research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two SmIII complexes with dipicolinate [DPA]2− ligands: comparison of luminescent properties of products obtained at different pH values

crossmark logo

aDepartment of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
*Correspondence e-mail: sabina.svava.mortensen@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 March 2023; accepted 2 June 2023; online 9 June 2023)

The formation of the two title compounds, Na3[Sm(DPA)3]·14H2O tris­odium tris­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)samarate(III) tetra­deca­hydrate, Na3[Sm(C7H3NO4)3]·14H2O, and catena-poly[[[di­aqua­(6-carb­oxy­pyridine-2-carb­oxyl­ato-κ3O2,N,O6)samarium(III)]-μ-pyridine-2,6-di­carboxyl­ato-κ4O2,N,O6:O2] tetra­hydrate], {[Sm(C7H3NO4)(C7H4NO4)(H2O)2]·4H2O}n, depends on the pH value adjusted with NaOH solution. In both crystal structures, the coordination spheres of the SmIII cations were found to be best described by a tricapped trigonal prism (TTP), with a more regular O6N3 donor set for Na3[Sm(DPA)3]·14H2O than that of O7N2 for [Sm(DPA)(HDPA)(H2O)2]·4H2O. The supra­molecular features of both crystal structures are dominated by O—H⋯O hydrogen bonds between water mol­ecules and the O atoms of the dipicolinato ligands. Samples were made from solutions at pH = 2, pH = 5, pH = 7, and pH = 10, and the crystals present in each sample were ground to a powder. The powder samples were analyzed with powder X-ray diffraction and luminescence spectroscopy. The splitting of the bands in the luminescence spectra recorded on powders at 77 K was observed to vary with the pH.

1. Chemical context

The luminescent properties of lanthanide(III) complexes involving the tridentate dipicolinato ligand, [DPA]2–, have been studied in great detail (Aebischer et al., 2009[Aebischer, A., Gumy, F. & Bünzli, J. G. (2009). Phys. Chem. Chem. Phys. 11, 1346-1353.]; Brayshaw et al., 1995[Brayshaw, P. A., Buenzli, J. G., Froidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem. 34, 2068-2076.]; Chauvin et al., 2004[Chauvin, A. S., Gumy, F., Imbert, D. & Bünzli, J. G. (2004). Spectrosc. Lett. 37, 517-532.]; Kim et al., 1998[Kim, J.-G., Yoon, S.-K., Sohn, Y. & Kang, J.-G. (1998). J. Alloys Compd. 274, 1-9.]; Kofod et al., 2020[Kofod, N., Nawrocki, P., Juelsholt, M., Christiansen, T. L., Jensen, K. M. & Sørensen, T. J. (2020). Inorg. Chem. 59, 10409-10421.]; Mondry & Starynowicz, 1995[Mondry, A. & Starynowicz, P. (1995). J. Alloys Compd. 225, 367-371.]; Murray et al., 1990[Murray, G. M., Sarrio, R. V. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233-240.]; Salaam et al., 2022[Salaam, J., N'Dala-Louika, I., Balogh, C., Suleimanov, I., Pilet, G., Veyre, L., Camp, C., Thieuleux, C., Riobé, F. & Maury, O. (2022). Eur. J. Inorg. Chem. 2022, 00412.]; Zhou et al., 1994[Zhou, D., Huang, C., Wang, K. & Xu, G. (1994). Polyhedron, 13, 987-991.]). The luminescent characteristics can be explained by the fact that the formed lanthanide(III) complex with three [DPA]2– ligands coordinating to the central lanthanide(III) cation exhibits an almost perfect tricapped trigonal prism (TTP) coordination environment (Albertsson, 1970[Albertsson, J. (1970). Acta Chem. Scand. 24, 3527-3541.]; Brayshaw et al., 1995[Brayshaw, P. A., Buenzli, J. G., Froidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem. 34, 2068-2076.]; Kim et al., 1998[Kim, J.-G., Yoon, S.-K., Sohn, Y. & Kang, J.-G. (1998). J. Alloys Compd. 274, 1-9.]; Li et al., 2019[Li, Q.-F., Ge, G.-W., Sun, Y., Yu, M. & Wang, Z. (2019). Spectrochim. Acta A Mol. Biomol. Spectrosc. 214, 333-338.]; Murray et al., 1990[Murray, G. M., Sarrio, R. V. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233-240.]; Salaam et al., 2022[Salaam, J., N'Dala-Louika, I., Balogh, C., Suleimanov, I., Pilet, G., Veyre, L., Camp, C., Thieuleux, C., Riobé, F. & Maury, O. (2022). Eur. J. Inorg. Chem. 2022, 00412.]; Zhou et al., 1994[Zhou, D., Huang, C., Wang, K. & Xu, G. (1994). Polyhedron, 13, 987-991.]). The luminescence properties have been studied in great depth; however, our knowledge of SmIII with [DPA]2– as the ligand is rather limited (Chuasaard et al., 2017[Chuasaard, T., Panyarat, K., Rodlamul, P., Chainok, K., Yimklan, S. & Rujiwatra, A. (2017). Cryst. Growth Des. 17, 1045-1054.]; Kumar et al., 2019[Kumar, D., Tewari, S., Adnan, M., Ahmad, S., Vijaya Prakash, G. & Ramanan, A. (2019). Inorg. Chim. Acta, 487, 81-91.]; Sharif et al., 2016[Sharif, S., Khan, B., Şahin, O. & Khan, I. (2016). Russ. J. Coord. Chem. 42, 56-65.]; Viveros-Andrade et al., 2017[Viveros-Andrade, A. G., Colorado-Peralta, R., Flores-Alamo, M., Castillo-Blum, S. E., Durán-Hernández, J. & Rivera, J. M. (2017). J. Mol. Struct. 1145, 10-17.]).

In the present communication, we report the crystal structures of two compounds with SmIII cations and [DPA]2– ligands, viz. salt-like Na3[Sm(DPA)3]·14H2O and polymeric [Sm(DPA)(HDPA)(H2O)2]·4H2O. Both crystallized from mixtures of Sm(CF3SO3)3 and H2DPA solutions at different pH values adjusted with NaOH solution. The amount of the two compounds crystallized in each sample was found to be controlled by the pH value. This behavior was also monitored by powder X-ray diffraction (PXRD) of the bulk products and their luminescence spectra.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the coordination environment of the central SmIII cation in the crystal structure of Na3[Sm(DPA)3]·14H2O (CCDC number: 2246128). The donor set consists of six oxygen atoms from three chelating [DPA2–] ligands, forming the top and bottom plane of a trigonal prism, and of three capping nitro­gen donor atoms placed in the central plane of the trigonal prism. Each of the four NaI cations (two on general positions and two on inversion centers) coordinates by aqua ligands and carboxyl­ate O atoms, thus linking the [Sm(DPA)3]3– anions into a tri-periodic structure.

[Figure 1]
Figure 1
Coordination around the SmIII cation in Na3[Sm(DPA)3]·14H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, y + 1, z.]

Fig. 2[link] illustrates the coordination environment of the central SmIII cation in the crystal structure of [Sm(DPA)(HDPA)(H2O)2]·4H2O(CCDC number: 2246127). Although the coordination number of 9 is the same as in Na3[Sm(DPA)3]·14H2O, here the donor set consists of seven oxygen atoms and two nitro­gen atoms. Both [HDPA] and [DPA]2– ligands N,O,O′-chelate the metal cation. The coordination sphere is completed by two aqua ligands and the carboxyl­ate O atom of another symmetry-related [DPA]2– anion, making it a polymeric structure, with chains of mol­ecules extending parallel to [001].

[Figure 2]
Figure 2
Coordination around the SmIII cation in [Sm(DPA)(HDPA)(H2O)2]·4H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z − [{1\over 2}].]

For both coordination environments of the SmIII cation in the title compounds, a symmetry-deviation analysis was performed to determine the deviation from an ideal coordin­ation environment for coordination number 9. This was achieved by calculating a symmetry-deviation value, σideal, using AlignIt (Storm Thomsen et al., 2022[Storm Thomsen, M., Anker, A. S., Kacenauskaite, L. & Sørensen, T. J. (2022). Dalton Trans. 51, 8960-8963.]). More details of this method are described in the supporting information. Na3[Sm(DPA)3]·14H2O was found to be best described as having the shape of a tricapped trigonal prism (TTP), with σideal = 1.16, which is in good agreement with what has been reported for other isostructural LnIII complexes (Albertsson, 1970[Albertsson, J. (1970). Acta Chem. Scand. 24, 3527-3541.], 1972[Albertsson, J. (1972). Acta Chem. Scand. 26, 985-1004.]; Hojnik et al., 2015[Hojnik, N., Kristl, M., Golobič, A., Jagličić, Z. & Drofenik, M. (2015). J. Mol. Struct. 1079, 54-60.]; Mondry & Starynowicz, 1995[Mondry, A. & Starynowicz, P. (1995). J. Alloys Compd. 225, 367-371.]; Tancrez et al., 2005[Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc. 127, 13474-13475.]; Elahi & Rajasekharan, 2016[Elahi, S. M. & Rajasekharan, M. V. (2016). Chem. Sel. 1, 6515-6522.]). The donor set in [Sm(DPA)(HDPA)(H2O)2]·4H2O is less symmetric compared to Na3[Sm(DPA)3]·14H2O, consisting of two nitro­gen atoms and seven oxygen atoms. Nevertheless, the SmIII cation in [Sm(DPA)(HDPA)(H2O)2]·4H2O was also found to have a coordination polyhedron derived from a TTP, with σideal = 0.73. This is in good agreement with what was reported for the EuIII analogue (Liu et al., 2014[Liu, H. X., Liu, Q., Xu, Y., Huang, T. T., Wang, L. T., Ye, K. Q. & Zeng, G. (2014). Adv. Mater. Res. 834-836, 490-493.]).

3. Supra­molecular features

Both Na3[Sm(DPA)3]·14H2O and [Sm(DPA)(HDPA)(H2O)2]·4H2O contain water mol­ecules, either solely present as solvent mol­ecules for the Na-containing phase (14 per formula unit), or as solvent mol­ecules and as ligands (2 and 4, respectively) for the other phase. Hence, the packing of the structural entities is mainly consolidated by O—H⋯O hydrogen-bonding networks (Tables 1[link], 2[link]; Figs. 3[link], 4[link]). The shortest hydrogen bonds in the two structures are formed between the carboxyl­ate and carb­oxy­lic acid groups in [DPA]2– and [HDPA] to the water mol­ecules, including, for example, O4W—H4WB⋯O5W, O8W—H8WA⋯O10vii, and O9W—H9WB⋯O1viii in the Na3[Sm(DPA)3]·14H2O structure, and O1W—H1WB⋯O7, O4W—H4WA⋯O2v, and O6W—H6WB⋯O6 in the [Sm(DPA)(HDPA)(H2O)2]·4H2O structure. Notably, in [Sm(DPA)(HDPA)(H2O)2]·4H2O a very strong hydrogen bond [O4⋯O4W = 2.4703 (19) Å] is established between the carb­oxy group of the [HDPA] ligand and a solvent water mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °) for Na3[Sm(DPA)3]·14H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O13Wi 0.85 (1) 1.98 (1) 2.8163 (19) 167 (3)
O2W—H2WA⋯O11Wii 0.86 (1) 2.10 (1) 2.927 (2) 160 (3)
O2W—H2WA⋯O12Wiii 0.86 (1) 2.76 (3) 3.2317 (19) 116 (2)
O2W—H2WB⋯O1W 0.86 (1) 1.90 (1) 2.742 (2) 164 (3)
O4W—H4WA⋯O5W 0.85 (1) 1.91 (1) 2.741 (2) 167 (3)
O4W—H4WB⋯O5 0.85 (1) 2.02 (1) 2.8534 (17) 169 (3)
O6W—H6WA⋯O12iv 0.86 (1) 2.00 (1) 2.8435 (19) 168 (3)
O6W—H6WB⋯O8v 0.87 (1) 2.09 (2) 2.8645 (18) 149 (3)
O7W—H7WA⋯O6W 0.84 (1) 1.93 (1) 2.7611 (19) 167 (3)
O7W—H7WB⋯O3vi 0.85 (1) 2.54 (2) 3.1551 (17) 131 (2)
O7W—H7WB⋯O5vi 0.85 (1) 2.31 (2) 3.0267 (17) 142 (2)
O8W—H8WA⋯O10vii 0.84 (1) 1.87 (1) 2.7065 (17) 171 (2)
O9W—H9WA⋯O6vi 0.85 (1) 1.94 (1) 2.7871 (16) 175 (2)
O9W—H9WB⋯O1viii 0.85 (1) 1.87 (1) 2.7160 (16) 173 (2)
O10W—H10A⋯O2Wviii 0.85 (1) 1.90 (1) 2.7419 (18) 178 (2)
O11W—H11A⋯O9 0.85 (1) 1.97 (1) 2.8128 (17) 174 (3)
O11W—H11B⋯O12W 0.85 (1) 2.13 (1) 2.973 (2) 178 (3)
O12W—H12A⋯O2iii 0.85 (1) 2.11 (1) 2.9542 (18) 173 (3)
O12W—H12B⋯O8Wvii 0.86 (1) 2.03 (2) 2.8057 (18) 149 (3)
O13W—H13A⋯O12Wvii 0.85 (1) 1.99 (1) 2.8235 (18) 170 (2)
O13W—H13B⋯O7viii 0.85 (1) 2.09 (1) 2.9274 (17) 171 (2)
O13W—H13B⋯O8viii 0.85 (1) 2.57 (2) 3.1929 (17) 132 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) x, y+1, z; (iii) [-x, -y+1, -z+2]; (iv) [-x+1, -y, -z+1]; (v) [-x+1, -y+2, -z+1]; (vi) [-x+1, -y+1, -z+1]; (vii) [-x+1, -y, -z+2]; (viii) [x, y-1, z].

Table 2
Hydrogen-bond geometry (Å, °) for [Sm(DPA)(HDPA)(H2O)2]·4H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.85 (1) 1.88 (1) 2.7218 (16) 169 (2)
O1W—H1WB⋯O7 0.85 (1) 1.91 (1) 2.7103 (15) 157 (2)
O2W—H2WA⋯O3W 0.85 (1) 1.87 (1) 2.7115 (16) 170 (2)
O2W—H2WB⋯O6Wii 0.85 (1) 1.90 (1) 2.7193 (16) 163 (2)
O3W—H3WA⋯O5iii 0.85 (1) 2.04 (1) 2.8679 (15) 164 (2)
O3W—H3WB⋯O6iv 0.85 (1) 2.01 (1) 2.8568 (16) 173 (2)
O4W—H4WA⋯O2v 0.85 (1) 1.79 (1) 2.6360 (18) 174 (3)
O4W—H4WB⋯O5W 0.85 (1) 2.05 (2) 2.773 (2) 143 (3)
O5W—H5WA⋯O1v 0.85 (1) 2.10 (1) 2.9340 (17) 167 (2)
O5W—H5WB⋯O6Wvi 0.85 (1) 2.14 (1) 2.9579 (19) 162 (2)
O6W—H6WA⋯O3Wvii 0.85 (1) 2.10 (1) 2.8696 (16) 151 (2)
O6W—H6WB⋯O6 0.85 (1) 1.83 (1) 2.6828 (16) 177 (2)
O4—H4⋯O4W 1.01 (3) 1.47 (3) 2.4703 (19) 174 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, -y, -z+1]; (iii) x, y, z+1; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) [x, y, z-1].
[Figure 3]
Figure 3
Hydrogen-bonding network in the Na3[Sm(DPA)3]·14H2O unit cell. Color code: Sm = dark blue, N = light blue, C = gray, H = white, O = red and Na = orange.
[Figure 4]
Figure 4
Hydrogen-bonding network in the [Sm(DPA)(HDPA)(H2O)2]·4H2O unit cell. Color code: Sm = dark blue, N = light blue, C = gray, H = white, and O = red.

4. Phase formation at different pH values

By combining a solution of Sm(CF3SO3)3 and H2DPA solutions at different pH values, the two title compounds crystallized in each batch. However, the amounts of each compound in a batch were found to be dependent on the pH value of the H2DPA solution, which was controlled by addition of NaOH solution. Samples were made at pH = 2, pH = 5, pH = 7, and pH = 10, and the varying amount of the two compounds could be observed from the crystal photographs of each batch (Fig. 5[link]). [Sm(DPA)(HDPA)(H2O)2]·4H2O was the dominating compound at pH = 2 (Fig. 5[link]a), while Na3[Sm(DPA)3]·14H2O was found to dominate at pH = 5, pH = 7, and pH = 10 (Fig. 5[link]b,c,d). This finding is supported by PXRD data recorded from crystals crushed to a powder for all samples (Fig. 6[link]).

[Figure 5]
Figure 5
Crystal photographs from selected samples obtained at different pH values; [Sm(DPA)(HDPA)(H2O)2]·4H2O crystals are circled in red and Na3[Sm(DPA)3]·14H2O in blue. (a) Crystals obtained from a solution at pH = 2, where [Sm(DPA)(HDPA)(H2O)2]·4H2O dominates. (b) Crystals obtained from a solution at pH = 5, where an almost equal distribution of [Sm(DPA)(HDPA)(H2O)2]·4H2O and Na3[Sm(DPA)3]·14H2O was found. (c) Crystals obtained from a solution at pH = 7, where more Na3[Sm(DPA)3]·14H2O than [Sm(DPA)(HDPA)(H2O)2]·4H2O crystallized. (d) Crystals obtained from a solution at pH = 10, where Na3[Sm(DPA)3]·14H2O dominates. The images in each panel were selected from three crystallization batches performed at each pH value.
[Figure 6]
Figure 6
PXRD pattern of the bulk for samples prepared from solution at pH = 2, pH = 5, pH = 7, and pH = 10, as well as simulated PXRD pattern on basis of the current single-crystal data.

5. Analysis of luminescence spectra for samples obtained at different pH values

The crystal field splitting is sensitive to the coordination environment and the donor atoms (Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]). As SmIII is a luminescent lanthanide(III) cation, the crystal field splitting of the spin-orbit defined SLJ term into the individual electronic states, here double-degenerate Kramers doublets defined by ±mJ values, can be observed from the luminescence spectra (Cheisson & Schelter, 2019[Cheisson, T. & Schelter, E. J. (2019). Science, 363, 489-493.]; Wybourne, 2004[Wybourne, B. G. (2004). J. Alloys Compd. 380, 96-100.]; Chen et al., 2005[Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991-13999.]; Mortensen et al., 2022[Mortensen, S. S., Marciniak Nielsen, M. A., Nawrocki, P. R. & Sørensen, T. J. (2022). J. Phys. Chem. A, 126, 8596-8605.]; Carnall et al., 1968[Carnall, W., Fields, P. & Rajnak, K. (1968). J. Chem. Phys. 49, 4424-4442.]). Because SmIII is a Kramers cation, it has an uneven number of electrons (4f5) and all states will be double degenerate without the presence of a magnetic field (Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]). The electronic states in SmIII are a complicated 6H5/2 ground state and a 4G5/2 emitting state that both have a large multiplicity (Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]; Chen et al., 2005[Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991-13999.]). The emitting state, 4G5/2, can split into maximum Kramers levels. The maximum splitting is calculated as (2J + 1)/2 (Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]). For the states observed from the emission spectra, the maximum splitting is three, four, five, and six for 6H5/2, 6H7/2, 6H9/2, and 6H11/2, respectively. To avoid deconvolution of nine bands or more in each trans­ition, the spectra were recorded at 77 K for the polycrystalline material. At 77 K, one of the ±mJ doublets is predominately populated in 4G5/2. Thus, only three bands will be observed for the 4G5/26H5/2 transition (Lupei et al., 2012[Lupei, A., Tiseanu, C., Gheorghe, C. & Voicu, F. (2012). Appl. Phys. B, 108, 909-918.]; Chen et al., 2005[Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991-13999.]; Skaudzius et al., 2018[Skaudzius, R., Sakirzanovas, S. & Kareiva, A. (2018). J. Elec Materi. 47, 3951-3956.]; Sakirzanovas et al., 2011[Sakirzanovas, S., Katelnikovas, A., Bettentrup, H., Kareiva, A. & Jüstel, T. (2011). J. Lumin. 131, 1525-1529.]). The number of observed bands for a 4G5/26HJ transition should correspond to the maximum splitting of 6HJ (Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]; Lupei et al., 2012[Lupei, A., Tiseanu, C., Gheorghe, C. & Voicu, F. (2012). Appl. Phys. B, 108, 909-918.]; Chen et al., 2005[Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991-13999.]; Skaudzius et al., 2018[Skaudzius, R., Sakirzanovas, S. & Kareiva, A. (2018). J. Elec Materi. 47, 3951-3956.]; Sakirzanovas et al., 2011[Sakirzanovas, S., Katelnikovas, A., Bettentrup, H., Kareiva, A. & Jüstel, T. (2011). J. Lumin. 131, 1525-1529.]). Additional bands can be an indicator for transitions from the less populated higher-energy 4G5/2 states or the presence of more than one emitting species (Chen et al., 2005[Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991-13999.]; Sakirzanovas et al., 2011[Sakirzanovas, S., Katelnikovas, A., Bettentrup, H., Kareiva, A. & Jüstel, T. (2011). J. Lumin. 131, 1525-1529.]). Because both Na3[Sm(DPA)3]·14H2O and [Sm(DPA)(HDPA)(H2O)2]·4H2O are present in the samples, more bands than the maximum splitting are expected (Judd, 1962[Judd, B. R. (1962). Phys. Rev. 127, 750-761.]; Ofelt, 1962[Ofelt, G. (1962). J. Chem. Phys. 37, 511-520.]).

The luminescent properties of the samples obtained at different pH values were investigated in order to evaluate the effect of having different compounds present in each sample. From the emission spectra it was apparent that there is a change in the luminescenct properties with the change in compound distribution at different pH values (Fig. 7[link]).

[Figure 7]
Figure 7
Normalized emission spectra in 2-methyltetra­hydro­furan glass at 77 K (excitation at 394 nm) for samples prepared at pH = 2, pH = 5, pH = 7, and pH = 10.

Five bands are observed for the 4G5/26H7/2 transition in the emission spectra from all samples. This indicates that more than one species is present in the solid reaction product, as this is one more band than the maximum splitting for 6H7/2 would allow per SmIII atom. Hence, SmIII exists in more than one coordination environment in the powdered samples of the bulk material. Thermal populations of more Kramers levels in 4G5/2 would result in eight bands (Lupei et al., 2012[Lupei, A., Tiseanu, C., Gheorghe, C. & Voicu, F. (2012). Appl. Phys. B, 108, 909-918.]; Chen et al., 2005[Chen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991-13999.]; Skaudzius et al., 2018[Skaudzius, R., Sakirzanovas, S. & Kareiva, A. (2018). J. Elec Materi. 47, 3951-3956.], Sakirzanovas et al., 2011[Sakirzanovas, S., Katelnikovas, A., Bettentrup, H., Kareiva, A. & Jüstel, T. (2011). J. Lumin. 131, 1525-1529.]). As this is not the case, the five bands are ascribed as a result of the presence of both Na3[Sm(DPA)3]·14H2O and [Sm(DPA)(HDPA)(H2O)2]·4H2O, which both have a significant contribution to the emission spectrum of the samples obtained at different pH.

The change in the luminescent properties is apparent in the 4G5/26H9/2 transition, where the splitting patterns clearly varies. Additionally, there is a change in the intensity of the 4G5/26H9/2 transition compared to the the 4G5/26H7/2 transition. At pH = 2, the 4G5/26H7/2 transition is the most intense, whereas at pH = 10, the 4G5/26H9/2 transition has a higher intensity compared to 4G5/26H7/2 transition. Also, the 4G5/26H5/2 transition increased in intensity compared to the 4G5/26H7/2 band with increasing pH. However, no clear spectral components could be assigned to either Na3[Sm(DPA)3]·14H2O or [Sm(DPA)(HDPA)(H2O)2]·4H2O. Additional spectra are included in the supporting information.

6. Database survey

Na3[Sm(DPA)3]·14H2O is isostructural with other Na3[Ln(DPA)3]·14H2O compounds previously reported for LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, HoIII, YbIII, and LuIII (Albertsson, 1970[Albertsson, J. (1970). Acta Chem. Scand. 24, 3527-3541.]; Hojnik et al., 2015[Hojnik, N., Kristl, M., Golobič, A., Jagličić, Z. & Drofenik, M. (2015). J. Mol. Struct. 1079, 54-60.]; Albertsson, 1972[Albertsson, J. (1972). Acta Chem. Scand. 26, 985-1004.]; Albertsson et al., 1972[Albertsson, J. (1972). Acta Chem. Scand. 26, 985-1004.]; Mondry & Starynowicz, 1995[Mondry, A. & Starynowicz, P. (1995). J. Alloys Compd. 225, 367-371.]; Tancrez et al., 2005[Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc. 127, 13474-13475.]; Elahi & Rajasekharan, 2016[Elahi, S. M. & Rajasekharan, M. V. (2016). Chem. Sel. 1, 6515-6522.]). Crystal data of Na3[Sm(DPA)3]·14H2O have been deposited at the CCDC (CSD code SOPGOT; Hu et al., 1989[Hu, S., Dong, Z., Zhang, H. & Liu, Q. (1989). J. Xiamen Univ. 28, 514-518.]); however, without atomic coordinates, which motivated us to reinvestigate the crystal structure.

[Sm(DPA)(HDPA)(H2O)2]·4H2O is isostructural with other [Ln(DPA)(HDPA)(H2O)2]·4H2O compounds prev­iously reported for CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, and ErIII (Brayshaw et al., 2005[Brayshaw, P. A., Hall, A. K., Harrison, W. T., Harrowfield, J. M., Pearce, D., Shand, T. M., Skelton, B. W., Whitaker, C. R. & White, A. H. (2005). Eur. J. Inorg. Chem. pp. 1127-1141.]; Cheng et al., 2007[Cheng, C.-X., Liu, H.-W., Hu, Z.-Q., Luo, F.-H. & Cao, M.-N. (2007). Acta Cryst. E63, m1-m3.]; Chuasaard et al., 2017[Chuasaard, T., Panyarat, K., Rodlamul, P., Chainok, K., Yimklan, S. & Rujiwatra, A. (2017). Cryst. Growth Des. 17, 1045-1054.]; Ghosh & Bharadwaj, 2003[Ghosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250-8254.]; Hou et al., 2011[Hou, K.-L., Bai, F.-Y., Xing, Y.-H., Cao, Y.-Z., Wei, D.-M. & Niu, S.-Y. (2011). J. Inorg. Organomet. Polym. 21, 213-222.]; Kang, 2011[Kang, S.-K. (2011). Bull. Korean Chem. Soc. 32, 1745-1747.]; Liu et al., 2005[Liu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1111-m1113.]; Moghzi et al., 2020[Moghzi, F., Soleimannejad, J., Emadi, H. & Janczak, J. (2020). Acta Cryst. B76, 779-788.]; Najafi et al., 2017[Najafi, A., Mirzaei, M., Bauzá, A., Mague, J. T. & Frontera, A. (2017). Inorg. Chem. Commun. 83, 24-26.]; Rafizadeh et al., 2005[Rafizadeh, M., Amani, V., Iravani, E. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 952-955.]; Song et al., 2005[Song, Y.-S., Yan, B. & Chen, Z.-X. (2005). J. Mol. Struct. 750, 101-108.]; Wang et al., 2012[Wang, P., Fan, R.-Q., Liu, X.-R., Yang, Y.-L. & Zhou, G.-P. (2012). J. Inorg. Organomet. Polym. 22, 744-755.]; Xu et al., 2009[Xu, X., Liu, X., Sun, T., Zhang, X. & Wang, E. (2009). J. Coord. Chem. 62, 2755-2763.]; Kong et al., 2022[Kong, Y.-J., Hou, G.-Z., Gong, Z.-N., Zhao, F.-T. & Han, L.-J. (2022). RSC Adv. 12, 8435-8442.]). The crystal structure of [Sm(DPA)(HDPA)(H2O)2]·4H2O has been reported prev­iously several times (CSD code FONCUH; best result in terms of reliability factors: FONCUH01; Rafizadeh et al., 2005[Rafizadeh, M., Amani, V., Iravani, E. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 952-955.]). For inter­pretation of the luminescence spectra and a comparison with Na3[Sm(DPA)3]·14H2O, we have also reinvestigated the crystal structure of [Sm(DPA)(HDPA)(H2O)2]·4H2O.

7. Synthesis and crystallization

All chemicals were used as received without further purification. All crystallization experiments were conducted three times.

0.2 M Sm(CF3SO3)3 stock solution

Sm(CF3SO3)3 (2.39 g, 0.400 mmol; 98% from STREM Chemicals) was used to create a 0.20 M stock solution by dissolving the salt in water to create a solution with a volume of 20.0±0.04 ml.

0.2 M H2DPA stock solution

H2DPA (pyridine-2,6-di­carb­oxy­lic acid; 0.669 g, 4.01 mmol; Riedel-De Haën) was used to create a 0.2 M stock solution by dissolving the acid in water to create a solution with a volume of 20±0.04 ml.

Sm(DPA) at pH = 2 – crystallization

1.0 ml of the 0.2 M Sm(CF3SO3)3 stock solution was added to a sample vial with 3.0 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample vial was closed with a lid and left in a dark place. After 1 d crystals had formed.

Sm(DPA) at pH = 5 – crystallization

NaOH (1.0 M) was added to the H2DPA stock solution to adjust the pH to 5. 0.5 ml of the 0.2 M Sm(CF3SO3)3 solution were added to a sample vial with 1.5 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample vial was placed in a container with acetone, placing a lid on top of the container and left for acetone diffusion. After 3 d crystals had formed.

Sm(DPA) at pH = 7 – crystallization

NaOH (1.0 M) was added to the H2DPA stock solution to adjust the pH to 7. 0.5 ml of the 0.2 M Sm(CF3SO3)3 solution were added to a sample vial with 1.5 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample was then filtered through a Q-Max RR syringe filter from Frisinette and transferred to a vial. The latter was placed in a container with acetone, placing a lid on top of the container and left for an acetone diffusion. After 1 d crystals had formed.

Sm(DPA) at pH = 10 – crystallization

NaOH (1.0 M) was added to the H2DPA stock solution to adjust the pH to 10. 0.5 ml of the 0.2 M Sm(CF3SO3)3 solution were added to a sample vial with 1.5 ml of the 0.2 M H2DPA stock solution. The sample was heated at 353 K for 1 h. The sample was then filtered through a Q-Max RR syringe filter from Frisinette and transferred to a vial. The later was placed in a container with acetone, placing a lid on top of the container and left for an acetone diffusion. After 1 d crystals had formed.

8. Other experimental procedures

For both PXRD and optical spectroscopy measurements, the crystals, which had precipitated in each sample, were collected by suction filtration with a vacuum pump. The crystals were removed from the filter, dried in air and ground to a powder.

Powder X-ray Diffraction

PXRD diffractograms were recorded for all samples prepared at different pH values. Data were collected using a Bruker D8 Advance diffractometer using a Cu Kα source (λ = 1.5406 Å). Samples were measured using a low-background silica sample holder at 293 K.

Optical Spectroscopy

Crystal powders from all samples prepared at different pH were added to a 5.0 mm diameter NMR silica cylinder (Bruker) together with 2-methyl­tetra­hydro­furan glass. The samples were cooled using liquid nitro­gen and were measured using a cold-finger setup. This setup was used for both the emission and excitation spectra and for determination of luminescent lifetimes.

Emission and excitation spectra were measured with a xenon arc lamp as the excitation source on a PTI QuantaMaster8075 from Horiba Scientific.

For emission spectroscopy, an excitation wavelength at 401 nm (24938 cm−1) was used. Emission was detected from 550 nm (18182 cm−1) to 760 nm (13158 cm−1). The emission slits were kept at 1.0 nm for the two outermost slits and 5.0 nm or the middle slit for all samples, and the excitation slits were all kept at 8.0 nm. The voltage bias was kept at 3.2 V for the reference detector.

For excitation spectroscopy, an emission wavelength at 598 nm (16722 cm−1) was used. Excitation was detected from 250 nm (40000 cm−1) to 590 nm (16949 cm−1). Emission slits were all kept at 8.0 nm and excitation slits were kept at 1.0 nm for the two outermost slits and 5.0 nm for the middle slit for all samples. The voltage bias was kept at 6.8 V for the reference detector.

Luminescence Lifetimes

The luminescence lifetimes were determined for all powder samples using a TCSPC FluoTime300 from PicoQuant. The excitation wavelength was 405 nm (24691 cm−1), and the emission wavelength 600 nm (16667 cm−1). The effective sync rate was kept at 1 kHz, with 5000 pulses, a period length of 1.0 ms, a burst length of 625 µs, and a time/channel at 80 ns. The temperature was kept at 298 K. The luminescence lifetimes were fitted using a mono-exponential decay function using the software EasyTau 2 (PicoQuant, 2018[PicoQuant (2018). EasyTau 2. Picoquant, Germany. https://www.pico­quant.com]).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms attached to aromatic carbon atoms were added automatically using a riding model with Uiso(H) = 1.2Ueq(C). All hydrogen atoms of water mol­ecules were discernible in difference-Fourier maps. They were refined with a distance restraint of 0.85 Å, and with Uiso(H) = 1.5Ueq(C). The H atom of the carboxyl­ate group (H4) in [Sm(DPA)(HDPA)(H2O)2]·4H2O was found in difference-Fourier maps and was refined freely. The comparatively high residual positive electron density in Na3[Sm(DPA)3]·14H2O is located at distances of ≃1.4 Å from atoms H6WA and H6WB. Contributions of additional atoms and/or disorder did not result in other reasonable models.

Table 3
Experimental details

  Na3[Sm(C7H3NO4)3]·14H2O [Sm(C7H3NO4)(C7H4NO4)(H2O)2]·4H2O
Crystal data
Mr 966.85 589.66
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 10.2674 (10), 10.9688 (10), 17.1570 (16) 13.9292 (8), 11.1969 (7), 12.8086 (7)
α, β, γ (°) 73.835 (3), 77.573 (3), 72.894 (3) 90, 103.049 (2), 90
V3) 1754.9 (3) 1946.1 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.81 3.10
Crystal size (mm) 0.78 × 0.58 × 0.26 0.48 × 0.40 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2019[Bruker (2019). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2019[Bruker (2019). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.615, 0.747 0.575, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 107477, 13465, 12700 74345, 7424, 6679
Rint 0.045 0.044
(sin θ/λ)max−1) 0.771 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.11 0.018, 0.042, 1.08
No. of reflections 13465 7424
No. of parameters 574 319
No. of restraints 28 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 3.32, −1.15 0.73, −1.09
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Trisodium tris(pyridine-2,6-dicarboxylato-κ3O2,N,O6)samarate(III) tetradecahydrate (I) top
Crystal data top
Na3[Sm(C7H3NO4)3]·14H2OZ = 2
Mr = 966.85F(000) = 974
Triclinic, P1Dx = 1.830 Mg m3
a = 10.2674 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9688 (10) ÅCell parameters from 9982 reflections
c = 17.1570 (16) Åθ = 2.4–33.2°
α = 73.835 (3)°µ = 1.81 mm1
β = 77.573 (3)°T = 100 K
γ = 72.894 (3)°Prism, colourless
V = 1754.9 (3) Å30.78 × 0.58 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
12700 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2019)
θmax = 33.2°, θmin = 2.0°
Tmin = 0.615, Tmax = 0.747h = 1515
107477 measured reflectionsk = 1616
13465 independent reflectionsl = 2626
Refinement top
Refinement on F228 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.021P)2 + 2.2772P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.004
13465 reflectionsΔρmax = 3.32 e Å3
574 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.48815 (2)0.74844 (2)0.75088 (2)0.00321 (2)
Na10.5000000.5000000.5000000.00980 (16)
Na20.50358 (6)0.25158 (6)0.75459 (4)0.00837 (11)
Na30.14568 (7)1.30026 (7)0.74024 (5)0.01388 (13)
Na40.5000000.0000001.0000000.00854 (16)
O10.32228 (11)0.96519 (11)0.72600 (7)0.00735 (19)
O20.10717 (12)1.09223 (11)0.74353 (8)0.0111 (2)
O30.42909 (11)0.53805 (11)0.78804 (7)0.00775 (19)
O40.29239 (12)0.41204 (11)0.78682 (8)0.0117 (2)
O50.47032 (11)0.71148 (11)0.62035 (7)0.00748 (19)
O60.55858 (13)0.70498 (12)0.49004 (7)0.0109 (2)
O70.60619 (11)0.90222 (11)0.77079 (7)0.00738 (19)
O80.69830 (11)1.07466 (11)0.72233 (7)0.00862 (19)
O90.39263 (11)0.21216 (11)0.88660 (7)0.00830 (19)
O100.43084 (12)0.19347 (12)1.00559 (7)0.0103 (2)
O110.70788 (11)0.41510 (11)0.71542 (7)0.00843 (19)
O120.89428 (11)0.57662 (11)0.74960 (7)0.0100 (2)
N10.23451 (12)0.75259 (12)0.76118 (8)0.0053 (2)
N20.60933 (13)0.87570 (12)0.62274 (8)0.0055 (2)
N30.63346 (13)0.37902 (12)0.86490 (8)0.0059 (2)
C10.19098 (15)0.98546 (14)0.73974 (9)0.0061 (2)
C20.13830 (14)0.86619 (14)0.75074 (9)0.0065 (2)
C30.00166 (16)0.87325 (16)0.74916 (11)0.0123 (3)
H30.0635650.9533920.7426080.015*
C40.03531 (17)0.75749 (17)0.75761 (13)0.0169 (3)
H40.1257430.7591700.7558710.020*
C50.06437 (16)0.63935 (16)0.76868 (12)0.0132 (3)
H50.0420400.5606740.7746430.016*
C60.19804 (14)0.64151 (14)0.77064 (9)0.0065 (2)
C70.31407 (15)0.51924 (14)0.78274 (9)0.0066 (2)
C80.54421 (15)0.74740 (14)0.55205 (9)0.0065 (2)
C90.61918 (15)0.84837 (14)0.55005 (9)0.0063 (2)
C100.69509 (17)0.90667 (16)0.47973 (10)0.0110 (3)
H100.7029670.8842850.4301720.013*
C110.75889 (19)0.99887 (18)0.48485 (10)0.0141 (3)
H110.8094171.0398760.4384770.017*
C120.74666 (17)1.02945 (16)0.55983 (10)0.0114 (3)
H120.7872421.0920620.5645000.014*
C130.67220 (15)0.96399 (14)0.62765 (9)0.0062 (2)
C140.65829 (14)0.98425 (14)0.71282 (9)0.0059 (2)
C150.46267 (15)0.24388 (14)0.94523 (9)0.0068 (2)
C160.59566 (15)0.34874 (15)0.93826 (9)0.0072 (2)
C170.67366 (17)0.40708 (17)1.00180 (10)0.0134 (3)
H170.6466410.3821031.0515710.016*
C180.79362 (18)0.50416 (19)0.98895 (11)0.0167 (3)
H180.8470930.5466441.0307140.020*
C190.83254 (16)0.53684 (17)0.91333 (10)0.0122 (3)
H190.9115770.6021590.9037560.015*
C200.75090 (15)0.46988 (14)0.85216 (9)0.0066 (2)
C210.78861 (15)0.49090 (14)0.76585 (9)0.0068 (2)
O1W0.04883 (15)1.24786 (15)1.03199 (9)0.0206 (3)
H1WA0.008 (2)1.201 (2)1.0422 (18)0.031*
H1WB0.1197 (19)1.203 (2)1.0544 (16)0.031*
O2W0.14195 (14)1.18981 (14)0.88110 (9)0.0173 (2)
H2WA0.122 (3)1.1150 (15)0.8944 (17)0.026*
H2WB0.114 (3)1.223 (3)0.9238 (11)0.026*
O3W0.13440 (13)1.42018 (13)0.60105 (9)0.0175 (3)
H3WA0.190 (2)1.467 (2)0.5968 (17)0.026*
H3WB0.0554 (15)1.470 (2)0.5944 (17)0.026*
O4W0.28586 (13)0.60772 (13)0.57011 (8)0.0153 (2)
H4WA0.221 (2)0.665 (2)0.5476 (15)0.023*
H4WB0.331 (2)0.644 (2)0.5892 (15)0.023*
O5W0.05492 (16)0.76417 (16)0.50456 (10)0.0248 (3)
H5WA0.011 (2)0.728 (3)0.5275 (18)0.037*
H5WB0.078 (3)0.751 (3)0.4552 (9)0.037*
O6W0.16147 (15)0.72091 (14)0.34836 (9)0.0194 (3)
H6WA0.133 (3)0.686 (3)0.3180 (15)0.029*
H6WB0.179 (3)0.7923 (17)0.3158 (14)0.029*
O7W0.42934 (13)0.58120 (12)0.36593 (8)0.0119 (2)
H7WA0.3439 (11)0.614 (2)0.3659 (16)0.018*
H7WB0.444 (3)0.5135 (17)0.3476 (15)0.018*
O8W0.62364 (12)0.31062 (11)0.83406 (7)0.0097 (2)
H8WA0.597 (2)0.276 (2)0.8833 (7)0.015*
H8WB0.569 (2)0.3851 (13)0.8228 (15)0.015*
O9W0.37670 (12)0.20510 (11)0.67876 (7)0.00911 (19)
H9WA0.391 (2)0.233 (2)0.6273 (6)0.014*
H9WB0.365 (2)0.1282 (13)0.6909 (15)0.014*
O10W0.42198 (12)0.09077 (12)0.86809 (7)0.0103 (2)
H10A0.3359 (10)0.122 (2)0.8710 (15)0.016*
H10B0.442 (3)0.0245 (17)0.8480 (14)0.016*
O11W0.12847 (13)0.08265 (14)0.95098 (9)0.0170 (2)
H11A0.2100 (14)0.117 (3)0.9312 (16)0.025*
H11B0.132 (3)0.091 (3)1.0010 (7)0.025*
O12W0.13612 (13)0.11638 (14)1.12813 (9)0.0168 (2)
H12A0.0624 (18)0.111 (3)1.1623 (13)0.025*
H12B0.187 (2)0.1918 (15)1.1490 (16)0.025*
O13W0.71107 (12)0.07398 (12)0.91019 (7)0.0118 (2)
H13A0.751 (2)0.0124 (18)0.8938 (15)0.018*
H13B0.688 (3)0.077 (2)0.8664 (10)0.018*
O14W0.87868 (14)0.40551 (14)0.56379 (8)0.0173 (2)
H14A0.820 (2)0.413 (3)0.6072 (11)0.026*
H14B0.849 (3)0.412 (3)0.5230 (12)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.00305 (3)0.00300 (3)0.00357 (3)0.00045 (2)0.00041 (2)0.00111 (2)
Na10.0114 (4)0.0097 (4)0.0094 (4)0.0041 (3)0.0013 (3)0.0026 (3)
Na20.0084 (3)0.0083 (3)0.0095 (3)0.0017 (2)0.0021 (2)0.0035 (2)
Na30.0141 (3)0.0118 (3)0.0153 (3)0.0031 (2)0.0016 (3)0.0031 (3)
Na40.0096 (4)0.0086 (4)0.0074 (4)0.0014 (3)0.0015 (3)0.0024 (3)
O10.0053 (4)0.0053 (4)0.0107 (5)0.0013 (3)0.0009 (4)0.0009 (4)
O20.0087 (5)0.0051 (5)0.0181 (6)0.0005 (4)0.0007 (4)0.0038 (4)
O30.0057 (4)0.0051 (4)0.0116 (5)0.0010 (3)0.0013 (4)0.0008 (4)
O40.0104 (5)0.0048 (5)0.0199 (6)0.0029 (4)0.0004 (4)0.0039 (4)
O50.0089 (4)0.0099 (5)0.0054 (4)0.0053 (4)0.0004 (4)0.0025 (4)
O60.0172 (5)0.0126 (5)0.0061 (5)0.0080 (4)0.0004 (4)0.0041 (4)
O70.0092 (5)0.0075 (5)0.0064 (5)0.0036 (4)0.0016 (4)0.0013 (4)
O80.0089 (5)0.0072 (5)0.0121 (5)0.0031 (4)0.0019 (4)0.0044 (4)
O90.0072 (4)0.0106 (5)0.0060 (5)0.0009 (4)0.0017 (4)0.0031 (4)
O100.0138 (5)0.0098 (5)0.0069 (5)0.0004 (4)0.0012 (4)0.0043 (4)
O110.0069 (4)0.0097 (5)0.0071 (5)0.0006 (4)0.0012 (4)0.0020 (4)
O120.0064 (4)0.0098 (5)0.0127 (5)0.0014 (4)0.0005 (4)0.0052 (4)
N10.0051 (5)0.0045 (5)0.0060 (5)0.0007 (4)0.0003 (4)0.0014 (4)
N20.0059 (5)0.0047 (5)0.0061 (5)0.0016 (4)0.0009 (4)0.0015 (4)
N30.0060 (5)0.0049 (5)0.0064 (5)0.0010 (4)0.0007 (4)0.0014 (4)
C10.0065 (6)0.0045 (6)0.0070 (6)0.0012 (4)0.0011 (4)0.0008 (5)
C20.0053 (5)0.0054 (6)0.0085 (6)0.0009 (4)0.0007 (4)0.0017 (5)
C30.0053 (6)0.0076 (6)0.0239 (8)0.0002 (5)0.0031 (5)0.0048 (6)
C40.0070 (6)0.0100 (7)0.0358 (10)0.0024 (5)0.0046 (6)0.0071 (7)
C50.0068 (6)0.0081 (7)0.0260 (9)0.0025 (5)0.0019 (6)0.0057 (6)
C60.0054 (5)0.0050 (6)0.0092 (6)0.0015 (4)0.0006 (4)0.0028 (5)
C70.0059 (5)0.0052 (6)0.0079 (6)0.0008 (4)0.0006 (4)0.0018 (5)
C80.0075 (6)0.0065 (6)0.0060 (6)0.0022 (5)0.0012 (4)0.0015 (5)
C90.0074 (6)0.0062 (6)0.0056 (6)0.0023 (5)0.0011 (4)0.0010 (5)
C100.0148 (7)0.0134 (7)0.0070 (6)0.0086 (6)0.0001 (5)0.0018 (5)
C110.0204 (8)0.0174 (8)0.0077 (7)0.0131 (6)0.0019 (6)0.0017 (6)
C120.0151 (7)0.0125 (7)0.0093 (6)0.0099 (6)0.0002 (5)0.0016 (5)
C130.0067 (5)0.0054 (6)0.0070 (6)0.0022 (4)0.0013 (4)0.0011 (5)
C140.0037 (5)0.0055 (6)0.0091 (6)0.0001 (4)0.0022 (4)0.0026 (5)
C150.0079 (6)0.0062 (6)0.0054 (6)0.0018 (5)0.0003 (4)0.0010 (5)
C160.0074 (6)0.0071 (6)0.0067 (6)0.0004 (5)0.0022 (5)0.0014 (5)
C170.0128 (7)0.0162 (7)0.0085 (7)0.0035 (6)0.0050 (5)0.0033 (6)
C180.0136 (7)0.0210 (8)0.0108 (7)0.0062 (6)0.0072 (6)0.0033 (6)
C190.0091 (6)0.0129 (7)0.0110 (7)0.0038 (5)0.0041 (5)0.0023 (5)
C200.0061 (5)0.0057 (6)0.0073 (6)0.0007 (4)0.0015 (4)0.0011 (5)
C210.0051 (5)0.0067 (6)0.0087 (6)0.0016 (4)0.0003 (5)0.0029 (5)
O1W0.0154 (6)0.0214 (7)0.0224 (7)0.0007 (5)0.0086 (5)0.0020 (5)
O2W0.0145 (6)0.0194 (6)0.0200 (6)0.0046 (5)0.0026 (5)0.0076 (5)
O3W0.0104 (5)0.0145 (6)0.0238 (7)0.0024 (4)0.0002 (5)0.0012 (5)
O4W0.0120 (5)0.0174 (6)0.0193 (6)0.0056 (5)0.0020 (4)0.0070 (5)
O5W0.0208 (7)0.0254 (8)0.0269 (8)0.0074 (6)0.0052 (6)0.0008 (6)
O6W0.0188 (6)0.0178 (6)0.0235 (7)0.0049 (5)0.0067 (5)0.0045 (5)
O7W0.0143 (5)0.0099 (5)0.0121 (5)0.0025 (4)0.0024 (4)0.0040 (4)
O8W0.0101 (5)0.0073 (5)0.0109 (5)0.0004 (4)0.0035 (4)0.0010 (4)
O9W0.0127 (5)0.0082 (5)0.0078 (5)0.0047 (4)0.0021 (4)0.0014 (4)
O10W0.0105 (5)0.0090 (5)0.0102 (5)0.0008 (4)0.0025 (4)0.0027 (4)
O11W0.0093 (5)0.0195 (6)0.0188 (6)0.0020 (5)0.0015 (5)0.0056 (5)
O12W0.0098 (5)0.0183 (6)0.0216 (7)0.0027 (5)0.0017 (5)0.0076 (5)
O13W0.0107 (5)0.0146 (6)0.0096 (5)0.0023 (4)0.0026 (4)0.0023 (4)
O14W0.0132 (6)0.0215 (6)0.0118 (6)0.0012 (5)0.0001 (4)0.0002 (5)
Geometric parameters (Å, º) top
Sm1—O12.4700 (11)N3—C201.3400 (19)
Sm1—O32.4367 (11)C1—C21.508 (2)
Sm1—O52.4371 (11)C2—C31.388 (2)
Sm1—O72.4764 (11)C3—H30.9300
Sm1—O9i2.4288 (11)C3—C41.391 (2)
Sm1—O11i2.5128 (11)C4—H40.9300
Sm1—N12.5597 (12)C4—C51.389 (2)
Sm1—N22.5428 (12)C5—H50.9300
Sm1—N3i2.5522 (13)C5—C61.387 (2)
Na1—O6ii2.4461 (12)C6—C71.507 (2)
Na1—O62.4461 (12)C8—C91.513 (2)
Na1—O4W2.4087 (13)C9—C101.389 (2)
Na1—O4Wii2.4087 (13)C10—H100.9300
Na1—H4WB2.54 (3)C10—C111.387 (2)
Na1—O7Wii2.4100 (13)C11—H110.9300
Na1—O7W2.4100 (13)C11—C121.389 (2)
Na2—Na3iii3.6071 (10)C12—H120.9300
Na2—O42.4261 (13)C12—C131.389 (2)
Na2—O8iii2.4308 (13)C13—C141.509 (2)
Na2—C73.1086 (16)C15—C161.511 (2)
Na2—C14iii3.0944 (16)C16—C171.387 (2)
Na2—O7Wii2.4764 (14)C17—H170.9300
Na2—O8W2.3415 (13)C17—C181.393 (2)
Na2—H8WB2.41 (2)C18—H180.9300
Na2—O9W2.2670 (13)C18—C191.387 (2)
Na2—O10W2.4208 (14)C19—H190.9300
Na3—O22.4117 (14)C19—C201.389 (2)
Na3—O4i2.5614 (14)C20—C211.512 (2)
Na3—O12iv2.5306 (13)O1W—H1WA0.852 (10)
Na3—O2W2.3805 (16)O1W—H1WB0.850 (10)
Na3—O3W2.3931 (16)O2W—H2WA0.861 (10)
Na3—H3WA2.66 (3)O2W—H2WB0.862 (10)
Na3—O9Wi2.4307 (14)O3W—H3WA0.847 (10)
Na4—O102.4001 (12)O3W—H3WB0.846 (10)
Na4—O10v2.4001 (12)O4W—H4WA0.849 (10)
Na4—O10Wv2.4107 (12)O4W—H4WB0.847 (10)
Na4—O10W2.4107 (12)O5W—H5WA0.852 (10)
Na4—O13Wv2.4400 (12)O5W—H5WB0.871 (10)
Na4—O13W2.4400 (12)O6W—H6WA0.862 (10)
O1—C11.2800 (17)O6W—H6WB0.867 (10)
O2—C11.2416 (18)O7W—H7WA0.844 (10)
O3—C71.2828 (17)O7W—H7WB0.847 (10)
O4—C71.2404 (18)O8W—H8WA0.844 (9)
O5—C81.2806 (18)O8W—H8WB0.844 (9)
O6—C81.2401 (18)O9W—H9WA0.846 (9)
O7—C141.2810 (18)O9W—H9WB0.848 (9)
O8—C141.2399 (17)O10W—H10A0.845 (10)
O9—C151.2724 (18)O10W—H10B0.843 (10)
O10—C151.2458 (18)O11W—H11A0.848 (10)
O11—C211.2766 (18)O11W—H11B0.846 (10)
O12—C211.2468 (18)O12W—H12A0.849 (10)
N1—C21.3372 (19)O12W—H12B0.862 (10)
N1—C61.3354 (18)O13W—H13A0.845 (10)
N2—C91.3386 (19)O13W—H13B0.846 (10)
N2—C131.3409 (18)O14W—H14A0.852 (10)
N3—C161.3387 (19)O14W—H14B0.846 (10)
O1—Sm1—O774.91 (4)O10—Na4—O13Wv90.20 (4)
O1—Sm1—O11i153.30 (4)O10Wv—Na4—O10W180.0
O1—Sm1—N162.60 (4)O10W—Na4—O13W79.58 (4)
O1—Sm1—N277.31 (4)O10W—Na4—O13Wv100.42 (4)
O1—Sm1—N3i133.62 (4)O10Wv—Na4—O13Wv79.58 (4)
O3—Sm1—O1125.28 (4)O10Wv—Na4—O13W100.42 (4)
O3—Sm1—O575.87 (4)O13Wv—Na4—O13W180.0
O3—Sm1—O7152.08 (4)C1—O1—Sm1125.52 (9)
O3—Sm1—O11i74.52 (4)C1—O2—Na3130.03 (10)
O3—Sm1—N162.70 (4)C7—O3—Sm1126.16 (9)
O3—Sm1—N2134.63 (4)Na2—O4—Na3iii92.60 (5)
O3—Sm1—N3i78.41 (4)C7—O4—Na2111.84 (10)
O5—Sm1—O192.07 (4)C7—O4—Na3iii144.16 (11)
O5—Sm1—O7126.55 (4)C8—O5—Sm1124.80 (9)
O5—Sm1—O11i74.58 (4)C8—O6—Na1120.67 (10)
O5—Sm1—N175.42 (4)C14—O7—Sm1124.81 (9)
O5—Sm1—N263.44 (4)C14—O8—Na2i110.69 (9)
O5—Sm1—N3i134.19 (4)C15—O9—Sm1iii123.86 (10)
O7—Sm1—O11i94.32 (4)C15—O10—Na4120.46 (10)
O7—Sm1—N1133.37 (4)C21—O11—Sm1iii125.58 (10)
O7—Sm1—N263.14 (4)C21—O12—Na3vi157.96 (10)
O7—Sm1—N3i73.78 (4)C2—N1—Sm1120.78 (9)
O9i—Sm1—O175.25 (4)C6—N1—Sm1120.08 (9)
O9i—Sm1—O391.81 (4)C6—N1—C2118.93 (12)
O9i—Sm1—O5152.88 (4)C9—N2—Sm1119.93 (9)
O9i—Sm1—O773.85 (4)C9—N2—C13119.10 (13)
O9i—Sm1—O11i125.88 (4)C13—N2—Sm1120.81 (10)
O9i—Sm1—N177.46 (4)C16—N3—Sm1iii118.99 (10)
O9i—Sm1—N2133.52 (4)C16—N3—C20118.90 (13)
O9i—Sm1—N3i63.72 (4)C20—N3—Sm1iii121.98 (10)
O11i—Sm1—N1132.31 (4)O1—C1—C2114.80 (13)
O11i—Sm1—N276.04 (4)O2—C1—O1125.97 (14)
O11i—Sm1—N3i62.28 (4)O2—C1—C2119.22 (13)
N2—Sm1—N1120.44 (4)N1—C2—C1114.50 (12)
N2—Sm1—N3i116.16 (4)N1—C2—C3122.49 (14)
N3i—Sm1—N1123.40 (4)C3—C2—C1123.00 (13)
O6ii—Na1—O6180.00 (5)C2—C3—H3120.8
O6ii—Na1—H4WB113.8 (4)C2—C3—C4118.35 (14)
O6—Na1—H4WB66.2 (4)C4—C3—H3120.8
O4Wii—Na1—O697.97 (4)C3—C4—H4120.4
O4W—Na1—O6ii97.97 (4)C5—C4—C3119.25 (15)
O4Wii—Na1—O6ii82.03 (4)C5—C4—H4120.4
O4W—Na1—O682.03 (4)C4—C5—H5120.8
O4W—Na1—O4Wii180.0C6—C5—C4118.42 (14)
O4W—Na1—H4WB19.5 (3)C6—C5—H5120.8
O4Wii—Na1—H4WB160.5 (3)N1—C6—C5122.55 (14)
O4Wii—Na1—O7W85.01 (4)N1—C6—C7114.55 (12)
O4W—Na1—O7Wii85.01 (4)C5—C6—C7122.90 (13)
O4W—Na1—O7W94.99 (4)O3—C7—Na281.93 (8)
O4Wii—Na1—O7Wii94.99 (4)O3—C7—C6114.75 (12)
O7Wii—Na1—O6ii91.13 (4)O4—C7—Na246.42 (8)
O7Wii—Na1—O688.87 (4)O4—C7—O3125.91 (14)
O7W—Na1—O691.13 (4)O4—C7—C6119.34 (13)
O7W—Na1—O6ii88.87 (4)C6—C7—Na2157.60 (10)
O7Wii—Na1—H4WB74.3 (5)O5—C8—C9115.43 (13)
O7W—Na1—H4WB105.7 (5)O6—C8—O5125.08 (14)
O7W—Na1—O7Wii180.0O6—C8—C9119.48 (13)
Na3iii—Na2—H8WB119.8 (4)N2—C9—C8114.36 (12)
O4—Na2—Na3iii45.18 (3)N2—C9—C10121.99 (13)
O4—Na2—O8iii173.35 (5)C10—C9—C8123.64 (13)
O4—Na2—C721.74 (4)C9—C10—H10120.6
O4—Na2—C14iii151.35 (4)C11—C10—C9118.75 (15)
O4—Na2—O7Wii89.10 (5)C11—C10—H10120.6
O4—Na2—H8WB75.0 (4)C10—C11—H11120.3
O8iii—Na2—Na3iii128.45 (4)C10—C11—C12119.43 (15)
O8iii—Na2—C7164.79 (4)C12—C11—H11120.3
O8iii—Na2—C14iii22.02 (4)C11—C12—H12120.9
O8iii—Na2—O7Wii94.67 (5)C13—C12—C11118.19 (14)
O8iii—Na2—H8WB111.1 (4)C13—C12—H12120.9
C7—Na2—Na3iii65.15 (3)N2—C13—C12122.50 (14)
C7—Na2—H8WB57.5 (3)N2—C13—C14114.75 (12)
C14iii—Na2—Na3iii106.82 (3)C12—C13—C14122.74 (13)
C14iii—Na2—C7171.39 (4)O7—C14—Na2i103.23 (9)
C14iii—Na2—H8WB131.1 (3)O7—C14—C13115.40 (12)
O7Wii—Na2—Na3iii101.31 (4)O8—C14—Na2i47.30 (7)
O7Wii—Na2—C774.28 (4)O8—C14—O7125.03 (14)
O7Wii—Na2—C14iii105.37 (5)O8—C14—C13119.55 (13)
O7Wii—Na2—H8WB80.2 (5)C13—C14—Na2i121.13 (9)
O8W—Na2—Na3iii135.37 (4)O9—C15—C16116.08 (13)
O8W—Na2—O492.78 (5)O10—C15—O9124.98 (14)
O8W—Na2—O8iii92.68 (5)O10—C15—C16118.92 (13)
O8W—Na2—C777.19 (4)N3—C16—C15114.28 (13)
O8W—Na2—C14iii111.41 (4)N3—C16—C17122.66 (14)
O8W—Na2—O7Wii90.09 (5)C17—C16—C15123.05 (14)
O8W—Na2—H8WB20.4 (3)C16—C17—H17120.9
O8W—Na2—O10W93.71 (5)C16—C17—C18118.15 (15)
O9W—Na2—Na3iii41.54 (3)C18—C17—H17120.9
O9W—Na2—O483.79 (5)C17—C18—H18120.3
O9W—Na2—O8iii90.77 (5)C19—C18—C17119.40 (15)
O9W—Na2—C799.36 (5)C19—C18—H18120.3
O9W—Na2—C14iii72.04 (4)C18—C19—H19120.7
O9W—Na2—O7Wii89.31 (5)C18—C19—C20118.56 (15)
O9W—Na2—O8W176.53 (5)C20—C19—H19120.7
O9W—Na2—H8WB156.3 (3)N3—C20—C19122.26 (14)
O9W—Na2—O10W86.76 (5)N3—C20—C21114.72 (12)
O10W—Na2—Na3iii74.40 (3)C19—C20—C21123.01 (13)
O10W—Na2—O488.49 (5)O11—C21—C20115.27 (13)
O10W—Na2—O8iii87.38 (4)O12—C21—O11126.00 (14)
O10W—Na2—C7104.39 (4)O12—C21—C20118.71 (13)
O10W—Na2—C14iii75.29 (4)H1WA—O1W—H1WB109 (3)
O10W—Na2—O7Wii175.59 (5)Na3—O2W—H2WA116.0 (19)
O10W—Na2—H8WB102.7 (5)Na3—O2W—H2WB128.6 (19)
Na2i—Na3—H3WA86.7 (4)H2WA—O2W—H2WB107 (3)
O2—Na3—Na2i108.54 (4)Na3—O3W—H3WA99.2 (19)
O2—Na3—O4i144.68 (5)Na3—O3W—H3WB112.4 (19)
O2—Na3—O12iv95.66 (5)H3WA—O3W—H3WB109 (3)
O2—Na3—H3WA119.8 (4)Na1—O4W—H4WA126.1 (18)
O2—Na3—O9Wi83.28 (4)Na1—O4W—H4WB88.8 (18)
O4i—Na3—Na2i42.21 (3)H4WA—O4W—H4WB110 (3)
O4i—Na3—H3WA83.5 (3)H5WA—O5W—H5WB107 (3)
O12iv—Na3—Na2i154.56 (4)H6WA—O6W—H6WB104 (3)
O12iv—Na3—O4i112.43 (5)Na1—O7W—Na2ii131.75 (5)
O12iv—Na3—H3WA88.0 (6)Na1—O7W—H7WA114.8 (18)
O2W—Na3—Na2i81.53 (4)Na1—O7W—H7WB104.9 (18)
O2W—Na3—O276.69 (5)Na2ii—O7W—H7WA94.6 (18)
O2W—Na3—O4i78.94 (5)Na2ii—O7W—H7WB104.5 (18)
O2W—Na3—O12iv97.00 (5)H7WA—O7W—H7WB103 (2)
O2W—Na3—O3W176.16 (6)Na2—O8W—H8WA106.0 (17)
O2W—Na3—H3WA162.4 (4)Na2—O8W—H8WB84.7 (17)
O2W—Na3—O9Wi103.12 (5)H8WA—O8W—H8WB106 (2)
O3W—Na3—Na2i101.53 (4)Na2—O9W—Na3iii100.26 (5)
O3W—Na3—O2104.30 (5)Na2—O9W—H9WA117.2 (17)
O3W—Na3—O4i101.73 (5)Na2—O9W—H9WB118.1 (17)
O3W—Na3—O12iv79.24 (5)Na3iii—O9W—H9WA113.2 (17)
O3W—Na3—H3WA18.3 (3)Na3iii—O9W—H9WB94.1 (17)
O3W—Na3—O9Wi80.70 (5)H9WA—O9W—H9WB111 (2)
O9Wi—Na3—Na2i38.20 (3)Na2—O10W—H10A101.1 (17)
O9Wi—Na3—O4i77.79 (4)Na2—O10W—H10B102.4 (17)
O9Wi—Na3—O12iv158.99 (5)Na4—O10W—Na2128.07 (5)
O9Wi—Na3—H3WA74.6 (6)Na4—O10W—H10A113.7 (17)
O10v—Na4—O10180.00 (6)Na4—O10W—H10B102.6 (17)
O10—Na4—O10Wv92.22 (4)H10A—O10W—H10B107 (2)
O10—Na4—O10W87.78 (4)H11A—O11W—H11B105 (3)
O10v—Na4—O10W92.22 (4)H12A—O12W—H12B103 (3)
O10v—Na4—O10Wv87.78 (4)Na4—O13W—H13A107.4 (17)
O10v—Na4—O13Wv89.80 (4)Na4—O13W—H13B107.5 (17)
O10—Na4—O13W89.80 (4)H13A—O13W—H13B102 (2)
O10v—Na4—O13W90.20 (4)H14A—O14W—H14B112 (3)
Sm1—O1—C1—O2164.44 (12)O9—C15—C16—C17170.69 (15)
Sm1—O1—C1—C216.46 (18)O10—C15—C16—N3168.08 (13)
Sm1—O3—C7—Na2149.87 (9)O10—C15—C16—C1710.7 (2)
Sm1—O3—C7—O4165.65 (12)N1—C2—C3—C40.9 (3)
Sm1—O3—C7—C614.47 (18)N1—C6—C7—Na2130.8 (2)
Sm1—O5—C8—O6162.94 (12)N1—C6—C7—O34.68 (19)
Sm1—O5—C8—C916.30 (18)N1—C6—C7—O4175.43 (14)
Sm1—O7—C14—Na2i121.58 (8)N2—C9—C10—C112.0 (2)
Sm1—O7—C14—O8168.27 (11)N2—C13—C14—Na2i115.99 (12)
Sm1—O7—C14—C1312.81 (17)N2—C13—C14—O79.65 (19)
Sm1iii—O9—C15—O10157.66 (12)N2—C13—C14—O8171.36 (13)
Sm1iii—O9—C15—C1620.84 (17)N3—C16—C17—C182.2 (3)
Sm1iii—O11—C21—O12176.34 (11)N3—C20—C21—O113.42 (19)
Sm1iii—O11—C21—C205.05 (17)N3—C20—C21—O12177.86 (13)
Sm1—N1—C2—C14.62 (17)C1—C2—C3—C4178.19 (16)
Sm1—N1—C2—C3174.58 (12)C2—N1—C6—C51.1 (2)
Sm1—N1—C6—C5173.65 (12)C2—N1—C6—C7179.45 (13)
Sm1—N1—C6—C75.79 (17)C2—C3—C4—C51.1 (3)
Sm1—N2—C9—C84.58 (16)C3—C4—C5—C60.2 (3)
Sm1—N2—C9—C10174.00 (12)C4—C5—C6—N10.9 (3)
Sm1—N2—C13—C12175.90 (12)C4—C5—C6—C7179.67 (16)
Sm1—N2—C13—C142.79 (16)C5—C6—C7—Na248.6 (3)
Sm1iii—N3—C16—C153.18 (16)C5—C6—C7—O3175.88 (15)
Sm1iii—N3—C16—C17175.62 (12)C5—C6—C7—O44.0 (2)
Sm1iii—N3—C20—C19178.06 (12)C6—N1—C2—C1179.35 (13)
Sm1iii—N3—C20—C210.53 (16)C6—N1—C2—C30.1 (2)
Na1—O6—C8—O517.7 (2)C8—C9—C10—C11179.54 (15)
Na1—O6—C8—C9161.50 (10)C9—N2—C13—C120.5 (2)
Na2—O4—C7—O321.8 (2)C9—N2—C13—C14178.15 (13)
Na2—O4—C7—C6158.31 (11)C9—C10—C11—C120.7 (3)
Na2i—O8—C14—O774.53 (16)C10—C11—C12—C131.1 (3)
Na2i—O8—C14—C13106.58 (12)C11—C12—C13—N21.8 (2)
Na3—O2—C1—O16.3 (2)C11—C12—C13—C14176.80 (15)
Na3—O2—C1—C2174.60 (10)C12—C13—C14—Na2i65.32 (17)
Na3iii—O4—C7—Na2129.7 (2)C12—C13—C14—O7169.04 (14)
Na3iii—O4—C7—O3151.47 (13)C12—C13—C14—O810.0 (2)
Na3iii—O4—C7—C628.6 (3)C13—N2—C9—C8179.98 (13)
Na3vi—O12—C21—O11125.3 (3)C13—N2—C9—C101.4 (2)
Na3vi—O12—C21—C2053.3 (3)C15—C16—C17—C18179.08 (16)
Na4—O10—C15—O987.53 (17)C16—N3—C20—C192.1 (2)
Na4—O10—C15—C1690.94 (14)C16—N3—C20—C21176.44 (13)
O1—C1—C2—N112.93 (19)C16—C17—C18—C191.5 (3)
O1—C1—C2—C3166.27 (15)C17—C18—C19—C200.9 (3)
O2—C1—C2—N1167.90 (14)C18—C19—C20—N32.8 (2)
O2—C1—C2—C312.9 (2)C18—C19—C20—C21175.69 (15)
O5—C8—C9—N26.77 (19)C19—C20—C21—O11175.16 (14)
O5—C8—C9—C10174.68 (15)C19—C20—C21—O123.6 (2)
O6—C8—C9—N2172.51 (14)C20—N3—C16—C15179.22 (12)
O6—C8—C9—C106.0 (2)C20—N3—C16—C170.4 (2)
O9—C15—C16—N310.52 (19)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x1, y+2, z; (v) x+1, y, z+2; (vi) x+1, y2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O13Wvii0.85 (1)1.98 (1)2.8163 (19)167 (3)
O2W—H2WA···O11Wi0.86 (1)2.10 (1)2.927 (2)160 (3)
O2W—H2WA···O12Wviii0.86 (1)2.76 (3)3.2317 (19)116 (2)
O2W—H2WB···O1W0.86 (1)1.90 (1)2.742 (2)164 (3)
O4W—H4WA···O5W0.85 (1)1.91 (1)2.741 (2)167 (3)
O4W—H4WB···O50.85 (1)2.02 (1)2.8534 (17)169 (3)
O6W—H6WA···O12ix0.86 (1)2.00 (1)2.8435 (19)168 (3)
O6W—H6WB···O8x0.87 (1)2.09 (2)2.8645 (18)149 (3)
O7W—H7WA···O6W0.84 (1)1.93 (1)2.7611 (19)167 (3)
O7W—H7WB···O3ii0.85 (1)2.54 (2)3.1551 (17)131 (2)
O7W—H7WB···O5ii0.85 (1)2.31 (2)3.0267 (17)142 (2)
O8W—H8WA···O10v0.84 (1)1.87 (1)2.7065 (17)171 (2)
O9W—H9WA···O6ii0.85 (1)1.94 (1)2.7871 (16)175 (2)
O9W—H9WB···O1iii0.85 (1)1.87 (1)2.7160 (16)173 (2)
O10W—H10A···O2Wiii0.85 (1)1.90 (1)2.7419 (18)178 (2)
O11W—H11A···O90.85 (1)1.97 (1)2.8128 (17)174 (3)
O11W—H11B···O12W0.85 (1)2.13 (1)2.973 (2)178 (3)
O12W—H12A···O2viii0.85 (1)2.11 (1)2.9542 (18)173 (3)
O12W—H12B···O8Wv0.86 (1)2.03 (2)2.8057 (18)149 (3)
O13W—H13A···O12Wv0.85 (1)1.99 (1)2.8235 (18)170 (2)
O13W—H13B···O7iii0.85 (1)2.09 (1)2.9274 (17)171 (2)
O13W—H13B···O8iii0.85 (1)2.57 (2)3.1929 (17)132 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (v) x+1, y, z+2; (vii) x+1, y+1, z+2; (viii) x, y+1, z+2; (ix) x+1, y, z+1; (x) x+1, y+2, z+1.
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato-κ3O2,N,O6)samarium(III)]-µ-pyridine-2,6-dicarboxylato-κ4O2,N,O6:O2] tetrahydrate] (II) top
Crystal data top
[Sm(C7H3NO4)(C7H4NO4)(H2O)2]·4H2OF(000) = 1164
Mr = 589.66Dx = 2.013 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9292 (8) ÅCell parameters from 9554 reflections
b = 11.1969 (7) Åθ = 2.4–35.1°
c = 12.8086 (7) ŵ = 3.10 mm1
β = 103.049 (2)°T = 100 K
V = 1946.1 (2) Å3Plate, colourless
Z = 40.48 × 0.40 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6679 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Bruker, 2019)
θmax = 33.1°, θmin = 2.4°
Tmin = 0.575, Tmax = 0.747h = 2121
74345 measured reflectionsk = 1717
7424 independent reflectionsl = 1719
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.012P)2 + 2.2391P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.007
7424 reflectionsΔρmax = 0.73 e Å3
319 parametersΔρmin = 1.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.73193 (2)0.29610 (2)0.84878 (2)0.00303 (2)
O10.65850 (8)0.10076 (9)0.86514 (9)0.00783 (19)
O20.53228 (8)0.01891 (10)0.87649 (10)0.0123 (2)
O30.64950 (8)0.49371 (9)0.85969 (9)0.00847 (19)
O40.51949 (9)0.60513 (11)0.87239 (10)0.0145 (2)
H40.5646 (18)0.676 (2)0.875 (2)0.022*
O50.84574 (8)0.07310 (10)0.27878 (9)0.00810 (19)
O60.92027 (9)0.10506 (10)0.28114 (9)0.0106 (2)
O70.72787 (8)0.22062 (9)0.54309 (8)0.00693 (18)
O80.78295 (8)0.16945 (10)0.71580 (8)0.00725 (18)
C10.56995 (11)0.08151 (13)0.86995 (12)0.0074 (2)
C20.50502 (11)0.18986 (13)0.86725 (12)0.0083 (2)
C30.40535 (12)0.18312 (16)0.86702 (17)0.0177 (3)
H30.3742230.1080780.8698600.021*
C40.35229 (13)0.28896 (17)0.8625 (2)0.0240 (4)
H4A0.2836640.2869890.8602360.029*
C50.40023 (12)0.39746 (16)0.86144 (16)0.0176 (3)
H50.3656760.4708800.8593810.021*
C60.50027 (11)0.39530 (14)0.86343 (12)0.0091 (2)
C70.56268 (11)0.50434 (13)0.86471 (12)0.0083 (3)
C80.88073 (10)0.02353 (13)0.32337 (11)0.0061 (2)
C90.87488 (10)0.03865 (12)0.43907 (11)0.0052 (2)
C100.90835 (11)0.13997 (13)0.49895 (12)0.0073 (2)
H100.9345760.2056720.4675740.009*
C110.90257 (11)0.14290 (13)0.60575 (12)0.0084 (2)
H110.9250580.2109900.6485650.010*
C120.86374 (10)0.04573 (13)0.64965 (11)0.0066 (2)
H120.8614220.0445900.7232000.008*
C130.82835 (10)0.04988 (12)0.58257 (11)0.0049 (2)
C140.77620 (10)0.15538 (12)0.61763 (11)0.0049 (2)
N10.55123 (9)0.29383 (11)0.86438 (10)0.0063 (2)
N20.83414 (9)0.05330 (11)0.47961 (9)0.0046 (2)
O1W0.63395 (9)0.34532 (11)0.67167 (9)0.0117 (2)
H1WA0.5864 (10)0.3940 (15)0.6529 (18)0.018*
H1WB0.6530 (15)0.3178 (19)0.6179 (11)0.018*
O2W0.87579 (8)0.18700 (10)0.93554 (9)0.0091 (2)
H2WA0.8967 (16)0.1939 (19)1.0029 (3)0.014*
H2WB0.9169 (11)0.1431 (15)0.9135 (16)0.014*
O3W0.95920 (8)0.19105 (10)1.14835 (9)0.00890 (19)
H3WA0.9230 (12)0.1699 (19)1.1904 (13)0.013*
H3WB0.9949 (13)0.2501 (12)1.1748 (16)0.013*
O4W0.63135 (11)0.77889 (12)0.89098 (16)0.0307 (4)
H4WA0.6029 (18)0.8463 (11)0.888 (2)0.046*
H4WB0.6931 (4)0.785 (3)0.896 (3)0.046*
O5W0.80409 (10)0.90705 (12)0.90443 (12)0.0217 (3)
H5WA0.7688 (15)0.9695 (12)0.900 (2)0.033*
H5WB0.8408 (15)0.919 (2)0.9662 (9)0.033*
O6W0.96769 (9)0.05672 (10)0.09389 (9)0.0116 (2)
H6WA0.9816 (16)0.0173 (5)0.0980 (18)0.017*
H6WB0.9508 (15)0.072 (2)0.1523 (9)0.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.00394 (3)0.00300 (3)0.00234 (3)0.00019 (2)0.00113 (2)0.00035 (2)
O10.0069 (4)0.0056 (4)0.0115 (5)0.0009 (4)0.0033 (4)0.0000 (4)
O20.0093 (5)0.0066 (5)0.0214 (6)0.0034 (4)0.0040 (4)0.0004 (4)
O30.0085 (5)0.0062 (4)0.0105 (5)0.0012 (4)0.0017 (4)0.0005 (4)
O40.0147 (5)0.0075 (5)0.0220 (6)0.0043 (4)0.0055 (5)0.0020 (4)
O50.0116 (5)0.0074 (4)0.0064 (4)0.0034 (4)0.0044 (4)0.0019 (4)
O60.0176 (5)0.0080 (5)0.0085 (5)0.0054 (4)0.0075 (4)0.0001 (4)
O70.0088 (4)0.0078 (5)0.0043 (4)0.0032 (4)0.0018 (4)0.0014 (3)
O80.0109 (5)0.0079 (4)0.0035 (4)0.0020 (4)0.0025 (4)0.0006 (4)
C10.0078 (6)0.0066 (6)0.0074 (6)0.0014 (5)0.0010 (5)0.0009 (5)
C20.0064 (6)0.0084 (6)0.0109 (6)0.0005 (5)0.0032 (5)0.0002 (5)
C30.0078 (6)0.0134 (7)0.0341 (10)0.0006 (5)0.0090 (6)0.0023 (7)
C40.0089 (7)0.0171 (8)0.0493 (13)0.0024 (6)0.0136 (8)0.0039 (8)
C50.0113 (7)0.0137 (7)0.0301 (9)0.0049 (6)0.0095 (6)0.0018 (7)
C60.0092 (6)0.0083 (6)0.0106 (6)0.0025 (5)0.0036 (5)0.0005 (5)
C70.0112 (6)0.0071 (6)0.0070 (6)0.0033 (5)0.0025 (5)0.0001 (5)
C80.0080 (6)0.0061 (6)0.0053 (6)0.0007 (4)0.0034 (5)0.0003 (5)
C90.0060 (5)0.0052 (5)0.0049 (5)0.0004 (4)0.0022 (4)0.0000 (4)
C100.0095 (6)0.0058 (6)0.0067 (6)0.0021 (5)0.0024 (5)0.0000 (5)
C110.0117 (6)0.0069 (6)0.0066 (6)0.0021 (5)0.0017 (5)0.0022 (5)
C120.0087 (6)0.0064 (6)0.0042 (6)0.0004 (5)0.0006 (5)0.0002 (4)
C130.0060 (5)0.0055 (5)0.0033 (5)0.0003 (4)0.0014 (4)0.0001 (4)
C140.0057 (5)0.0041 (5)0.0051 (5)0.0007 (4)0.0018 (4)0.0006 (4)
N10.0066 (5)0.0069 (5)0.0059 (5)0.0008 (4)0.0023 (4)0.0001 (4)
N20.0057 (5)0.0044 (5)0.0041 (5)0.0002 (4)0.0023 (4)0.0003 (4)
O1W0.0127 (5)0.0169 (6)0.0049 (5)0.0090 (4)0.0012 (4)0.0004 (4)
O2W0.0088 (5)0.0123 (5)0.0055 (4)0.0047 (4)0.0003 (4)0.0017 (4)
O3W0.0100 (5)0.0109 (5)0.0065 (5)0.0018 (4)0.0032 (4)0.0005 (4)
O4W0.0192 (7)0.0093 (6)0.0653 (12)0.0012 (5)0.0129 (7)0.0009 (6)
O5W0.0188 (6)0.0118 (6)0.0316 (8)0.0030 (5)0.0005 (5)0.0017 (5)
O6W0.0169 (5)0.0098 (5)0.0107 (5)0.0030 (4)0.0087 (4)0.0015 (4)
Geometric parameters (Å, º) top
Sm1—O2W2.3952 (11)C6—N11.3382 (19)
Sm1—O1W2.4320 (11)C6—C71.497 (2)
Sm1—O82.4422 (10)C8—C91.512 (2)
Sm1—O12.4434 (11)C9—N21.3360 (18)
Sm1—O5i2.4707 (11)C9—C101.3896 (19)
Sm1—O7i2.5092 (11)C10—C111.389 (2)
Sm1—O32.5112 (11)C10—H100.9500
Sm1—N2i2.5693 (12)C11—C121.389 (2)
Sm1—N12.5695 (12)C11—H110.9500
O1—C11.2673 (17)C12—C131.3914 (19)
O2—C11.2516 (18)C12—H120.9500
O3—C71.2313 (18)C13—N21.3399 (18)
O4—C71.2930 (18)C13—C141.507 (2)
O4—H41.01 (3)O1W—H1WA0.8499 (10)
O5—C81.2683 (17)O1W—H1WB0.8500 (10)
O6—C81.2505 (17)O2W—H2WA0.8500 (10)
O7—C141.2681 (17)O2W—H2WB0.8500 (10)
O8—C141.2495 (17)O3W—H3WA0.8499 (10)
C1—C21.509 (2)O3W—H3WB0.8499 (10)
C2—N11.3348 (19)O4W—H41.47 (3)
C2—C31.390 (2)O4W—H4WA0.8499 (10)
C3—C41.391 (2)O4W—H4WB0.8499 (11)
C3—H30.9500O5W—H5WA0.8499 (10)
C4—C51.388 (3)O5W—H5WB0.8499 (10)
C4—H4A0.9500O6W—H6WA0.8499 (10)
C5—C61.388 (2)O6W—H6WB0.8499 (10)
C5—H50.9500
O2W—Sm1—O1W141.52 (4)C5—C4—C3119.59 (16)
O2W—Sm1—O871.50 (4)C5—C4—H4A120.2
O1W—Sm1—O870.81 (4)C3—C4—H4A120.2
O2W—Sm1—O179.99 (4)C4—C5—C6117.89 (15)
O1W—Sm1—O197.19 (4)C4—C5—H5121.1
O8—Sm1—O174.54 (4)C6—C5—H5121.1
O2W—Sm1—O5i86.13 (4)N1—C6—C5122.90 (15)
O1W—Sm1—O5i78.35 (4)N1—C6—C7112.76 (13)
O8—Sm1—O5i77.26 (4)C5—C6—C7124.34 (14)
O1—Sm1—O5i151.28 (4)O3—C7—O4124.59 (14)
O2W—Sm1—O7i72.88 (4)O3—C7—C6119.70 (13)
O1W—Sm1—O7i143.96 (4)O4—C7—C6115.71 (13)
O8—Sm1—O7i136.37 (4)O6—C8—O5126.15 (13)
O1—Sm1—O7i75.20 (3)O6—C8—C9117.94 (13)
O5i—Sm1—O7i124.35 (3)O5—C8—C9115.89 (12)
O2W—Sm1—O3140.24 (4)N2—C9—C10122.25 (13)
O1W—Sm1—O371.63 (4)N2—C9—C8114.60 (12)
O8—Sm1—O3139.39 (4)C10—C9—C8123.15 (12)
O1—Sm1—O3125.34 (4)C11—C10—C9118.44 (13)
O5i—Sm1—O380.61 (4)C11—C10—H10120.8
O7i—Sm1—O384.12 (4)C9—C10—H10120.8
O2W—Sm1—N2i75.51 (4)C10—C11—C12119.64 (13)
O1W—Sm1—N2i124.84 (4)C10—C11—H11120.2
O8—Sm1—N2i129.07 (4)C12—C11—H11120.2
O1—Sm1—N2i135.45 (4)C11—C12—C13117.95 (13)
O5i—Sm1—N2i62.69 (4)C11—C12—H12121.0
O7i—Sm1—N2i62.31 (4)C13—C12—H12121.0
O3—Sm1—N2i65.06 (4)N2—C13—C12122.55 (13)
O2W—Sm1—N1133.67 (4)N2—C13—C14114.27 (12)
O1W—Sm1—N173.83 (4)C12—C13—C14123.12 (12)
O8—Sm1—N1119.53 (4)O8—C14—O7126.27 (13)
O1—Sm1—N163.14 (4)O8—C14—C13117.83 (12)
O5i—Sm1—N1138.95 (4)O7—C14—C13115.90 (12)
O7i—Sm1—N171.36 (4)C2—N1—C6118.86 (13)
O3—Sm1—N162.37 (4)C2—N1—Sm1119.84 (9)
N2i—Sm1—N1111.35 (4)C6—N1—Sm1121.18 (10)
C1—O1—Sm1125.96 (9)C9—N2—C13119.07 (12)
C7—O3—Sm1123.70 (10)C9—N2—Sm1ii118.28 (9)
C7—O4—H4113.1 (14)C13—N2—Sm1ii120.87 (9)
C8—O5—Sm1ii123.71 (9)Sm1—O1W—H1WA130.3 (16)
C14—O7—Sm1ii125.23 (9)Sm1—O1W—H1WB117.5 (15)
C14—O8—Sm1143.85 (10)H1WA—O1W—H1WB112 (2)
O2—C1—O1125.69 (14)Sm1—O2W—H2WA119.0 (15)
O2—C1—C2117.75 (13)Sm1—O2W—H2WB134.2 (14)
O1—C1—C2116.56 (13)H2WA—O2W—H2WB107 (2)
N1—C2—C3122.34 (14)H3WA—O3W—H3WB110 (2)
N1—C2—C1114.31 (12)H4—O4W—H4WA115 (2)
C3—C2—C1123.35 (14)H4—O4W—H4WB132 (2)
C2—C3—C4118.37 (16)H4WA—O4W—H4WB113 (3)
C2—C3—H3120.8H5WA—O5W—H5WB99 (2)
C4—C3—H3120.8H6WA—O6W—H6WB104 (2)
Sm1—O1—C1—O2178.70 (11)C10—C11—C12—C132.4 (2)
Sm1—O1—C1—C21.16 (18)C11—C12—C13—N22.8 (2)
O2—C1—C2—N1177.56 (14)C11—C12—C13—C14174.28 (13)
O1—C1—C2—N12.6 (2)Sm1—O8—C14—O70.5 (3)
O2—C1—C2—C32.8 (2)Sm1—O8—C14—C13179.20 (10)
O1—C1—C2—C3177.02 (16)Sm1ii—O7—C14—O8172.44 (11)
N1—C2—C3—C40.7 (3)Sm1ii—O7—C14—C138.81 (17)
C1—C2—C3—C4178.89 (18)N2—C13—C14—O8167.61 (13)
C2—C3—C4—C51.8 (3)C12—C13—C14—O815.1 (2)
C3—C4—C5—C60.9 (3)N2—C13—C14—O713.53 (18)
C4—C5—C6—N11.3 (3)C12—C13—C14—O7163.75 (13)
C4—C5—C6—C7178.78 (18)C3—C2—N1—C61.4 (2)
Sm1—O3—C7—O4178.63 (11)C1—C2—N1—C6179.02 (13)
Sm1—O3—C7—C60.58 (19)C3—C2—N1—Sm1174.76 (13)
N1—C6—C7—O34.5 (2)C1—C2—N1—Sm14.83 (17)
C5—C6—C7—O3175.46 (16)C5—C6—N1—C22.4 (2)
N1—C6—C7—O4174.77 (13)C7—C6—N1—C2177.65 (13)
C5—C6—C7—O45.3 (2)C5—C6—N1—Sm1173.72 (13)
Sm1ii—O5—C8—O6163.39 (12)C7—C6—N1—Sm16.26 (17)
Sm1ii—O5—C8—C917.75 (17)C10—C9—N2—C132.4 (2)
O6—C8—C9—N2178.29 (13)C8—C9—N2—C13178.01 (12)
O5—C8—C9—N20.67 (19)C10—C9—N2—Sm1ii162.53 (11)
O6—C8—C9—C102.1 (2)C8—C9—N2—Sm1ii17.07 (15)
O5—C8—C9—C10178.93 (13)C12—C13—N2—C90.4 (2)
N2—C9—C10—C112.6 (2)C14—C13—N2—C9176.91 (12)
C8—C9—C10—C11177.79 (13)C12—C13—N2—Sm1ii164.91 (10)
C9—C10—C11—C120.1 (2)C14—C13—N2—Sm1ii12.39 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.85 (1)1.88 (1)2.7218 (16)169 (2)
O1W—H1WB···O70.85 (1)1.91 (1)2.7103 (15)157 (2)
O2W—H2WA···O3W0.85 (1)1.87 (1)2.7115 (16)170 (2)
O2W—H2WB···O6Wiv0.85 (1)1.90 (1)2.7193 (16)163 (2)
O3W—H3WA···O5v0.85 (1)2.04 (1)2.8679 (15)164 (2)
O3W—H3WB···O6vi0.85 (1)2.01 (1)2.8568 (16)173 (2)
O4W—H4WA···O2vii0.85 (1)1.79 (1)2.6360 (18)174 (3)
O4W—H4WB···O5W0.85 (1)2.05 (2)2.773 (2)143 (3)
O5W—H5WA···O1vii0.85 (1)2.10 (1)2.9340 (17)167 (2)
O5W—H5WB···O6Wviii0.85 (1)2.14 (1)2.9579 (19)162 (2)
O6W—H6WA···O3Wix0.85 (1)2.10 (1)2.8696 (16)151 (2)
O6W—H6WB···O60.85 (1)1.83 (1)2.6828 (16)177 (2)
O4—H4···O4W1.01 (3)1.47 (3)2.4703 (19)174 (2)
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x+2, y+1/2, z+3/2; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x, y, z1.
 

Acknowledgements

The Villum Foundation, the Carlsberg Foundation, and the University of Copenhagen are thanked for generous support.

Funding information

Funding for this research was provided by: Villum Fonden; Carlsbergfondet; Københavns Universitet.

References

First citationAebischer, A., Gumy, F. & Bünzli, J. G. (2009). Phys. Chem. Chem. Phys. 11, 1346–1353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlbertsson, J. (1970). Acta Chem. Scand. 24, 3527–3541.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlbertsson, J. (1972). Acta Chem. Scand. 26, 985–1004.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrayshaw, P. A., Buenzli, J. G., Froidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem. 34, 2068–2076.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrayshaw, P. A., Hall, A. K., Harrison, W. T., Harrowfield, J. M., Pearce, D., Shand, T. M., Skelton, B. W., Whitaker, C. R. & White, A. H. (2005). Eur. J. Inorg. Chem. pp. 1127–1141.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2019). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarnall, W., Fields, P. & Rajnak, K. (1968). J. Chem. Phys. 49, 4424–4442.  CrossRef CAS Web of Science Google Scholar
First citationChauvin, A. S., Gumy, F., Imbert, D. & Bünzli, J. G. (2004). Spectrosc. Lett. 37, 517–532.  Web of Science CrossRef CAS Google Scholar
First citationCheisson, T. & Schelter, E. J. (2019). Science, 363, 489–493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, X., Jensen, M. & Liu, G. (2005). J. Phys. Chem. B, 109, 13991–13999.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheng, C.-X., Liu, H.-W., Hu, Z.-Q., Luo, F.-H. & Cao, M.-N. (2007). Acta Cryst. E63, m1–m3.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChuasaard, T., Panyarat, K., Rodlamul, P., Chainok, K., Yimklan, S. & Rujiwatra, A. (2017). Cryst. Growth Des. 17, 1045–1054.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElahi, S. M. & Rajasekharan, M. V. (2016). Chem. Sel. 1, 6515–6522.  Google Scholar
First citationEliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250–8254.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHojnik, N., Kristl, M., Golobič, A., Jagličić, Z. & Drofenik, M. (2015). J. Mol. Struct. 1079, 54–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, K.-L., Bai, F.-Y., Xing, Y.-H., Cao, Y.-Z., Wei, D.-M. & Niu, S.-Y. (2011). J. Inorg. Organomet. Polym. 21, 213–222.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, S., Dong, Z., Zhang, H. & Liu, Q. (1989). J. Xiamen Univ. 28, 514–518.  CAS Google Scholar
First citationJudd, B. R. (1962). Phys. Rev. 127, 750–761.  CrossRef CAS Web of Science Google Scholar
First citationKang, S.-K. (2011). Bull. Korean Chem. Soc. 32, 1745–1747.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, J.-G., Yoon, S.-K., Sohn, Y. & Kang, J.-G. (1998). J. Alloys Compd. 274, 1–9.  Web of Science CrossRef CAS Google Scholar
First citationKofod, N., Nawrocki, P., Juelsholt, M., Christiansen, T. L., Jensen, K. M. & Sørensen, T. J. (2020). Inorg. Chem. 59, 10409–10421.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKong, Y.-J., Hou, G.-Z., Gong, Z.-N., Zhao, F.-T. & Han, L.-J. (2022). RSC Adv. 12, 8435–8442.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKumar, D., Tewari, S., Adnan, M., Ahmad, S., Vijaya Prakash, G. & Ramanan, A. (2019). Inorg. Chim. Acta, 487, 81–91.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q.-F., Ge, G.-W., Sun, Y., Yu, M. & Wang, Z. (2019). Spectrochim. Acta A Mol. Biomol. Spectrosc. 214, 333–338.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, H. X., Liu, Q., Xu, Y., Huang, T. T., Wang, L. T., Ye, K. Q. & Zeng, G. (2014). Adv. Mater. Res. 834–836, 490–493.  CSD CrossRef CAS Google Scholar
First citationLiu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1111–m1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLupei, A., Tiseanu, C., Gheorghe, C. & Voicu, F. (2012). Appl. Phys. B, 108, 909–918.  Web of Science CrossRef CAS Google Scholar
First citationMoghzi, F., Soleimannejad, J., Emadi, H. & Janczak, J. (2020). Acta Cryst. B76, 779–788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMondry, A. & Starynowicz, P. (1995). J. Alloys Compd. 225, 367–371.  CSD CrossRef CAS Web of Science Google Scholar
First citationMortensen, S. S., Marciniak Nielsen, M. A., Nawrocki, P. R. & Sørensen, T. J. (2022). J. Phys. Chem. A, 126, 8596–8605.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMurray, G. M., Sarrio, R. V. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233–240.  CrossRef CAS Web of Science Google Scholar
First citationNajafi, A., Mirzaei, M., Bauzá, A., Mague, J. T. & Frontera, A. (2017). Inorg. Chem. Commun. 83, 24–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationOfelt, G. (1962). J. Chem. Phys. 37, 511–520.  CrossRef CAS Web of Science Google Scholar
First citationPicoQuant (2018). EasyTau 2. Picoquant, Germany. https://www.pico­quant.com  Google Scholar
First citationRafizadeh, M., Amani, V., Iravani, E. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 952–955.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakirzanovas, S., Katelnikovas, A., Bettentrup, H., Kareiva, A. & Jüstel, T. (2011). J. Lumin. 131, 1525–1529.  Web of Science CrossRef CAS Google Scholar
First citationSalaam, J., N'Dala–Louika, I., Balogh, C., Suleimanov, I., Pilet, G., Veyre, L., Camp, C., Thieuleux, C., Riobé, F. & Maury, O. (2022). Eur. J. Inorg. Chem. 2022, 00412.  Web of Science CSD CrossRef Google Scholar
First citationSharif, S., Khan, B., Şahin, O. & Khan, I. (2016). Russ. J. Coord. Chem. 42, 56–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkaudzius, R., Sakirzanovas, S. & Kareiva, A. (2018). J. Elec Materi. 47, 3951–3956.  Web of Science CrossRef CAS Google Scholar
First citationSong, Y.-S., Yan, B. & Chen, Z.-X. (2005). J. Mol. Struct. 750, 101–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationStorm Thomsen, M., Anker, A. S., Kacenauskaite, L. & Sørensen, T. J. (2022). Dalton Trans. 51, 8960–8963.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationTancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc. 127, 13474–13475.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationViveros-Andrade, A. G., Colorado-Peralta, R., Flores-Alamo, M., Castillo-Blum, S. E., Durán-Hernández, J. & Rivera, J. M. (2017). J. Mol. Struct. 1145, 10–17.  CAS Google Scholar
First citationWang, P., Fan, R.-Q., Liu, X.-R., Yang, Y.-L. & Zhou, G.-P. (2012). J. Inorg. Organomet. Polym. 22, 744–755.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWybourne, B. G. (2004). J. Alloys Compd. 380, 96–100.  Web of Science CrossRef CAS Google Scholar
First citationXu, X., Liu, X., Sun, T., Zhang, X. & Wang, E. (2009). J. Coord. Chem. 62, 2755–2763.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, D., Huang, C., Wang, K. & Xu, G. (1994). Polyhedron, 13, 987–991.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds