research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-6-(4-hy­dr­oxy-3-meth­­oxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, cLaboratory for Organic Synthesis, Extraction and Valorization, Faculty of Sciences, Ain Chok, University Hassan II, Casablanca, Rabat, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: saiddaoui26@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 September 2019; accepted 16 October 2019; online 31 October 2019)

In the title com­pound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds generate C(5) chains and N—H⋯O hydrogen bonds produce R22(8) motifs. These types of inter­actions lead to the formation of layers parallel to (12[\overline{1}]). The three-dimensional network is achieved by C—H⋯O inter­actions, including R24(8) motifs. Inter­molecular inter­actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C—H⋯π inter­actions and aromatic ππ stacking inter­actions are not observed.

1. Chemical context

For decades the chemistry of pyridazinones has been an inter­esting field. This nitro­gen heterocycle became a scaffold of choice for the development of potential drug candidates (Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]; Dubey & Bhosle, 2015[Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579-3598.]) because pyridazinone and its substituted derivatives are important pharmacophores possessing many different biological applications (Asif, 2014[Asif, M. (2014). Rev. Med. Chem. 14, 1093-1103.]). Such com­pounds are used as anti-HIV (Livermore et al., 1993[Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784-3794.]), anti­microbial (Sönmez et al., 2006[Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101-105.]), anti­convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]), anti­hypertensive (Siddiqui et al., 2011[Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023-1026.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), analgesic (Gökçe et al., 2009[Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]), anti-inflammatory (Barberot et al., 2018[Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., SAPI, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139-146.]), anti­histaminic (Tao et al. 2012[Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073-1077.]), cardiotonic (Wang et al., 2008[Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569-573.]) and herbicidal agents (Asif, 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]) or as glucan synthase inhibitors (Zhou et al., 2011[Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890-2893.]).

[Scheme 1]

In continuation of our studies related to mol­ecular structures and Hirshfeld surface analysis of new heterocyclic derivatives (Daoui et al., 2019a[Daoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1030-1034.],b[Daoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352-1356.]; El Kalai et al., 2019[El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892-895.]; Karrouchi et al., 2015[Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890-o891.]), we report herein on the synthesis, mol­ecular and crystal structures of (E)-6-(4-hy­droxy-3-meth­oxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one, as well as an analysis of the Hirshfeld surfaces.

2. Structural commentary

In the title mol­ecule (Fig. 1[link]), the configuration relative to the double bond at C5 and C6 is E. The dihydropyridazine ring has a screw-boat conformation, with an r.m.s. deviation of 0.166 Å for the ring atoms, with the maximum deviation from the ring being 0.178 (3) Å for the C3 atom; the C2 atom lies −0.177 (3) Å out of the plane in the opposite direction relative to the C3 atom. The dihedral angle between the dihydropyridazine ring mean plane and the benzene ring (C7–C12) is 0.77 (12)°, indicating an almost planar conformation of the molecule favouring delocalization over the C4—C5=C6—C7 bridge.

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are stacked in rows parallel to [100]. Notably, no significant C—H⋯π or ππ inter­actions are observed. O2—H2⋯O1i hydrogen bonds between the phenolic OH group and the carbonyl O atom of a neighbouring mol­ecule generate C(5) chains extending parallel to [101]. Likewise, N1—H1⋯O1ii hydrogen bonds between the N—H function of the di­hydro­pyridazine ring and the carbonyl O atom generate centrosymmetric dimers with an R22(8) motif. The two types of hydrogen bonding result in the formation of layers parallel to (12[\overline{1}]). A three-dimensional supra­molecular network is eventually formed through inter­molecular C13—H13A⋯O2iii and C13—H13C⋯O2iv hydrogen bonds with R24(8) motifs (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.86 2.671 (2) 168
N1—H1⋯O1ii 0.86 2.02 2.875 (3) 170
C13—H13A⋯O2iii 0.96 2.51 3.465 (3) 172
C13—H13C⋯O2iv 0.96 2.57 3.489 (4) 159
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+1, -z; (iv) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title com­pound, with N—H⋯O, O—H⋯O and C—H⋯O inter­actions shown as blue, green and black dashed lines, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed two structures containing a similar pyridazinone moiety as in the title structure but with different substituents, viz. 6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one (CSD refcode TADQUL; Abourichaa et al., 2003[Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o802-o803.]) and (R)-(−)-6-(4-amino­phen­yl)-5-methyl-4,5-di­hydro­pyridazin-3(2H)-one (ADIGOK; Zhang et al., 2006[Zhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999-o3000.]). In the structure of TADQUL, the di­hydro­pyridazine ring adopts a half-chair conformation, with atoms C1, N2, N3 and C4 in a common plane, with C5 0.222 (2) Å and C6 0.262 (2) Å on opposite sides of this plane. The plane is almost coplanar with the 4-aminophenyl ring, the dihedral angle between the two planes being 1.73 (9) Å. In the crystal, hydrogen-bonded centrosymmetric dimers are observed. The O1=C1 bond length is 1.2316 (14) Å. The N3—C4, N2—N3 and N2—C1 bond lengths are 1.3464 (15), 1.3877 (14) and 1.2830 (15) Å, respectively. In the structure of ADIGOK, the asymmetric unit consists of two mol­ecules of the same enanti­omer, and the crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to qu­antify the inter­molecular inter­actions of the title com­pound, using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface analysis was planned using a standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.7021 (red) to 2.2382 a.u. (blue). The surfaces mapped over relevant inter­molecular contacts are illustrated in Fig. 3[link]. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and H⋯N/N⋯H inter­actions in Figs. 4[link](a)–(e), respectively. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and H⋯N/N⋯H contacts are illustrated in Figs. 5[link](a)–(f), respectively. The largest inter­action is that of H⋯H, contributing 43.3% to the overall crystal packing. H⋯C/C⋯H contacts add a 19.3% contribution to the Hirshfeld surface, with the tips at de + di ∼ 2.72 Å. H⋯O/O⋯H contacts make a 22.6% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼ 2.70 Å in the fingerprint plot. H⋯O/O⋯H inter­actions arise from inter­molecular O—H⋯O hydrogen bonding and C—H⋯O contacts. The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. C⋯N/N⋯C of 3.0% and H⋯N/N⋯H of 5.8%.

[Figure 3]
Figure 3
(a) dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions, (b) de mapped on the surface, (c) shape-index map of the title com­pound and (d) curvedness map of the title com­pound using a range from −4 to 4 Å.
[Figure 4]
Figure 4
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/ C⋯H, (c) H⋯O/O⋯H, (d) C⋯N/N⋯C and (e) H⋯N/N⋯H inter­actions.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/ C⋯H, (d) H⋯O/O⋯H, (e) C⋯N/N⋯C and (f) H⋯N/N⋯H inter­actions.

6. Synthesis and crystallization

To a solution of 6-(4-hy­droxy-3-meth­oxy­phen­yl)-4-oxohex-5-enoic acid (0.25 g, 1 mmol) in 20 ml of ethanol, an equimolar amount of hydrazine hydrate was added. The mixture was maintained under reflux until thin-layer chromatography (TLC) indicated the end of the reaction. After cooling, the precipitate which formed was filtered off, washed with ethanol and recrystallized from ethanol. Slow evaporation at room temperature led to the formation of single crystals of the title com­pound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on C atoms were placed in idealized positions and refined as riding, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The NH and OH hydrogens were located in a difference Fourier map and were constrained with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), and O—H = 0.86 Å and Uiso(H) = 1.5Ueq(O), using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula C13H14N2O3
Mr 246.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.0828 (9), 9.4246 (13), 11.1724 (16)
α, β, γ (°) 75.838 (11), 83.099 (12), 84.059 (11)
V3) 614.70 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.72 × 0.39 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.944, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 6563, 2426, 1506
Rint 0.054
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.147, 1.00
No. of reflections 2426
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.17
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-6-(4-Hydroxy-3-methoxystyryl)-4,5-dihydropyridazin-3(2H)-\ one top
Crystal data top
C13H14N2O3Z = 2
Mr = 246.26F(000) = 260
Triclinic, P1Dx = 1.330 Mg m3
a = 6.0828 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4246 (13) ÅCell parameters from 13077 reflections
c = 11.1724 (16) Åθ = 2.2–30.7°
α = 75.838 (11)°µ = 0.10 mm1
β = 83.099 (12)°T = 293 K
γ = 84.059 (11)°Prism, yellow
V = 614.70 (16) Å30.72 × 0.39 × 0.16 mm
Data collection top
Stoe IPDS 2
diffractometer
1506 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.054
rotation method scansθmax = 26.0°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 77
Tmin = 0.944, Tmax = 0.989k = 1111
6563 measured reflectionsl = 1313
2426 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0747P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2426 reflectionsΔρmax = 0.17 e Å3
165 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7518 (3)0.88682 (19)0.99156 (15)0.0601 (5)
O30.4960 (3)0.58008 (19)0.11563 (16)0.0614 (5)
O20.1290 (3)0.7317 (2)0.05778 (16)0.0636 (5)
H20.0164740.7867240.0445990.095*
N10.4947 (3)0.9323 (2)0.85757 (17)0.0525 (5)
H10.4296510.9955670.8966730.063*
N20.3918 (3)0.9139 (2)0.75870 (17)0.0519 (5)
C90.3982 (4)0.6576 (2)0.1986 (2)0.0497 (6)
C50.3927 (4)0.8291 (3)0.5807 (2)0.0506 (6)
H50.2529210.8784780.5722010.061*
C10.6829 (4)0.8631 (3)0.8987 (2)0.0492 (6)
C40.5043 (4)0.8412 (2)0.6851 (2)0.0472 (6)
C80.4803 (4)0.6645 (3)0.3066 (2)0.0521 (6)
H80.6160620.6142510.3260180.062*
C110.0780 (4)0.8118 (3)0.2494 (2)0.0538 (6)
H110.0591110.8604420.2308530.065*
C70.3664 (4)0.7445 (2)0.3875 (2)0.0496 (6)
C100.1954 (4)0.7364 (2)0.1681 (2)0.0487 (6)
C60.4707 (4)0.7544 (3)0.4962 (2)0.0549 (6)
H60.6078970.7021710.5073910.066*
C120.1607 (4)0.8164 (3)0.3580 (2)0.0552 (6)
H120.0788220.8677510.4118140.066*
C130.7007 (4)0.4965 (3)0.1419 (3)0.0614 (7)
H13A0.7452280.4414690.0799940.092*
H13B0.6822040.4302000.2220710.092*
H13C0.8127210.5613670.1413310.092*
C20.7972 (5)0.7565 (3)0.8299 (3)0.0694 (8)
H2A0.7619920.6584320.8750070.083*
H2B0.9562710.7611590.8273350.083*
C30.7375 (4)0.7807 (3)0.7002 (2)0.0673 (8)
H3A0.8366080.8478390.6451780.081*
H3B0.7600600.6881250.6754160.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0632 (11)0.0804 (12)0.0479 (10)0.0136 (8)0.0292 (8)0.0331 (8)
O30.0642 (11)0.0739 (11)0.0579 (10)0.0218 (8)0.0273 (9)0.0392 (9)
O20.0633 (12)0.0859 (13)0.0537 (10)0.0146 (9)0.0326 (9)0.0349 (9)
N10.0536 (12)0.0686 (13)0.0448 (11)0.0094 (9)0.0204 (9)0.0299 (10)
N20.0510 (12)0.0670 (13)0.0450 (11)0.0068 (9)0.0213 (9)0.0237 (10)
C90.0569 (14)0.0515 (13)0.0479 (13)0.0029 (11)0.0190 (11)0.0217 (11)
C50.0550 (14)0.0602 (14)0.0422 (12)0.0029 (11)0.0196 (11)0.0185 (11)
C10.0539 (14)0.0552 (14)0.0427 (12)0.0056 (11)0.0182 (11)0.0172 (11)
C40.0524 (14)0.0522 (13)0.0416 (12)0.0007 (10)0.0152 (11)0.0168 (10)
C80.0533 (14)0.0584 (14)0.0511 (14)0.0074 (11)0.0248 (12)0.0207 (11)
C110.0495 (13)0.0675 (15)0.0506 (14)0.0090 (11)0.0211 (11)0.0237 (12)
C70.0579 (14)0.0565 (14)0.0412 (12)0.0011 (11)0.0181 (11)0.0204 (11)
C100.0540 (14)0.0560 (14)0.0432 (13)0.0004 (11)0.0192 (11)0.0202 (11)
C60.0601 (15)0.0640 (15)0.0467 (13)0.0033 (12)0.0229 (12)0.0197 (12)
C120.0558 (15)0.0681 (15)0.0490 (14)0.0056 (12)0.0149 (12)0.0274 (12)
C130.0656 (16)0.0634 (15)0.0600 (16)0.0144 (12)0.0203 (13)0.0248 (13)
C20.0734 (18)0.0867 (19)0.0599 (16)0.0316 (14)0.0365 (14)0.0406 (14)
C30.0576 (16)0.098 (2)0.0593 (16)0.0136 (14)0.0231 (13)0.0423 (15)
Geometric parameters (Å, º) top
O1—C11.241 (3)C8—H80.9300
O3—C91.362 (3)C11—C101.377 (3)
O3—C131.424 (3)C11—C121.379 (3)
O2—C101.355 (2)C11—H110.9300
O2—H20.8200C7—C121.396 (3)
N1—C11.331 (3)C7—C61.462 (3)
N1—N21.387 (2)C6—H60.9300
N1—H10.8600C12—H120.9300
N2—C41.288 (3)C13—H13A0.9600
C9—C81.378 (3)C13—H13B0.9600
C9—C101.406 (3)C13—H13C0.9600
C5—C61.327 (3)C2—C31.493 (3)
C5—C41.451 (3)C2—H2A0.9700
C5—H50.9300C2—H2B0.9700
C1—C21.480 (3)C3—H3A0.9700
C4—C31.486 (3)C3—H3B0.9700
C8—C71.394 (3)
C9—O3—C13117.98 (17)O2—C10—C11124.3 (2)
C10—O2—H2109.5O2—C10—C9116.1 (2)
C1—N1—N2127.3 (2)C11—C10—C9119.54 (19)
C1—N1—H1116.4C5—C6—C7127.7 (2)
N2—N1—H1116.4C5—C6—H6116.1
C4—N2—N1117.42 (18)C7—C6—H6116.1
O3—C9—C8126.0 (2)C11—C12—C7120.5 (2)
O3—C9—C10115.23 (18)C11—C12—H12119.8
C8—C9—C10118.8 (2)C7—C12—H12119.8
C6—C5—C4126.4 (2)O3—C13—H13A109.5
C6—C5—H5116.8O3—C13—H13B109.5
C4—C5—H5116.8H13A—C13—H13B109.5
O1—C1—N1120.4 (2)O3—C13—H13C109.5
O1—C1—C2123.3 (2)H13A—C13—H13C109.5
N1—C1—C2116.36 (19)H13B—C13—H13C109.5
N2—C4—C5115.5 (2)C1—C2—C3114.4 (2)
N2—C4—C3122.97 (19)C1—C2—H2A108.7
C5—C4—C3121.5 (2)C3—C2—H2A108.7
C9—C8—C7122.0 (2)C1—C2—H2B108.7
C9—C8—H8119.0C3—C2—H2B108.7
C7—C8—H8119.0H2A—C2—H2B107.6
C10—C11—C12121.0 (2)C4—C3—C2113.3 (2)
C10—C11—H11119.5C4—C3—H3A108.9
C12—C11—H11119.5C2—C3—H3A108.9
C8—C7—C12118.02 (19)C4—C3—H3B108.9
C8—C7—C6118.9 (2)C2—C3—H3B108.9
C12—C7—C6123.1 (2)H3A—C3—H3B107.7
C1—N1—N2—C412.5 (4)O3—C9—C10—O23.3 (3)
C13—O3—C9—C80.8 (3)C8—C9—C10—O2176.6 (2)
C13—O3—C9—C10179.3 (2)O3—C9—C10—C11176.6 (2)
N2—N1—C1—O1177.3 (2)C8—C9—C10—C113.5 (4)
N2—N1—C1—C21.2 (4)C4—C5—C6—C7177.5 (2)
N1—N2—C4—C5177.97 (19)C8—C7—C6—C5177.4 (3)
N1—N2—C4—C31.5 (3)C12—C7—C6—C50.0 (4)
C6—C5—C4—N2176.7 (3)C10—C11—C12—C70.2 (4)
C6—C5—C4—C36.8 (4)C8—C7—C12—C112.2 (4)
O3—C9—C8—C7178.7 (2)C6—C7—C12—C11175.2 (2)
C10—C9—C8—C71.4 (4)O1—C1—C2—C3159.6 (3)
C9—C8—C7—C121.4 (4)N1—C1—C2—C321.9 (4)
C9—C8—C7—C6176.1 (2)N2—C4—C3—C223.8 (4)
C12—C11—C10—O2177.4 (2)C5—C4—C3—C2160.0 (2)
C12—C11—C10—C92.7 (4)C1—C2—C3—C432.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.862.671 (2)168
N1—H1···O1ii0.862.022.875 (3)170
C13—H13A···O2iii0.962.513.465 (3)172
C13—H13C···O2iv0.962.573.489 (4)159
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAbourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o802–o803.  CrossRef IUCr Journals Google Scholar
First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationAsif, M. (2014). Rev. Med. Chem. 14, 1093–1103.  CrossRef CAS Google Scholar
First citationBarberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., SAPI, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146.  CrossRef CAS PubMed Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationDaoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352–1356.  CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1030–1034.  CrossRef IUCr Journals Google Scholar
First citationDubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.  Web of Science CrossRef CAS Google Scholar
First citationEl Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892–895.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLivermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999–o3000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds