8652960.2509230.027*
C150.32646 (6)1.0606 (2)0.18195 (8)0.0252 (3)
H150.3456431.1488640.1711440.030*
C160.27186 (6)1.1026 (2)0.14946 (7)0.0247 (3)
C170.24436 (6)0.9736 (2)0.16630 (8)0.0263 (3)
H170.2069960.9990410.1440080.032*
C180.27109 (6)0.8078 (2)0.21550 (8)0.0261 (3)
H180.2524130.7239360.2281250.031*
C190.24335 (7)1.2860 (3)0.09755 (9)0.0361 (4)
H19A0.2049561.2501750.0612310.054*
H19B0.2603431.3131120.0739000.054*
H19C0.2462481.4137990.1238160.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02633 (18)0.02606 (18)0.02459 (17)0.00732 (11)0.01716 (14)0.00613 (11)
Cl20.02460 (18)0.03214 (19)0.02356 (17)0.00413 (12)0.01819 (15)0.00397 (11)
N10.0216 (5)0.0219 (5)0.0208 (5)0.0017 (4)0.0139 (4)0.0011 (4)
N20.0225 (5)0.0241 (5)0.0229 (5)0.0014 (4)0.0153 (5)0.0021 (4)
C10.0210 (6)0.0207 (6)0.0197 (6)0.0009 (5)0.0129 (5)0.0008 (5)
C20.0207 (6)0.0241 (6)0.0192 (6)0.0006 (5)0.0129 (5)0.0022 (5)
C30.0192 (6)0.0211 (6)0.0194 (6)0.0021 (5)0.0123 (5)0.0018 (5)
C40.0268 (7)0.0202 (6)0.0242 (6)0.0034 (5)0.0170 (6)0.0009 (5)
C50.0256 (6)0.0201 (6)0.0229 (6)0.0030 (5)0.0160 (5)0.0029 (5)
C60.0178 (6)0.0210 (6)0.0191 (6)0.0023 (5)0.0115 (5)0.0014 (5)
C70.0246 (6)0.0184 (6)0.0253 (6)0.0019 (5)0.0177 (5)0.0005 (5)
C80.0236 (6)0.0190 (6)0.0227 (6)0.0001 (5)0.0153 (5)0.0016 (5)
C90.0223 (6)0.0225 (6)0.0213 (6)0.0007 (5)0.0154 (5)0.0007 (5)
C100.0361 (8)0.0275 (7)0.0312 (7)0.0034 (6)0.0255 (7)0.0064 (6)
C110.0278 (7)0.0386 (8)0.0303 (7)0.0081 (6)0.0218 (6)0.0078 (6)
C120.0361 (8)0.0381 (8)0.0308 (7)0.0110 (6)0.0258 (7)0.0103 (6)
C130.0225 (6)0.0208 (6)0.0188 (6)0.0018 (5)0.0138 (5)0.0002 (5)
C140.0208 (6)0.0237 (6)0.0245 (6)0.0015 (5)0.0151 (5)0.0008 (5)
C150.0266 (7)0.0237 (6)0.0287 (7)0.0010 (5)0.0185 (6)0.0036 (5)
C160.0274 (7)0.0218 (6)0.0230 (6)0.0036 (5)0.0143 (6)0.0002 (5)
C170.0217 (6)0.0290 (7)0.0284 (7)0.0048 (5)0.0151 (6)0.0016 (5)
C180.0243 (7)0.0299 (7)0.0293 (7)0.0016 (5)0.0189 (6)0.0026 (6)
C190.0327 (8)0.0305 (8)0.0383 (8)0.0102 (6)0.0180 (7)0.0111 (6)
Geometric parameters (Å, º) top
Cl1—C21.7163 (13)C10—H10B0.9800
Cl2—C21.7229 (13)C10—H10C0.9800
N1—N21.2613 (16)C11—H11A0.9800
N1—C11.4202 (16)C11—H11B0.9800
N2—C131.4199 (17)C11—H11C0.9800
C1—C21.3415 (19)C12—H12A0.9800
C1—C31.4871 (17)C12—H12B0.9800
C3—C81.3887 (18)C12—H12C0.9800
C3—C41.3964 (18)C13—C181.3921 (19)
C4—C51.3898 (19)C13—C141.3944 (18)
C4—H40.9500C14—C151.3844 (19)
C5—C61.3942 (18)C14—H140.9500
C5—H50.9500C15—C161.394 (2)
C6—C71.3995 (18)C15—H150.9500
C6—C91.5348 (17)C16—C171.391 (2)
C7—C81.3915 (18)C16—C191.5089 (19)
C7—H70.9500C17—C181.391 (2)
C8—H80.9500C17—H170.9500
C9—C101.5303 (18)C18—H180.9500
C9—C111.5349 (18)C19—H19A0.9800
C9—C121.5353 (19)C19—H19B0.9800
C10—H10A0.9800C19—H19C0.9800
N2—N1—C1112.90 (11)H10B—C10—H10C109.5
N1—N2—C13113.32 (10)C9—C11—H11A109.5
C2—C1—N1115.67 (11)C9—C11—H11B109.5
C2—C1—C3123.67 (12)H11A—C11—H11B109.5
N1—C1—C3120.60 (11)C9—C11—H11C109.5
C1—C2—Cl1123.05 (10)H11A—C11—H11C109.5
C1—C2—Cl2123.35 (10)H11B—C11—H11C109.5
Cl1—C2—Cl2113.60 (7)C9—C12—H12A109.5
C8—C3—C4118.82 (12)C9—C12—H12B109.5
C8—C3—C1122.23 (12)H12A—C12—H12B109.5
C4—C3—C1118.92 (11)C9—C12—H12C109.5
C5—C4—C3120.59 (12)H12A—C12—H12C109.5
C5—C4—H4119.7H12B—C12—H12C109.5
C3—C4—H4119.7C18—C13—C14120.14 (12)
C4—C5—C6121.38 (12)C18—C13—N2117.00 (12)
C4—C5—H5119.3C14—C13—N2122.78 (12)
C6—C5—H5119.3C15—C14—C13119.31 (12)
C5—C6—C7117.26 (11)C15—C14—H14120.3
C5—C6—C9122.75 (11)C13—C14—H14120.3
C7—C6—C9119.96 (11)C14—C15—C16121.31 (13)
C8—C7—C6121.85 (12)C14—C15—H15119.3
C8—C7—H7119.1C16—C15—H15119.3
C6—C7—H7119.1C17—C16—C15118.81 (12)
C3—C8—C7120.09 (12)C17—C16—C19120.69 (13)
C3—C8—H8120.0C15—C16—C19120.49 (13)
C7—C8—H8120.0C18—C17—C16120.58 (13)
C10—C9—C6112.52 (11)C18—C17—H17119.7
C10—C9—C11107.56 (11)C16—C17—H17119.7
C6—C9—C11109.98 (10)C17—C18—C13119.81 (13)
C10—C9—C12108.35 (12)C17—C18—H18120.1
C6—C9—C12108.31 (10)C13—C18—H18120.1
C11—C9—C12110.09 (12)C16—C19—H19A109.5
C9—C10—H10A109.5C16—C19—H19B109.5
C9—C10—H10B109.5H19A—C19—H19B109.5
H10A—C10—H10B109.5C16—C19—H19C109.5
C9—C10—H10C109.5H19A—C19—H19C109.5
H10A—C10—H10C109.5H19B—C19—H19C109.5
C1—N1—N2—C13175.97 (11)C6—C7—C8—C31.1 (2)
N2—N1—C1—C2164.44 (12)C5—C6—C9—C1012.41 (17)
N2—N1—C1—C318.16 (17)C7—C6—C9—C10169.31 (12)
N1—C1—C2—Cl1179.34 (9)C5—C6—C9—C11132.31 (13)
C3—C1—C2—Cl12.03 (19)C7—C6—C9—C1149.41 (16)
N1—C1—C2—Cl21.51 (18)C5—C6—C9—C12107.35 (14)
C3—C1—C2—Cl2178.82 (10)C7—C6—C9—C1270.94 (15)
C2—C1—C3—C865.16 (18)N1—N2—C13—C18157.20 (12)
N1—C1—C3—C8117.65 (14)N1—N2—C13—C1426.07 (18)
C2—C1—C3—C4116.87 (15)C18—C13—C14—C150.7 (2)
N1—C1—C3—C460.31 (17)N2—C13—C14—C15177.35 (12)
C8—C3—C4—C50.2 (2)C13—C14—C15—C160.8 (2)
C1—C3—C4—C5177.83 (12)C14—C15—C16—C170.7 (2)
C3—C4—C5—C60.0 (2)C14—C15—C16—C19179.95 (14)
C4—C5—C6—C70.74 (19)C15—C16—C17—C180.9 (2)
C4—C5—C6—C9179.07 (12)C19—C16—C17—C18178.43 (14)
C5—C6—C7—C81.27 (19)C16—C17—C18—C132.4 (2)
C9—C6—C7—C8179.65 (12)C14—C13—C18—C172.3 (2)
C4—C3—C8—C70.30 (19)N2—C13—C18—C17179.13 (12)
C1—C3—C8—C7178.27 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 4-tert-butylphenyl ring (C3–C8).
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.952.883.675 (2)142
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) top
Crystal data top
C19H20Cl2N2OF(000) = 760
Mr = 363.27Dx = 1.323 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.8738 (2) ÅCell parameters from 17727 reflections
b = 12.5946 (2) Åθ = 3.4–77.6°
c = 11.3013 (1) ŵ = 3.26 mm1
β = 112.505 (1)°T = 100 K
V = 1824.35 (4) Å3Prism, red
Z = 40.24 × 0.20 × 0.18 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3603 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.076
φ and ω scansθmax = 77.9°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1517
Tmin = 0.431, Tmax = 0.550k = 1515
25894 measured reflectionsl = 1414
3843 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.4008P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3843 reflectionsΔρmax = 0.53 e Å3
221 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20324 (11)0.34882 (11)0.22693 (13)0.0187 (3)
C20.14902 (11)0.30352 (11)0.11245 (13)0.0202 (3)
C30.19934 (10)0.46520 (11)0.24859 (12)0.0176 (3)
C40.13412 (10)0.50501 (11)0.30620 (13)0.0189 (3)
H40.0936070.4573910.3334120.023*
C50.12770 (10)0.61349 (11)0.32425 (13)0.0188 (3)
H50.0813870.6388760.3617130.023*
C60.18772 (10)0.68598 (11)0.28860 (12)0.0170 (3)
C70.25514 (11)0.64453 (12)0.23454 (14)0.0213 (3)
H70.2984830.6916470.2114150.026*
C80.26040 (11)0.53661 (12)0.21381 (13)0.0214 (3)
H80.3061160.5111660.1755110.026*
C90.18118 (11)0.80655 (11)0.30498 (13)0.0205 (3)
C100.09974 (13)0.83569 (12)0.35970 (16)0.0268 (3)
H10A0.0308330.8115990.3010350.040*
H10B0.0987590.9128850.3700510.040*
H10C0.1173380.8012960.4431480.040*
C110.28773 (13)0.84892 (13)0.39614 (16)0.0282 (3)
H11A0.3056960.8171480.4810740.042*
H11B0.2842630.9262990.4027050.042*
H11C0.3411210.8303010.3627270.042*
C120.15139 (14)0.86056 (13)0.17359 (15)0.0298 (3)
H12A0.2051610.8459230.1394060.045*
H12B0.1458270.9373930.1831690.045*
H12C0.0842140.8327690.1145380.045*
C130.37438 (10)0.24915 (11)0.52562 (13)0.0184 (3)
C140.39042 (11)0.14261 (11)0.50182 (13)0.0193 (3)
H140.3605430.1151060.4172180.023*
C150.44961 (11)0.07799 (11)0.60150 (13)0.0198 (3)
H150.4610970.0060530.5852470.024*
C160.49311 (10)0.11785 (11)0.72709 (13)0.0186 (3)
C170.47838 (11)0.22386 (11)0.75109 (13)0.0199 (3)
H170.5081070.2513800.8356950.024*
C180.41964 (11)0.28891 (11)0.64970 (13)0.0206 (3)
H180.4102620.3615330.6653450.025*
C190.59249 (13)0.08155 (13)0.94780 (14)0.0275 (3)
H19A0.6419170.1393120.9557510.041*
H19B0.6290320.0223361.0030280.041*
H19C0.5368170.1070570.9738330.041*
Cl10.07489 (3)0.37510 (3)0.01999 (3)0.02558 (13)
Cl20.14590 (3)0.16875 (3)0.08679 (3)0.02464 (13)
N10.26151 (9)0.27761 (9)0.32441 (11)0.0193 (2)
N20.31434 (9)0.32201 (9)0.42989 (11)0.0195 (2)
O10.54829 (8)0.04642 (8)0.81760 (10)0.0246 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (6)0.0180 (6)0.0175 (6)0.0014 (5)0.0081 (5)0.0008 (5)
C20.0227 (7)0.0178 (6)0.0191 (6)0.0003 (5)0.0070 (5)0.0001 (5)
C30.0202 (6)0.0168 (6)0.0139 (6)0.0012 (5)0.0042 (5)0.0002 (5)
C40.0200 (6)0.0193 (7)0.0168 (6)0.0019 (5)0.0064 (5)0.0009 (5)
C50.0192 (6)0.0207 (7)0.0168 (6)0.0004 (5)0.0072 (5)0.0002 (5)
C60.0188 (6)0.0167 (6)0.0129 (6)0.0002 (5)0.0034 (5)0.0002 (5)
C70.0237 (7)0.0200 (7)0.0227 (7)0.0028 (5)0.0116 (6)0.0008 (5)
C80.0240 (7)0.0217 (7)0.0219 (6)0.0017 (5)0.0126 (5)0.0008 (5)
C90.0253 (7)0.0156 (6)0.0193 (6)0.0009 (5)0.0071 (5)0.0007 (5)
C100.0318 (8)0.0185 (7)0.0316 (8)0.0042 (6)0.0137 (6)0.0015 (6)
C110.0293 (8)0.0225 (7)0.0301 (8)0.0055 (6)0.0084 (6)0.0064 (6)
C120.0457 (9)0.0192 (7)0.0230 (7)0.0005 (6)0.0114 (7)0.0031 (6)
C130.0204 (6)0.0172 (6)0.0171 (6)0.0002 (5)0.0065 (5)0.0010 (5)
C140.0219 (7)0.0182 (6)0.0179 (6)0.0018 (5)0.0079 (5)0.0020 (5)
C150.0227 (6)0.0157 (6)0.0202 (6)0.0001 (5)0.0073 (5)0.0005 (5)
C160.0181 (6)0.0180 (7)0.0185 (6)0.0003 (5)0.0056 (5)0.0030 (5)
C170.0218 (6)0.0193 (7)0.0169 (6)0.0010 (5)0.0054 (5)0.0012 (5)
C180.0242 (7)0.0165 (6)0.0198 (6)0.0001 (5)0.0069 (5)0.0009 (5)
C190.0326 (8)0.0238 (7)0.0183 (7)0.0041 (6)0.0009 (6)0.0018 (5)
Cl10.0307 (2)0.0239 (2)0.01655 (19)0.00034 (12)0.00291 (15)0.00222 (11)
Cl20.0306 (2)0.0173 (2)0.0225 (2)0.00119 (12)0.00626 (15)0.00440 (11)
N10.0219 (6)0.0179 (6)0.0168 (5)0.0010 (4)0.0059 (4)0.0004 (4)
N20.0225 (6)0.0178 (6)0.0170 (5)0.0010 (4)0.0064 (5)0.0004 (4)
O10.0301 (5)0.0187 (5)0.0190 (5)0.0039 (4)0.0027 (4)0.0019 (4)
Geometric parameters (Å, º) top
C1—C21.349 (2)C11—H11B0.9800
C1—N11.4106 (18)C11—H11C0.9800
C1—C31.4904 (19)C12—H12A0.9800
C2—Cl11.7125 (14)C12—H12B0.9800
C2—Cl21.7196 (15)C12—H12C0.9800
C3—C81.3913 (19)C13—C181.3920 (19)
C3—C41.3947 (19)C13—C141.4029 (19)
C4—C51.389 (2)C13—N21.4200 (18)
C4—H40.9500C14—C151.377 (2)
C5—C61.3951 (19)C14—H140.9500
C5—H50.9500C15—C161.405 (2)
C6—C71.3993 (19)C15—H150.9500
C6—C91.5366 (19)C16—O11.3573 (17)
C7—C81.386 (2)C16—C171.393 (2)
C7—H70.9500C17—C181.3905 (19)
C8—H80.9500C17—H170.9500
C9—C101.526 (2)C18—H180.9500
C9—C111.538 (2)C19—O11.4305 (18)
C9—C121.539 (2)C19—H19A0.9800
C10—H10A0.9800C19—H19B0.9800
C10—H10B0.9800C19—H19C0.9800
C10—H10C0.9800N1—N21.2658 (17)
C11—H11A0.9800
C2—C1—N1114.99 (12)H11A—C11—H11B109.5
C2—C1—C3122.10 (13)C9—C11—H11C109.5
N1—C1—C3122.89 (12)H11A—C11—H11C109.5
C1—C2—Cl1122.91 (11)H11B—C11—H11C109.5
C1—C2—Cl2123.23 (11)C9—C12—H12A109.5
Cl1—C2—Cl2113.85 (8)C9—C12—H12B109.5
C8—C3—C4118.26 (13)H12A—C12—H12B109.5
C8—C3—C1121.67 (12)C9—C12—H12C109.5
C4—C3—C1120.07 (12)H12A—C12—H12C109.5
C5—C4—C3120.77 (12)H12B—C12—H12C109.5
C5—C4—H4119.6C18—C13—C14119.59 (13)
C3—C4—H4119.6C18—C13—N2116.23 (12)
C4—C5—C6121.48 (12)C14—C13—N2124.19 (12)
C4—C5—H5119.3C15—C14—C13119.80 (13)
C6—C5—H5119.3C15—C14—H14120.1
C5—C6—C7117.03 (13)C13—C14—H14120.1
C5—C6—C9122.86 (12)C14—C15—C16120.40 (13)
C7—C6—C9120.10 (12)C14—C15—H15119.8
C8—C7—C6121.80 (13)C16—C15—H15119.8
C8—C7—H7119.1O1—C16—C17124.82 (13)
C6—C7—H7119.1O1—C16—C15115.13 (12)
C7—C8—C3120.60 (13)C17—C16—C15120.05 (12)
C7—C8—H8119.7C18—C17—C16119.19 (12)
C3—C8—H8119.7C18—C17—H17120.4
C10—C9—C6111.93 (12)C16—C17—H17120.4
C10—C9—C11108.42 (12)C17—C18—C13120.95 (13)
C6—C9—C11109.73 (12)C17—C18—H18119.5
C10—C9—C12108.52 (13)C13—C18—H18119.5
C6—C9—C12109.09 (11)O1—C19—H19A109.5
C11—C9—C12109.10 (13)O1—C19—H19B109.5
C9—C10—H10A109.5H19A—C19—H19B109.5
C9—C10—H10B109.5O1—C19—H19C109.5
H10A—C10—H10B109.5H19A—C19—H19C109.5
C9—C10—H10C109.5H19B—C19—H19C109.5
H10A—C10—H10C109.5N2—N1—C1114.00 (12)
H10B—C10—H10C109.5N1—N2—C13113.04 (11)
C9—C11—H11A109.5C16—O1—C19117.79 (11)
C9—C11—H11B109.5
N1—C1—C2—Cl1178.80 (10)C7—C6—C9—C1162.26 (17)
C3—C1—C2—Cl12.57 (19)C5—C6—C9—C12122.02 (15)
N1—C1—C2—Cl22.48 (18)C7—C6—C9—C1257.21 (17)
C3—C1—C2—Cl2176.14 (10)C18—C13—C14—C150.8 (2)
C2—C1—C3—C882.01 (18)N2—C13—C14—C15179.66 (12)
N1—C1—C3—C899.47 (16)C13—C14—C15—C160.7 (2)
C2—C1—C3—C498.64 (16)C14—C15—C16—O1178.87 (12)
N1—C1—C3—C479.88 (17)C14—C15—C16—C171.4 (2)
C8—C3—C4—C52.2 (2)O1—C16—C17—C18179.72 (13)
C1—C3—C4—C5178.43 (12)C15—C16—C17—C180.5 (2)
C3—C4—C5—C61.6 (2)C16—C17—C18—C131.0 (2)
C4—C5—C6—C70.37 (19)C14—C13—C18—C171.7 (2)
C4—C5—C6—C9178.89 (12)N2—C13—C18—C17178.79 (12)
C5—C6—C7—C81.7 (2)C2—C1—N1—N2177.92 (12)
C9—C6—C7—C8177.56 (13)C3—C1—N1—N23.46 (18)
C6—C7—C8—C31.1 (2)C1—N1—N2—C13178.51 (11)
C4—C3—C8—C70.9 (2)C18—C13—N2—N1168.92 (12)
C1—C3—C8—C7179.78 (13)C14—C13—N2—N111.54 (18)
C5—C6—C9—C101.92 (18)C17—C16—O1—C191.7 (2)
C7—C6—C9—C10177.32 (13)C15—C16—O1—C19178.58 (13)
C5—C6—C9—C11118.51 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the 4-tert-butylphenyl ring (C3–C8).
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.393.2753 (17)155
C19—H19B···Cg1ii0.982.873.4276 (17)117
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) top
Crystal data top
C19H20Cl2N2Z = 4
Mr = 347.27F(000) = 728
Triclinic, P1Dx = 1.295 Mg m3
a = 9.8352 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.8401 (2) ÅCell parameters from 36250 reflections
c = 16.3964 (2) Åθ = 2.7–77.7°
α = 98.397 (1)°µ = 3.27 mm1
β = 96.189 (1)°T = 100 K
γ = 107.149 (1)°Prism, red
V = 1781.77 (5) Å30.25 × 0.22 × 0.18 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6948 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.071
φ and ω scansθmax = 77.9°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1212
Tmin = 0.328, Tmax = 0.550k = 1412
53607 measured reflectionsl = 2020
7515 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1247P)2 + 0.6991P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7515 reflectionsΔρmax = 0.93 e Å3
423 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61178 (18)0.35073 (16)0.16342 (12)0.0249 (4)
C20.6208 (2)0.27286 (17)0.09726 (12)0.0286 (4)
C30.58777 (18)0.31800 (15)0.24597 (11)0.0230 (3)
C40.46666 (19)0.32673 (16)0.28085 (12)0.0265 (4)
H40.3937230.3475510.2494290.032*
C50.45226 (19)0.30530 (16)0.36066 (12)0.0265 (4)
H50.3690670.3116000.3830400.032*
C60.55770 (18)0.27437 (15)0.40967 (11)0.0239 (3)
C70.67636 (19)0.26365 (16)0.37312 (12)0.0255 (4)
H70.7487850.2415410.4039580.031*
C80.69106 (18)0.28451 (16)0.29288 (12)0.0255 (4)
H80.7726540.2758170.2696710.031*
C90.5398 (2)0.25476 (16)0.49849 (12)0.0272 (4)
C100.5205 (2)0.36724 (18)0.54994 (13)0.0333 (4)
H10A0.6037030.4375810.5501080.050*
H10B0.5129890.3554180.6074130.050*
H10C0.4324780.3802170.5250090.050*
C110.4060 (2)0.14560 (18)0.49507 (13)0.0344 (4)
H11A0.3204350.1606830.4686230.052*
H11B0.3940790.1326100.5519060.052*
H11C0.4181470.0739430.4625180.052*
C120.6708 (2)0.2312 (2)0.54356 (13)0.0343 (4)
H12A0.6819490.1572110.5138360.051*
H12B0.6565450.2223740.6008230.051*
H12C0.7576300.2989390.5448410.051*
C130.67080 (18)0.66543 (17)0.20121 (12)0.0267 (4)
C140.67993 (19)0.69894 (17)0.12348 (12)0.0273 (4)
H140.6592720.6388810.0745970.033*
C150.7192 (2)0.81996 (18)0.11699 (13)0.0300 (4)
C160.7485 (2)0.90601 (17)0.18984 (13)0.0313 (4)
H160.7761880.9888380.1862200.038*
C170.7382 (2)0.87368 (18)0.26740 (13)0.0313 (4)
H170.7578300.9338870.3160950.038*
C180.69929 (19)0.75318 (17)0.27368 (13)0.0284 (4)
H180.6919720.7302660.3266010.034*
C190.7313 (3)0.85617 (19)0.03339 (14)0.0372 (5)
H19A0.6816650.9158950.0275310.056*
H19B0.6868640.7852580.0109020.056*
H19C0.8331650.8910010.0289710.056*
C200.91894 (19)0.62019 (16)0.82034 (12)0.0257 (4)
C210.9535 (2)0.69058 (16)0.89645 (12)0.0290 (4)
C220.87259 (19)0.48653 (16)0.80936 (11)0.0237 (3)
C230.72883 (19)0.41702 (17)0.79251 (12)0.0278 (4)
H230.6563340.4548900.7876740.033*
C240.68937 (18)0.29242 (16)0.78259 (12)0.0261 (4)
H240.5899930.2466600.7716070.031*
C250.79213 (18)0.23299 (15)0.78837 (11)0.0228 (3)
C260.93658 (19)0.30439 (17)0.80626 (12)0.0286 (4)
H261.0091960.2666380.8110200.034*
C270.97708 (19)0.42862 (17)0.81727 (13)0.0292 (4)
H271.0762830.4747320.8302610.035*
C280.75234 (19)0.09595 (16)0.77649 (11)0.0253 (4)
C290.5908 (2)0.03328 (16)0.74827 (13)0.0306 (4)
H29A0.5376720.0594550.7905460.046*
H29B0.5704310.0540500.7410810.046*
H29C0.5607190.0542550.6950970.046*
C300.8320 (2)0.05048 (18)0.70974 (14)0.0341 (4)
H30A0.8089990.0775580.6577930.051*
H30B0.8016150.0376410.6996040.051*
H30C0.9361430.0825500.7292760.051*
C310.7981 (2)0.06146 (18)0.85985 (14)0.0369 (5)
H31A0.9020820.0995350.8777740.055*
H31B0.7749290.0261500.8524010.055*
H31C0.7463150.0890540.9023860.055*
C320.92807 (19)0.68230 (17)0.61640 (12)0.0254 (4)
C330.90203 (19)0.61415 (17)0.53664 (12)0.0279 (4)
H330.8682530.5288570.5291370.034*
C340.9247 (2)0.66907 (18)0.46696 (12)0.0293 (4)
C350.9724 (2)0.79377 (18)0.48010 (13)0.0310 (4)
H350.9880080.8328520.4337020.037*
C360.9977 (2)0.86290 (18)0.55985 (13)0.0328 (4)
H361.0297970.9481850.5670200.039*
C370.9767 (2)0.80869 (17)0.62886 (12)0.0293 (4)
H370.9947860.8558060.6833340.035*
C380.8987 (3)0.5940 (2)0.38145 (13)0.0393 (5)
H38A0.9559990.5388460.3812760.059*
H38B0.9269600.6465110.3410580.059*
H38C0.7962040.5475390.3660890.059*
Cl10.58942 (6)0.12256 (4)0.09905 (3)0.03558 (15)
Cl20.66274 (6)0.31202 (5)0.00425 (3)0.03661 (15)
Cl30.93882 (6)0.63467 (4)0.98652 (3)0.03543 (15)
Cl41.01859 (6)0.84553 (4)0.91208 (3)0.03931 (16)
N10.63865 (16)0.47049 (14)0.15050 (10)0.0266 (3)
N20.63619 (16)0.54441 (14)0.21407 (10)0.0260 (3)
N30.93773 (17)0.68198 (14)0.75331 (10)0.0269 (3)
N40.90357 (16)0.61543 (14)0.68230 (10)0.0264 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (8)0.0224 (8)0.0308 (9)0.0099 (6)0.0048 (6)0.0082 (7)
C20.0314 (9)0.0264 (9)0.0314 (9)0.0123 (7)0.0071 (7)0.0083 (7)
C30.0257 (8)0.0165 (7)0.0286 (9)0.0091 (6)0.0043 (6)0.0050 (6)
C40.0261 (8)0.0235 (9)0.0346 (9)0.0135 (7)0.0045 (7)0.0085 (7)
C50.0254 (8)0.0246 (9)0.0339 (10)0.0126 (7)0.0073 (7)0.0075 (7)
C60.0260 (8)0.0180 (8)0.0289 (9)0.0088 (6)0.0043 (7)0.0047 (6)
C70.0256 (8)0.0229 (8)0.0308 (9)0.0113 (6)0.0035 (7)0.0075 (7)
C80.0232 (8)0.0231 (8)0.0339 (9)0.0116 (6)0.0058 (7)0.0067 (7)
C90.0302 (9)0.0251 (9)0.0286 (9)0.0109 (7)0.0061 (7)0.0065 (7)
C100.0399 (10)0.0312 (10)0.0331 (10)0.0164 (8)0.0101 (8)0.0048 (8)
C110.0365 (10)0.0300 (10)0.0355 (10)0.0056 (8)0.0084 (8)0.0102 (8)
C120.0386 (10)0.0387 (11)0.0311 (10)0.0184 (8)0.0056 (8)0.0107 (8)
C130.0223 (8)0.0256 (9)0.0354 (10)0.0103 (7)0.0055 (7)0.0093 (7)
C140.0268 (8)0.0248 (9)0.0329 (9)0.0121 (7)0.0042 (7)0.0057 (7)
C150.0276 (8)0.0309 (10)0.0346 (10)0.0117 (7)0.0048 (7)0.0109 (8)
C160.0284 (9)0.0236 (9)0.0430 (11)0.0100 (7)0.0040 (8)0.0075 (8)
C170.0306 (9)0.0262 (9)0.0367 (10)0.0113 (7)0.0027 (7)0.0013 (7)
C180.0267 (8)0.0266 (9)0.0344 (10)0.0118 (7)0.0044 (7)0.0064 (7)
C190.0501 (12)0.0270 (10)0.0386 (11)0.0146 (9)0.0089 (9)0.0129 (8)
C200.0255 (8)0.0235 (9)0.0303 (9)0.0093 (7)0.0070 (7)0.0070 (7)
C210.0361 (9)0.0206 (8)0.0327 (10)0.0097 (7)0.0094 (7)0.0082 (7)
C220.0280 (8)0.0214 (8)0.0237 (8)0.0101 (7)0.0059 (6)0.0048 (6)
C230.0270 (8)0.0233 (9)0.0364 (10)0.0137 (7)0.0045 (7)0.0048 (7)
C240.0214 (8)0.0232 (9)0.0344 (9)0.0086 (6)0.0033 (7)0.0053 (7)
C250.0269 (8)0.0221 (8)0.0224 (8)0.0117 (7)0.0042 (6)0.0048 (6)
C260.0254 (8)0.0271 (9)0.0371 (10)0.0145 (7)0.0039 (7)0.0056 (7)
C270.0217 (8)0.0260 (9)0.0398 (10)0.0076 (7)0.0048 (7)0.0059 (7)
C280.0287 (8)0.0212 (8)0.0287 (9)0.0120 (7)0.0035 (7)0.0052 (6)
C290.0303 (9)0.0197 (8)0.0417 (11)0.0071 (7)0.0063 (8)0.0059 (7)
C300.0329 (9)0.0263 (9)0.0426 (11)0.0127 (7)0.0069 (8)0.0026 (8)
C310.0492 (12)0.0264 (10)0.0375 (11)0.0158 (8)0.0009 (9)0.0112 (8)
C320.0246 (8)0.0269 (9)0.0293 (9)0.0130 (7)0.0054 (7)0.0086 (7)
C330.0278 (8)0.0237 (9)0.0336 (10)0.0113 (7)0.0020 (7)0.0050 (7)
C340.0298 (9)0.0309 (10)0.0300 (9)0.0159 (7)0.0008 (7)0.0041 (7)
C350.0352 (9)0.0308 (10)0.0324 (10)0.0168 (8)0.0052 (7)0.0100 (7)
C360.0411 (10)0.0254 (9)0.0351 (10)0.0147 (8)0.0052 (8)0.0078 (8)
C370.0340 (9)0.0263 (9)0.0315 (9)0.0154 (7)0.0052 (7)0.0053 (7)
C380.0563 (13)0.0344 (11)0.0305 (10)0.0231 (10)0.0010 (9)0.0040 (8)
Cl10.0505 (3)0.0238 (3)0.0367 (3)0.0175 (2)0.0099 (2)0.00496 (19)
Cl20.0483 (3)0.0372 (3)0.0302 (3)0.0181 (2)0.0131 (2)0.01026 (19)
Cl30.0526 (3)0.0272 (3)0.0286 (3)0.0135 (2)0.0108 (2)0.00704 (18)
Cl40.0583 (3)0.0196 (2)0.0377 (3)0.0078 (2)0.0127 (2)0.00383 (18)
N10.0252 (7)0.0249 (8)0.0330 (8)0.0104 (6)0.0055 (6)0.0099 (6)
N20.0246 (7)0.0228 (7)0.0335 (8)0.0108 (6)0.0052 (6)0.0072 (6)
N30.0290 (7)0.0252 (8)0.0299 (8)0.0114 (6)0.0074 (6)0.0079 (6)
N40.0253 (7)0.0259 (8)0.0311 (8)0.0116 (6)0.0044 (6)0.0079 (6)
Geometric parameters (Å, º) top
C1—C21.346 (3)C20—N31.406 (2)
C1—N11.416 (2)C20—C221.489 (2)
C1—C31.485 (2)C21—Cl31.7074 (19)
C2—Cl21.715 (2)C21—Cl41.7252 (19)
C2—Cl11.7193 (19)C22—C231.384 (3)
C3—C81.392 (2)C22—C271.399 (2)
C3—C41.400 (2)C23—C241.390 (3)
C4—C51.383 (3)C23—H230.9500
C4—H40.9500C24—C251.394 (2)
C5—C61.409 (2)C24—H240.9500
C5—H50.9500C25—C261.396 (3)
C6—C71.398 (2)C25—C281.530 (2)
C6—C91.528 (2)C26—C271.384 (3)
C7—C81.389 (3)C26—H260.9500
C7—H70.9500C27—H270.9500
C8—H80.9500C28—C291.528 (2)
C9—C121.533 (3)C28—C301.537 (3)
C9—C111.538 (3)C28—C311.541 (3)
C9—C101.542 (3)C29—H29A0.9800
C10—H10A0.9800C29—H29B0.9800
C10—H10B0.9800C29—H29C0.9800
C10—H10C0.9800C30—H30A0.9800
C11—H11A0.9800C30—H30B0.9800
C11—H11B0.9800C30—H30C0.9800
C11—H11C0.9800C31—H31A0.9800
C12—H12A0.9800C31—H31B0.9800
C12—H12B0.9800C31—H31C0.9800
C12—H12C0.9800C32—C331.387 (3)
C13—C141.393 (3)C32—C371.406 (3)
C13—C181.402 (3)C32—N41.430 (2)
C13—N21.425 (2)C33—C341.402 (3)
C14—C151.393 (3)C33—H330.9500
C14—H140.9500C34—C351.387 (3)
C15—C161.395 (3)C34—C381.499 (3)
C15—C191.501 (3)C35—C361.392 (3)
C16—C171.386 (3)C35—H350.9500
C16—H160.9500C36—C371.385 (3)
C17—C181.386 (3)C36—H360.9500
C17—H170.9500C37—H370.9500
C18—H180.9500C38—H38A0.9800
C19—H19A0.9800C38—H38B0.9800
C19—H19B0.9800C38—H38C0.9800
C19—H19C0.9800N1—N21.267 (2)
C20—C211.344 (3)N3—N41.257 (2)
C2—C1—N1114.51 (16)N3—C20—C22123.14 (16)
C2—C1—C3123.57 (16)C20—C21—Cl3123.03 (15)
N1—C1—C3121.73 (16)C20—C21—Cl4123.05 (15)
C1—C2—Cl2124.11 (15)Cl3—C21—Cl4113.91 (11)
C1—C2—Cl1122.10 (15)C23—C22—C27118.47 (16)
Cl2—C2—Cl1113.79 (11)C23—C22—C20122.24 (16)
C8—C3—C4118.29 (17)C27—C22—C20119.28 (16)
C8—C3—C1120.08 (15)C22—C23—C24120.73 (16)
C4—C3—C1121.52 (15)C22—C23—H23119.6
C5—C4—C3120.57 (16)C24—C23—H23119.6
C5—C4—H4119.7C23—C24—C25121.58 (16)
C3—C4—H4119.7C23—C24—H24119.2
C4—C5—C6121.76 (16)C25—C24—H24119.2
C4—C5—H5119.1C24—C25—C26117.00 (16)
C6—C5—H5119.1C24—C25—C28122.87 (15)
C7—C6—C5116.83 (16)C26—C25—C28120.13 (15)
C7—C6—C9123.00 (15)C27—C26—C25121.91 (16)
C5—C6—C9120.17 (16)C27—C26—H26119.0
C8—C7—C6121.65 (16)C25—C26—H26119.0
C8—C7—H7119.2C26—C27—C22120.28 (16)
C6—C7—H7119.2C26—C27—H27119.9
C7—C8—C3120.87 (16)C22—C27—H27119.9
C7—C8—H8119.6C29—C28—C25112.29 (14)
C3—C8—H8119.6C29—C28—C30107.92 (15)
C6—C9—C12112.17 (15)C25—C28—C30109.58 (15)
C6—C9—C11109.16 (15)C29—C28—C31108.82 (16)
C12—C9—C11108.39 (16)C25—C28—C31109.01 (15)
C6—C9—C10109.85 (15)C30—C28—C31109.17 (16)
C12—C9—C10107.88 (16)C28—C29—H29A109.5
C11—C9—C10109.34 (16)C28—C29—H29B109.5
C9—C10—H10A109.5H29A—C29—H29B109.5
C9—C10—H10B109.5C28—C29—H29C109.5
H10A—C10—H10B109.5H29A—C29—H29C109.5
C9—C10—H10C109.5H29B—C29—H29C109.5
H10A—C10—H10C109.5C28—C30—H30A109.5
H10B—C10—H10C109.5C28—C30—H30B109.5
C9—C11—H11A109.5H30A—C30—H30B109.5
C9—C11—H11B109.5C28—C30—H30C109.5
H11A—C11—H11B109.5H30A—C30—H30C109.5
C9—C11—H11C109.5H30B—C30—H30C109.5
H11A—C11—H11C109.5C28—C31—H31A109.5
H11B—C11—H11C109.5C28—C31—H31B109.5
C9—C12—H12A109.5H31A—C31—H31B109.5
C9—C12—H12B109.5C28—C31—H31C109.5
H12A—C12—H12B109.5H31A—C31—H31C109.5
C9—C12—H12C109.5H31B—C31—H31C109.5
H12A—C12—H12C109.5C33—C32—C37120.41 (17)
H12B—C12—H12C109.5C33—C32—N4115.61 (16)
C14—C13—C18120.31 (17)C37—C32—N4123.98 (17)
C14—C13—N2124.27 (17)C32—C33—C34121.09 (17)
C18—C13—N2115.41 (17)C32—C33—H33119.5
C15—C14—C13120.41 (18)C34—C33—H33119.5
C15—C14—H14119.8C35—C34—C33117.91 (18)
C13—C14—H14119.8C35—C34—C38121.73 (18)
C14—C15—C16118.46 (18)C33—C34—C38120.36 (18)
C14—C15—C19120.42 (18)C34—C35—C36121.39 (18)
C16—C15—C19121.12 (18)C34—C35—H35119.3
C17—C16—C15121.63 (18)C36—C35—H35119.3
C17—C16—H16119.2C37—C36—C35120.73 (18)
C15—C16—H16119.2C37—C36—H36119.6
C16—C17—C18119.78 (18)C35—C36—H36119.6
C16—C17—H17120.1C36—C37—C32118.46 (18)
C18—C17—H17120.1C36—C37—H37120.8
C17—C18—C13119.40 (18)C32—C37—H37120.8
C17—C18—H18120.3C34—C38—H38A109.5
C13—C18—H18120.3C34—C38—H38B109.5
C15—C19—H19A109.5H38A—C38—H38B109.5
C15—C19—H19B109.5C34—C38—H38C109.5
H19A—C19—H19B109.5H38A—C38—H38C109.5
C15—C19—H19C109.5H38B—C38—H38C109.5
H19A—C19—H19C109.5N2—N1—C1114.26 (15)
H19B—C19—H19C109.5N1—N2—C13113.47 (16)
C21—C20—N3115.13 (16)N4—N3—C20114.67 (16)
C21—C20—C22121.64 (16)N3—N4—C32112.53 (15)
N1—C1—C2—Cl20.6 (2)N3—C20—C22—C2386.1 (2)
C3—C1—C2—Cl2174.56 (13)C21—C20—C22—C2781.6 (2)
N1—C1—C2—Cl1178.98 (13)N3—C20—C22—C2794.7 (2)
C3—C1—C2—Cl15.9 (3)C27—C22—C23—C240.8 (3)
C2—C1—C3—C864.6 (2)C20—C22—C23—C24179.97 (17)
N1—C1—C3—C8110.21 (19)C22—C23—C24—C250.6 (3)
C2—C1—C3—C4119.3 (2)C23—C24—C25—C261.3 (3)
N1—C1—C3—C465.9 (2)C23—C24—C25—C28179.07 (17)
C8—C3—C4—C51.5 (3)C24—C25—C26—C270.5 (3)
C1—C3—C4—C5174.67 (16)C28—C25—C26—C27179.86 (17)
C3—C4—C5—C60.1 (3)C25—C26—C27—C221.0 (3)
C4—C5—C6—C71.4 (3)C23—C22—C27—C261.6 (3)
C4—C5—C6—C9178.32 (16)C20—C22—C27—C26179.16 (17)
C5—C6—C7—C81.1 (3)C24—C25—C28—C296.5 (2)
C9—C6—C7—C8178.62 (16)C26—C25—C28—C29173.87 (17)
C6—C7—C8—C30.5 (3)C24—C25—C28—C30126.39 (19)
C4—C3—C8—C71.8 (3)C26—C25—C28—C3054.0 (2)
C1—C3—C8—C7174.42 (16)C24—C25—C28—C31114.2 (2)
C7—C6—C9—C124.0 (2)C26—C25—C28—C3165.5 (2)
C5—C6—C9—C12175.72 (17)C37—C32—C33—C340.6 (3)
C7—C6—C9—C11116.16 (19)N4—C32—C33—C34178.73 (16)
C5—C6—C9—C1164.1 (2)C32—C33—C34—C350.8 (3)
C7—C6—C9—C10123.96 (18)C32—C33—C34—C38178.83 (18)
C5—C6—C9—C1055.7 (2)C33—C34—C35—C360.3 (3)
C18—C13—C14—C150.8 (3)C38—C34—C35—C36179.32 (19)
N2—C13—C14—C15177.87 (16)C34—C35—C36—C370.4 (3)
C13—C14—C15—C160.2 (3)C35—C36—C37—C320.5 (3)
C13—C14—C15—C19179.04 (17)C33—C32—C37—C360.0 (3)
C14—C15—C16—C170.6 (3)N4—C32—C37—C36179.35 (17)
C19—C15—C16—C17179.74 (18)C2—C1—N1—N2177.09 (16)
C15—C16—C17—C180.6 (3)C3—C1—N1—N21.8 (2)
C16—C17—C18—C130.0 (3)C1—N1—N2—C13176.92 (14)
C14—C13—C18—C170.7 (3)C14—C13—N2—N111.6 (2)
N2—C13—C18—C17178.04 (16)C18—C13—N2—N1167.08 (15)
N3—C20—C21—Cl3179.92 (13)C21—C20—N3—N4179.22 (16)
C22—C20—C21—Cl33.5 (3)C22—C20—N3—N44.3 (2)
N3—C20—C21—Cl40.8 (2)C20—N3—N4—C32178.50 (14)
C22—C20—C21—Cl4175.73 (13)C33—C32—N4—N3175.76 (15)
C21—C20—C22—C2397.6 (2)C37—C32—N4—N33.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the 4-tert-butylphenyl rings [(IVA: C3–C8 and (IVB): C22–C27, respectively]. Cg4 is the centroid of the 3-methylphenyl ring (C32–C37) of molecule (IVB).
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg4i0.952.913.768 (2)151
C24—H24···Cg2ii0.952.973.824 (2)150
C29—H29B···Cg1iii0.982.783.706 (2)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surface in the crystal structure top
ContactPercentage contribution
(I)(II)(III)(IVA)(IVB)
H···H45.347.143.647.044.2
Cl···H/H···Cl22.822.221.320.119.8
C···H/H···C17.518.617.020.721.1
N···H/H···N5.35.83.77.28.3
O···H/H···O5.1
Cl···C/C···Cl3.22.82.72.43.3
C···C2.41.21.70.30.3
N···C/C···N1.50.71.4
Cl···N/N···Cl1.20.52.9
Cl···Cl0.81.20.62.33.0
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA, NQS and AB; synthesis, AM, AQ, GTA and AN; X-ray analysis, VNK, MA, and SÖY; writing (review and editing of the manuscript) MA, NQS and AB; funding acquisition, AM and NQS; supervision, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022a). Acta Cryst. E78, 530–535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804–808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Mlowe, S. (2020). Acta Cryst. E76, 1291–1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationNenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Atakishiyeva, G. T., Niyazova, A. A., Mammadova, N. A., Novikov, A. S., Buslov, I. V., Khrustalev, V. N. & Tskhovrebov, A. G. (2022). Molecules, 27, 5110.  Web of Science CrossRef PubMed Google Scholar
First citationNenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013.  Web of Science CSD CrossRef PubMed Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M. & Nenajdenko, V. G. (2021b). Arkivoc, part iii, 67–75.  Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babazade, A. A., Nenajdenko, V. G., Khrustalev, V. N., Novikov, A. S. & Tskhovrebov, A. G. (2021f). Mendeleev Commun. 31, 677–679.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A. & Nenajdenko, V. G. (2019b). Arkivoc, part vi, 64–73.  Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Ahmadova, N. E., Askerov, R. K. & Bhattarai, A. (2021c). Acta Cryst. E77, 814–818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021d). Acta Cryst. E77, 965–970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019c). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019a). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021e). Acta Cryst. E77, 1158–1163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140–8152.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds