research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of barium dinickel(II) iron(III) tris­­[orthophosphate(V)], BaNi2Fe(PO4)3

crossmark logo

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie des Matériaux Inorganiques, Faculté des Sciences, Département de Chimie, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon
*Correspondence e-mail: saidouaatta87@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 November 2022; accepted 12 January 2023; online 17 January 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The orthophosphate BaNi2Fe(PO4)3 has been synthesized by a solid-state reaction route and characterized by single-crystal X-ray diffraction and energy-dispersive X-ray spectroscopy. The crystal structure comprises (100) sheets made up of [Ni2O10] dimers that are linked to two PO4 tetra­hedra via common edges and vertices and of linear infinite [010] chains of corner-sharing [FeO6] octa­hedra and [PO4] tetra­hedra. The linkage of the sheets and chains into a framework is accomplished through common vertices of PO4 tetra­hedra and [FeO6] octa­hedra. The framework is perforated by channels in which positionally disordered Ba2+ cations are located.

1. Chemical context

Phosphate-based materials have been studied extensively in the past. Among them are orthophosphates, which have gained great inter­est in recent years owing to their structural richness (Maeda, 2004[Maeda, K. (2004). Microporous Mesoporous Mater. 73, 47-55.]) and their promising applications, for example in electrochemical catalysis (Dwibedi et al., 2020[Dwibedi, D., Barpanda, P. & Yamada, A. (2020). Small Methods, 4, 2000051.]; Cheng et al., 2021[Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D. & Chen, S. (2021). Energy Storage Materials, 41, 842-882.]; Rekha et al., 2021[Rekha, P., Yadav, S. & Singh, L. (2021). Ceram. Int. 47, 16385-16401.]; Anahmadi et al., 2022[Anahmadi, H., Fathi, M., El hajri, F., Benzekri, Z., Sibous, S., Idrissi, B. C., El youbi, M. S., Souizi, A. & Boukhris, S. (2022). J. Mol. Struct. 1248, 131449.]). Furthermore, orthophosphates doped with rare-earth cations have shown excellent optical properties (Ci et al., 2014[Ci, Z., Que, M., Shi, Y., Zhu, G. & Wang, Y. (2014). Inorg. Chem. 53, 2195-2199.]; Li et al., 2021[Li, Z., Geng, X., Wang, Y. & Chen, Y. (2021). J. Lumin. 240, 118428.]; Indumathi et al., 2022[Indumathi, K., Tamilselvan, S., Rajasekaran, L., David, A. D. J., Muhammad, G. S., Ramalingam, G. & Biruntha, M. (2022). Mater. Lett. 309, 131371.]), along with a wide range of applications for use in luminescence emission displays (Li et al., 2008[Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T. & Mitomo, M. (2008). Chem. Mater. 20, 6704-6714.]; Wan et al., 2010[Wan, C., Meng, J., Zhang, F., Deng, X. & Yang, C. (2010). Solid State Commun. 150, 1493-1495.]; Yang et al., 2019[Yang, X., Chen, J., Chai, C., Zheng, S. & Chen, C. (2019). Optik (Stuttg). 198, 163238.]; Santos et al., 2022[Santos, R. D. S., Oliveira, J. L., Araujo, R. M. & Rezende, M. V. dos S. (2022). J. Solid State Chem. 306, 122769.]).

In this context, our research inter­est is connected with tris-orthophosphate-based materials with general formula (A2/B)M2M′(PO4)3, where A can be an alkali, B an alkaline earth and M and M′ transition metal cations. The crystal structures of these orthophosphates adopt the α-CrPO4 type of structure, consisting of a three-dimensional framework made up of [MO6] and [M′O6] octa­hedra sharing corners and/or edges with PO4 tetra­hedra. This framework is permeated by channels in which the A or B cations are located.

We report herein on the synthesis and structural characterization of barium dinickel(II) iron(III) tris-orthophosphate, BaNi2Fe(PO4)3.

2. Structural commentary

The title compound is related to the strontium and calcium homologs MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255-1258.], 2017[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893-895.]), all adopting the α-CrPO4 structure type (Attfield et al., 1986[Attfield, J. P., Sleight, A. W. & Cheetham, A. K. (1986). Nature, 322, 620-622.]). The asymmetric unit of BaNi2Fe(PO4)3 is comprised of ten sites, eight of which are on special positions, except the O3 and O4 sites on a general position (Wyckoff position 16 j). Ba1 (site occupation 0.9868) exhibits site symmetry mm2 (4 e), Ba2 (site occupation 0.0132) 2/m (4 a), Fe1 2/m (4 b), Ni1 2 (8 g), P1 mm2 (4 e), P2 2 (8 g), while O1 and O2 occupy sites with m (8 h) and m (8 i) symmetry, respectively. The framework structure of BaNi2Fe(PO4)3 is composed of extended (100) sheets and linear infinite chains extending parallel to [010] (Fig. 1[link]). The (100) sheets are made up from edge-sharing [Ni2O10] dimers linked to two P2O4 tetra­hedra via common edges to form an [Ni2P22O14] unit that is linked to four neighboring units (Fig. 2[link]). Between these sheets appear the linear infinite chains resulting from the alternating linkage of P1O4 tetra­hedra and [FeO6] octa­hedra, which are surrounded by a zigzag arrangement of Ba2+ cations (Fig. 3[link]). The sheets and chains are linked through common vertices of PO4 tetra­hedra and [FeO6] octa­hedra into a framework, which delimits two types of channels parallel to [100] and [010] in which the disordered Ba2+ cations are located (Figs. 4[link], 5[link]).

[Figure 1]
Figure 1
The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + [{1\over 2}], z − 1; (ii) x, y, z − 1; (iii) −x + 1, −y + [{1\over 2}], z; (iv) −x + [{3\over 2}], −y + 1, z − [{1\over 2}]; (v) x − [{1\over 2}], y − [{1\over 2}], z − [{1\over 2}]; (vi) −x + [{3\over 2}], y − [{1\over 2}], z − [{1\over 2}]; (vii) x − [{1\over 2}], −y + 1, z − [{1\over 2}]; (viii) −x + 2, −y + 1, −z + 2; (ix) −x + 2, y, z; (x) x, −y + 1, −z + 2; (xi) −x + [{3\over 2}], −y + [{1\over 2}], −z + [{3\over 2}]; (xii) −x + [{3\over 2}], y, −z + [{3\over 2}]; (xiii) x, −y + 1, −z + 1; (xiv) −x + 2, −y + 1, −z + 1; (xv) x + [{1\over 2}], y, −z + [{3\over 2}]].
[Figure 2]
Figure 2
Projection of a (100) sheet along [100] showing the [Ni2P(2)2O14] unit.
[Figure 3]
Figure 3
A chain formed by sharing corners of [FeO6] octa­hedra and P1O4 tetra­hedra, alternating with a zigzag arrangement of barium cations (Ba1) along [010].
[Figure 4]
Figure 4
Polyhedral representation of the crystal structure of BaNi2Fe(PO4)3 showing Ba1 in the channels running along the [100] direction and a row of underoccupied Ba2 along [001].
[Figure 5]
Figure 5
Polyhedral representation of the crystal structure of BaNi2Fe(PO4)3 showing Ba1 and Ba2 in the channels.

To confirm the structure model of BaNi2Fe(PO4)3, the bond-valence method (Brown, 1977[Brown, I. D. (1977). Acta Cryst. B33, 1305-1310.]; 1978[Brown, I. D. (1978). Chem. Soc. Rev. 7, 359-376.]; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) and charge distribution (CHARDI) concept (Hoppe et al., 1989[Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105-122.]) were employed by making use of the programs EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]) and CHARDI2015 (Nespolo & Guillot, 2016[Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317-321.]), respectively. Table 1[link] compiles all cationic valences V(i) computed with the bond-valence method and their related charges Q(i) obtained with the CHARDI concept. The resulting Q(i) and V(i) values are all close to the corresponding charges q(i)×sof(i) [q(i) are formal oxidation numbers weighted by the site occupation factors sof(i)]. In summary, the expected oxidation states of Ba2+, Ni2+, Fe3+ and P5+ are predicted through the charge distribution. The inter­nal criterion q(i)/Q(i) is very near to 1 for all ionic species and the mean absolute percentage deviation (MAPD), which gives a measure for the agreement between the q(i) and Q(i) charges, is just 1.3%, thus confirming the validity of the structure model (Eon & Nespolo, 2015[Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34-47.]). The global instability index (GII; Salinas-Sanchez et al., 1992[Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201-211.]) of 0.13 is a further confirmation of the structure model.

Table 1
Bond valence and CHARDI analyses for the cations in the title compound

q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.

Cation q(i) sof(i) CN(i) ECoN(i) V(i) Q(i) q(i)/Q(i)
Ba1 1.98 0.99 8 7.99 2.37 1.98 1.00
Ba2 0.02 0.01 8 5.43 0.02 0.99  
Ni 2.00 1.00 6 5.97 2.00 1.98 1.01
Fe 3.00 1.00 4 5.96 3.01 2.99 1.00
P1 5.00 1.00 4 3.99 4.95 4.83 1.04
P2 5.00 1.00 4 3.96 4.85 5.11 0.98

3. Database survey

It is reasonable to compare the crystal structure of the title compound with that of α-CrPO4 (Glaum et al., 1986[Glaum, R., Gruehn, R. & Möller, M. (1986). Z. Anorg. Allg. Chem. 543, 111-116.]). Both phosphates crystallize in the ortho­rhom­bic system in space group type Imma. Their unit-cell parameters are nearly the same despite the differences between their chemical formulae. In the structure of α-CrPO4, the Cr3+ and P5+ cations occupy four special positions that are part of a framework is comprised of [CrO6] octa­hedra and [PO4] tetra­hedra. The resultant framework is permeated by vacant channels along [100] and [010]. The formula of α-CrPO4 can be written as X1X2Cr1Cr22(PO4)3, where X1, X2 represent the empty channel sites. Accordingly, the substitution of Cr1 or Cr2 by a divalent cation requires charge compensation by cations located in the channels to result in AA'MM'2(PO4)3 compounds such as BaNi2Fe(PO4)3, or MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255-1258.], 2017[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893-895.]). The difference between BaNi2Fe(PO4)3 and the closely related MNi2Fe(PO4)3 structures pertains to the M site, which is split into two sites for the title compound and fully occupied for M = Ca, Sr.

4. Synthesis and crystallization

BaNi2Fe(PO4)3 was prepared from a mixture of Ba(NO3)2 (Merck, 98.5%), Ni(NO3)2·6H2O (Riedel-de-Haén, 97%), Fe(NO3)3·9H2O (Panreac, 98%) and H3PO4 (85%wt) in the molar ratio of Ba:Ni:Fe:P = 1:2:1:3. The precursors were suspended in 50 ml of distilled water and stirred without warming for 24 h before heating to dryness at 373 K. The obtained dry residue was ground in an agate mortar until homogeneous, subsequently heated in a platinum crucible up to 673 K to remove volatile decomposition products, and then melted at 1433 K. After being kept at this temperature for one h, the melt was cooled down slowly at a rate of 5 K h−1 to 1233 K and then to room temperature. Single crystals with a brown color and different forms were obtained after leaching with distilled water.

Chemical analysis of the title phosphate was performed with an energy-dispersive X-ray spectroscopy (EDS) microprobe mounted on a JEOL JSM-IT100 in TouchScopeTM scanning electron microscope. The EDS spectrum is depicted in Fig. 6[link] and confirms the presence of only barium, nickel, iron, phospho­rus and oxygen in approximately the correct ratios, as shown in Table 2[link].

Table 2
Atom percentages in BaNi2Fe(PO4)3 as determined by EDS

Element Atomic percentage Sigma
O 56.74 0.13
P 19.60 0.16
Fe 5.63 0.17
Ni 12.25 0.27
Ba 5.78 0.30
Total 100.00  
[Figure 6]
Figure 6
SEM micrograph and results of an EDS measurement of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. After assignment of the atomic sites according to the related MNi2Fe(PO4)3 structures (M = Sr, Ca; Ouaatta et al., 2015[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255-1258.], 2017[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893-895.]), a difference-Fourier map revealed a maximum electron density of 3.61 Å−3 that was finally modeled as a considerably underoccupied Ba site (Ba2). For the final model, the sum of site-occupation factors for the Ba1 and Ba2 sites were constrained to be 1. The highest remaining maximum and minimum electronic densities are 0.59 Å and 0.47 Å from Ba1 and Ni1, respectively.

Table 3
Experimental details

Crystal data
Chemical formula BaNi2Fe(PO4)3
Mr 595.52
Crystal system, space group Orthorhombic, Imma
Temperature (K) 296
a, b, c (Å) 10.4711 (2), 13.2007 (3), 6.6132 (1)
V3) 914.12 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.46
Crystal size (mm) 0.32 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.624, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 18099, 1460, 1440
Rint 0.029
(sin θ/λ)max−1) 0.893
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.036, 1.21
No. of reflections 1460
No. of parameters 58
Δρmax, Δρmin (e Å−3) 1.33, −0.78
Computer programs: APEX3 (Bruker, 2016[Bruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SAINT (Bruker, 2016[Bruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SAINT (Bruker, 2016[Bruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium dinickel(II) iron(III) tris[orthophosphate(V)] top
Crystal data top
BaNi2Fe(PO4)3Dx = 4.327 Mg m3
Mr = 595.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, ImmaCell parameters from 1460 reflections
a = 10.4711 (2) Åθ = 3.1–39.4°
b = 13.2007 (3) ŵ = 10.46 mm1
c = 6.6132 (1) ÅT = 296 K
V = 914.12 (3) Å3Block, colourless
Z = 40.32 × 0.25 × 0.19 mm
F(000) = 1116
Data collection top
Bruker X8 APEX Diffractometer1460 independent reflections
Radiation source: fine-focus sealed tube1440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 39.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1813
Tmin = 0.624, Tmax = 0.748k = 2323
18099 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0147P)2 + 1.8221P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.036(Δ/σ)max = 0.001
S = 1.21Δρmax = 1.33 e Å3
1460 reflectionsΔρmin = 0.78 e Å3
58 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00403 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.5000000.2500000.39902 (2)0.00770 (4)0.9868
Ba21.0000000.5000001.0000000.020 (2)0.0132
Ni10.7500000.36701 (2)0.7500000.00501 (4)
Fe11.0000000.5000000.5000000.00337 (5)
P10.5000000.2500000.90454 (8)0.00317 (8)
P20.7500000.57020 (3)0.7500000.00365 (6)
O10.5000000.34524 (8)1.03493 (17)0.00581 (16)
O20.61939 (10)0.2500000.76536 (17)0.00534 (15)
O30.78276 (8)0.63385 (6)0.93423 (13)0.00771 (12)
O40.86254 (7)0.49395 (6)0.70839 (12)0.00574 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00681 (5)0.01253 (6)0.00377 (5)0.0000.0000.000
Ba20.014 (5)0.041 (8)0.006 (4)0.0000.0000.000 (4)
Ni10.00498 (7)0.00383 (7)0.00621 (8)0.0000.00057 (5)0.000
Fe10.00303 (10)0.00352 (10)0.00355 (10)0.0000.0000.00008 (8)
P10.00348 (18)0.00281 (17)0.00322 (18)0.0000.0000.000
P20.00380 (13)0.00392 (13)0.00324 (12)0.0000.00055 (10)0.000
O10.0078 (4)0.0033 (3)0.0063 (4)0.0000.0000.0014 (3)
O20.0042 (4)0.0063 (4)0.0055 (4)0.0000.0016 (3)0.000
O30.0096 (3)0.0080 (3)0.0055 (3)0.0024 (2)0.0007 (2)0.0023 (2)
O40.0045 (3)0.0058 (3)0.0070 (3)0.0009 (2)0.0016 (2)0.0006 (2)
Geometric parameters (Å, º) top
Ba1—O1i2.7163 (11)Ni1—O42.0670 (8)
Ba1—O1ii2.7163 (11)Ni1—O4xii2.0670 (8)
Ba1—O2iii2.7262 (11)Ni1—O3x2.1163 (8)
Ba1—O22.7262 (11)Ni1—O3iv2.1163 (8)
Ba1—O3iv2.7530 (8)Fe1—O41.9944 (8)
Ba1—O3v2.7530 (8)Fe1—O4ix1.9944 (8)
Ba1—O3vi2.7530 (8)Fe1—O4xiii1.9944 (8)
Ba1—O3vii2.7530 (8)Fe1—O4xiv1.9944 (8)
Ba2—O42.4077 (8)Fe1—O1iv2.0559 (11)
Ba2—O4viii2.4078 (8)Fe1—O1xv2.0559 (11)
Ba2—O4ix2.4078 (8)P1—O11.5246 (11)
Ba2—O4x2.4078 (8)P1—O1iii1.5246 (11)
Ba2—O3ix2.9129 (9)P1—O21.5524 (11)
Ba2—O3x2.9129 (9)P1—O2iii1.5524 (11)
Ba2—O3viii2.9129 (9)P2—O31.5192 (8)
Ba2—O32.9129 (9)P2—O3xii1.5193 (8)
Ni1—O2xi2.0655 (7)P2—O4xii1.5739 (8)
Ni1—O22.0655 (7)P2—O41.5739 (8)
O1i—Ba1—O1ii55.14 (4)O4viii—Ba2—O3124.49 (2)
O1i—Ba1—O2iii141.97 (2)O4ix—Ba2—O3111.55 (2)
O1ii—Ba1—O2iii141.97 (2)O4x—Ba2—O368.45 (2)
O1i—Ba1—O2141.97 (2)O3ix—Ba2—O3102.68 (3)
O1ii—Ba1—O2141.97 (2)O3x—Ba2—O377.32 (3)
O2iii—Ba1—O254.59 (5)O3viii—Ba2—O3180.0
O1i—Ba1—O3iv109.44 (2)O2xi—Ni1—O283.20 (5)
O1ii—Ba1—O3iv79.47 (2)O2xi—Ni1—O4102.84 (3)
O2iii—Ba1—O3iv107.68 (3)O2—Ni1—O4172.00 (3)
O2—Ba1—O3iv63.00 (2)O2xi—Ni1—O4xii172.00 (4)
O1i—Ba1—O3v79.47 (2)O2—Ni1—O4xii102.84 (3)
O1ii—Ba1—O3v109.44 (2)O4—Ni1—O4xii71.66 (4)
O2iii—Ba1—O3v63.00 (2)O2xi—Ni1—O3x86.40 (4)
O2—Ba1—O3v107.68 (3)O2—Ni1—O3x93.14 (4)
O3iv—Ba1—O3v170.30 (4)O4—Ni1—O3x92.48 (3)
O1i—Ba1—O3vi79.47 (2)O4xii—Ni1—O3x88.02 (3)
O1ii—Ba1—O3vi109.44 (2)O2xi—Ni1—O3iv93.14 (4)
O2iii—Ba1—O3vi107.68 (3)O2—Ni1—O3iv86.40 (4)
O2—Ba1—O3vi63.00 (2)O4—Ni1—O3iv88.02 (3)
O3iv—Ba1—O3vi67.69 (4)O4xii—Ni1—O3iv92.48 (3)
O3v—Ba1—O3vi111.43 (4)O3x—Ni1—O3iv179.39 (5)
O1i—Ba1—O3vii109.44 (2)O2xi—Ni1—P2138.40 (2)
O1ii—Ba1—O3vii79.47 (2)O2—Ni1—P2138.40 (2)
O2iii—Ba1—O3vii63.00 (2)O4—Fe1—O4ix92.40 (5)
O2—Ba1—O3vii107.68 (3)O4—Fe1—O4xiii87.60 (5)
O3iv—Ba1—O3vii111.43 (4)O4ix—Fe1—O4xiii180.0
O3v—Ba1—O3vii67.69 (4)O4—Fe1—O4xiv180.0
O3vi—Ba1—O3vii170.30 (4)O4ix—Fe1—O4xiv87.60 (5)
O4—Ba2—O4viii180.0O4xiii—Fe1—O4xiv92.40 (5)
O4—Ba2—O4ix73.43 (4)O4—Fe1—O1iv87.83 (3)
O4viii—Ba2—O4ix106.57 (4)O4ix—Fe1—O1iv87.83 (3)
O4—Ba2—O4x106.57 (4)O4xiii—Fe1—O1iv92.17 (3)
O4viii—Ba2—O4x73.43 (4)O4xiv—Fe1—O1iv92.17 (3)
O4ix—Ba2—O4x180.0O4—Fe1—O1xv92.17 (3)
O4—Ba2—O3ix111.55 (2)O4ix—Fe1—O1xv92.17 (3)
O4viii—Ba2—O3ix68.45 (2)O4xiii—Fe1—O1xv87.83 (3)
O4ix—Ba2—O3ix55.51 (2)O4xiv—Fe1—O1xv87.83 (3)
O4x—Ba2—O3ix124.49 (2)O1iv—Fe1—O1xv180.0
O4—Ba2—O3x68.45 (2)O1—P1—O1iii111.11 (9)
O4viii—Ba2—O3x111.55 (2)O1—P1—O2109.59 (3)
O4ix—Ba2—O3x124.49 (2)O1iii—P1—O2109.59 (3)
O4x—Ba2—O3x55.51 (2)O1—P1—O2iii109.59 (3)
O3ix—Ba2—O3x180.0O1iii—P1—O2iii109.59 (3)
O4—Ba2—O3viii124.49 (2)O2—P1—O2iii107.28 (9)
O4viii—Ba2—O3viii55.51 (2)O3—P2—O3xii112.84 (7)
O4ix—Ba2—O3viii68.45 (2)O3—P2—O4xii112.49 (4)
O4x—Ba2—O3viii111.55 (2)O3xii—P2—O4xii108.95 (5)
O3ix—Ba2—O3viii77.32 (3)O3—P2—O4108.95 (5)
O3x—Ba2—O3viii102.68 (3)O3xii—P2—O4112.49 (4)
O4—Ba2—O355.51 (2)O4xii—P2—O4100.50 (6)
Symmetry codes: (i) x+1, y+1/2, z1; (ii) x, y, z1; (iii) x+1, y+1/2, z; (iv) x+3/2, y+1, z1/2; (v) x1/2, y1/2, z1/2; (vi) x+3/2, y1/2, z1/2; (vii) x1/2, y+1, z1/2; (viii) x+2, y+1, z+2; (ix) x+2, y, z; (x) x, y+1, z+2; (xi) x+3/2, y+1/2, z+3/2; (xii) x+3/2, y, z+3/2; (xiii) x, y+1, z+1; (xiv) x+2, y+1, z+1; (xv) x+1/2, y, z+3/2.
Bond valence and CHARDI analyses for the cations in the title compound top
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.
Cationq(i)sof(i)CN(i)ECoN(i)V(i)Q(i)q(i)/Q(i)
Ba11.980.9987.992.371.981.00
Ba20.020.0185.430.020.99
Ni2.001.0065.972.001.981.01
Fe3.001.0045.963.012.991.00
P15.001.0043.994.954.831.04
P25.001.0043.964.855.110.98
Atom percentages in BaNi2Fe(PO4)3 as determined by EDS top
ElementAtomic percentageSigma
O56.740.13
P19.600.16
Fe5.630.17
Ni12.250.27
Ba5.780.30
Total100.00
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, for the X-ray measurements.

References

First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnahmadi, H., Fathi, M., El hajri, F., Benzekri, Z., Sibous, S., Idrissi, B. C., El youbi, M. S., Souizi, A. & Boukhris, S. (2022). J. Mol. Struct. 1248, 131449.  Web of Science CrossRef Google Scholar
First citationAttfield, J. P., Sleight, A. W. & Cheetham, A. K. (1986). Nature, 322, 620–622.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1977). Acta Cryst. B33, 1305–1310.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.  CrossRef CAS Web of Science Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D. & Chen, S. (2021). Energy Storage Materials, 41, 842–882.  Web of Science CrossRef Google Scholar
First citationCi, Z., Que, M., Shi, Y., Zhu, G. & Wang, Y. (2014). Inorg. Chem. 53, 2195–2199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDwibedi, D., Barpanda, P. & Yamada, A. (2020). Small Methods, 4, 2000051.  Web of Science CrossRef Google Scholar
First citationEon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlaum, R., Gruehn, R. & Möller, M. (1986). Z. Anorg. Allg. Chem. 543, 111–116.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.  CrossRef CAS Web of Science Google Scholar
First citationIndumathi, K., Tamilselvan, S., Rajasekaran, L., David, A. D. J., Muhammad, G. S., Ramalingam, G. & Biruntha, M. (2022). Mater. Lett. 309, 131371.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T. & Mitomo, M. (2008). Chem. Mater. 20, 6704–6714.  Web of Science CrossRef ICSD CAS Google Scholar
First citationLi, Z., Geng, X., Wang, Y. & Chen, Y. (2021). J. Lumin. 240, 118428.  Web of Science CrossRef Google Scholar
First citationMaeda, K. (2004). Microporous Mesoporous Mater. 73, 47–55.  Web of Science CrossRef CAS Google Scholar
First citationNespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationOuaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893–895.  CrossRef ICSD IUCr Journals Google Scholar
First citationRekha, P., Yadav, S. & Singh, L. (2021). Ceram. Int. 47, 16385–16401.  Web of Science CrossRef CAS Google Scholar
First citationSalinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.  CAS Google Scholar
First citationSantos, R. D. S., Oliveira, J. L., Araujo, R. M. & Rezende, M. V. dos S. (2022). J. Solid State Chem. 306, 122769.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWan, C., Meng, J., Zhang, F., Deng, X. & Yang, C. (2010). Solid State Commun. 150, 1493–1495.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X., Chen, J., Chai, C., Zheng, S. & Chen, C. (2019). Optik (Stuttg). 198, 163238.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds