research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 3,3′-bis­­(hy­dr­oxy­di­methylsilan­yl)azo­benzene and 4,4′-bis­­(hy­dr­oxy­di­methyl­silane)azo­benzene

CROSSMARK_Color_square_no_text.svg

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany, bDepartment of Organic and Inorganic Chemistry IUQOEM, University of Oviedo, Julián Claveria, 33006 Oviedo, Spain, cInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, dInstitute for Organic and Analytical Chemistry, University of Bremen, Leobener Strasse NW2 C, 28359 Bremen, Germany, and eMAPEX Center for Materials and Processes University of Bremen, Bibliothekstrasse 1, 28359 Bremen, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de, staubitz@uni-bremen.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 September 2016; accepted 13 October 2016; online 18 October 2016)

The title compounds {systematic names (E)-[diazene-1,2-diylbis(3,1-phenyl­ene)]bis­(di­methyl­silanol) and (E)-[diazene-1,2-diylbis(4,1-phenyl­ene)]bis­(di­methyl­silanol)}, both of the sum formula C16H22N2O2Si2, were obtained by transmetallation of the respective bis-stannylated azo­benzenes with di­chloro­dimethyl­silane and esterification followed by hydrolysis. The asymmetric unit of 3,3′-diazenediylbis[dimeth­yl(phen­yl)silanol] (with the silanol functional group in a meta position) consists of two mol­ecules, of which one occupies a general position, whereas the second is located on a centre of inversion. In 4,4′-diazenediylbis[dimeth­yl(phen­yl)silanol] (with the silanol functional group in a para position) likewise two mol­ecules are present in the asymmetric unit, but in this case both occupy general positions. Differences between all mol­ecules can be found in the torsions about the N=N bond, as well as in the dihedral angles between the benzene rings. In both structures, inter­molecular O—H⋯O hydrogen bonding is observed, leading to the formation of layers parallel to (01-1) for (I) and to chains parallel to the a axis for (II).

1. Chemical context

Azo­benzenes have been widely investigated as photoswitches due to their photochemically induced trans/cis-isomerization. Furthermore, they are common motifs in dyes due to their high thermal and photochemical stability (Yesodha et al., 2004[Yesodha, S. K., Sadashiva, C. K., Pillai, P. & Tsutsumi, N. (2004). Prog. Polym. Sci. 29, 45-74.]; Lagrasta et al., 1997[Lagrasta, C., Bellobono, I. R. & Bonardi, M. (1997). J. Photochem. Photobiol. A, 110, 201-205.]). Their application as mol­ecular switches is sometimes limited by their synthetical accessability. For ortho, meta and para-substituted azo­benzenes, a novel functionalization has been presented recently (Strüben et al., 2014[Strüben, J., Gates, P. J. & Staubitz, A. (2014). J. Org. Chem. 79, 1719-1728.], 2015[Strüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Soennichsen, F. D. & Staubitz, A. (2015). Chem. Eur. J. 21, 11165-11173.]). This opens access to new synthetic pathways and hence new dyes and materials, for example light-responsive polymers (Yu et al., 2003[Yu, Y., Nakano, M. & Ikeda, T. (2003). Nature, 425, 145.]; Kizilkan et al., 2016[Kizilkan, E., Strüben, J., Jin, X., Schaber, C. F., Adelung, R., Staubitz, A. & Gorb, S. N. (2016). R. Soc. Open Sci. 3, 150700.]).

[Scheme 1]

In the above context, we report here on the synthesis and crystal structures of two regioisomers with composition C16H22N2O2Si2, obtained by transmetalation of the respective bis-stannylated azo­benzenes.

2. Structural commentary

The crystal structures of the meta- (I)[link] and para-substituted (II)[link] azo­benzenes each comprise two crystallographically independent mol­ecules [(Ia) and centrosymmetric (Ib), and (IIa) and (IIb), respectively; Figs. 1[link] and 2[link]). With respect to the central N=N bond, the azogroups are trans configured. The N=N bond lengths in all mol­ecules [1.256 (3) Å for (Ia), 1.250 (5) Å for (Ib), 1.246 (2) for (IIa) and 1.248 (2) Å for (IIb)] are comparable and agree well with values retrieved from the literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Differences between the independent mol­ecules are found, e.g. in the C—N=N—C torsion angles which amount to −178.6 (2)° in (Ia) and due to symmetry restrictions to 0° in (Ib). For mol­ecules of isomer (II)[link] values of −177.93 (14)° (IIa) and 178.47 (14)° (IIb) are observed. In mol­ecule (Ib), the benzene rings are coplanar (dihedral angle = 0°), whereas in (Ia) they are rotated by 11.87 (14)°. In isomer (II)[link], values of 27.40 (8)° (IIa) and 17.28 (9)° (IIb) are found for the two mol­ecules.

[Figure 1]
Figure 1
The mol­ecular structures of the two crystallographically independent mol­ecules in the crystal structure of isomer (I)[link] (a top and b bottom) with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code for the generation of equivalent atoms: −x + 2, −y + 2, −z + 2.
[Figure 2]
Figure 2
The mol­ecular structure of the two crystallographically independent mol­ecules in the crystal structure of isomer (II)[link] (a top and b bottom) with labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of isomer (I)[link], neighboring mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonding between the silyl­hydroxyl hydrogen atoms of the first independent mol­ecules, forming chains that elongate in the a-axis direction (Fig. 3[link] top). These chains are further linked via O—H⋯O hydrogen bonds to the second crystallographically independent mol­ecules, forming layers that are parallel to (01[\overline{1}]) (Fig. 3[link], bottom, Table 1[link]). The O—H⋯O angles and O⋯O contacts indicate that these are rather strong hydrogen bonds (Table 1[link]). Between the layers, slipped ππ inter­actions [centroid-to-centroid distances 3.767 (2) and 3.811 (2) Å] are present, consolidating the crystal packing. In isomer (II)[link], the mol­ecules are likewise linked by inter­molecular O—H⋯O hydrogen bonding into tetra­meric units, which are further linked into chains that elongate in the a-axis direction (Fig. 4[link], top, Table 2[link]). By this arrangement, 16-membered cyclic hydrogen-bonded motifs are formed that consist of eight alternating hy­droxy­silyl groups and that can be described as R88(16) according to the graph-set notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, E. R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). As in isomer (I)[link], the values of the O—H⋯O angles and O⋯O distances indicate rather strong hydrogen bonding (Table 2[link]). These tetra­meric chains are packed along the a axis in a pseudo-hexa­gonal arrangement (Fig. 4[link], bottom).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.84 1.87 2.708 (3) 173
O2—H2O⋯O3 0.84 1.86 2.701 (3) 177
O3—H3O⋯O1ii 0.84 1.86 2.696 (3) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 0.84 1.86 2.6686 (15) 161
O2—H2O⋯O4i 0.84 1.92 2.7297 (16) 160
O3—H3O⋯O2ii 0.84 1.90 2.7010 (15) 160
O4—H4O⋯O1iii 0.84 1.87 2.7063 (14) 175
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of isomer (I)[link] in a view along the crystallographic b axis (top) and along the a axis (bottom). Inter­molecular O—H⋯O hydrogen bonding is shown as dashed lines and C—H hydrogen atoms have been omitted for clarity.
[Figure 4]
Figure 4
Crystal structure of isomer (II)[link] showing a view of the hydrogen-bonded chains (top) and along the crystallographic b axis (bottom). Inter­molecular O—H⋯O hydrogen bonding is shown as dashed lines and C—H hydrogen atoms have been omitted for clarity.

4. Database Survey

Hundreds of azobenze-based structures are found in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) but compounds with silanol groups are unknown (ConQuest Version 1.18, CSD Version 5.37). There are also no compounds reported with silyl groups in a meta or a para position but some compounds have been deposited in which both benzene rings are substituted in the ortho position by, e.g., tri­methyl­silyl, fluoro-di­methyl­silyl, di­fluoro-methyl­silyl or tri­fluoro­silyl groups (Kano et al., 2001[Kano, N., Komatsu, F. & Kawashima, T. (2001). Chem. Lett. 30, 338-339.]). It is noted that two structures are reported in which two azobenenzene mol­ecules are bridged by Si—O—Si groups in the ortho position (Kano et al., 2003[Kano, N., Yamamura, M., Komatsu, F. & Kawashima, T. (2003). J. Organomet. Chem. 686, 192-197.]; Yamamura et al., 2009[Yamamura, M., Kano, N. & Kawashima, T. (2009). Z. Anorg. Allg. Chem. 635, 1295-1299.]).

5. Synthesis and crystallization

The syntheses of 3,3′-bis­(tri­methyl­stann­yl)azo­benzene and 4,4′-bis­(tri­methyl­stann­yl)azo­benzene were described in the literature (Strüben et al., 2014[Strüben, J., Gates, P. J. & Staubitz, A. (2014). J. Org. Chem. 79, 1719-1728.]). For further details of the transmetallation, see: Strüben et al. (2015[Strüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Soennichsen, F. D. & Staubitz, A. (2015). Chem. Eur. J. 21, 11165-11173.]). Di­methyldi­chloro­silane (99%) was purchased from ABCR Inc., degassed and distilled from calcium hydride. Methyl lithium (1.6 M in diethyl ether) was purchased from Acros Organics, monopotassium phosphate (99.7%) was purchased from Sigma–Aldrich, sodium methoxide (99%) from TCI Inc. and used without further purification. THF was purchased from Merck–Polaro and was dried and degassed with a PS-MD-5 by Innovation Technology. Methanol as obtained from BCD was distilled from sodium and was stored over mol­ecular sieves (3 Å).

3,3′-Bis(Hy­droxy­dimethyl­silane)azo­benzene

3,3′-Bis(tri­methyl­stann­yl)azo­benzene (3.80 g, 7.48 mmol) was dissolved in dry THF (100 ml). Then, at 195 K, methyl lithium (12.0 ml, 19.0 mmol, 1.6 M solution in diethyl ether) in THF (18.0 ml) was added and the mixture was stirred for 10 min at 195 K. Then the reaction was quenched with di­chloro­dimethyl­silane (30.0 ml, 32.1 g, 249 mmol) and the reaction mixture allowed to warm to 298 K in a cooling bath. Subsequently the solvent and the excess of di­chloro­dimethyl­silane were evaporated in inert conditions under reduced pressure. The residual orange solid was dissolved in diethyl ether (25 ml) and added dropwise over the course of 15 min to a solution of sodium methoxide (4.00 g, 74.0 mmol) in methanol (50 ml). Both of the latter steps were performed under inert conditions. To this mixture, a solution of sodium hydroxide (17.5 g, 438 mmol) in methanol (105 ml) and water (10.0 ml) was added. The resulting solution was stirred for 15 minutes and then a further portion of sodium hydroxide (17.5 g, 438 mmol) in water (105 ml) was added. The reaction mixture was stirred for 1 h. This mixture was finally poured into a vigorously stirred solution of monopotassium phosphate (155 g, 1.14 mol) in water (200 ml). The orange precipitate was filtered and purified by three recrystallization cycles from diethyl ether/n–hexane (v/v 1:1). The final product was isolated as an orange solid in a yield of 500 mg (20%). Crystals were obtained by dissolving the product in chlroroform, adding a layer of n-hexane and allowing the n-hexane to diffuse into the chloroform, leading to crystal formation at the phase boundary.

1H NMR (500 MHz, CDCl3): δ = 8.14 (at, 4J = 4.6 Hz, 2 H, H–2), 7.92 (adt, 3J = 7.9 Hz, 4J = 4.6 Hz, 2 H, H–4), 7.70 (adt, 3J = 7.9 Hz, 4J = 4.6 Hz, 2 H, H–6), 7.53 (atd, 3J = 7.9 Hz, 2 H, H–5), 2.5 (s, 2 H, OH), 0.46 (s, 18 H, H–7) p.p.m.

13C NMR (126 MHz, CDCl3): δ = 152.0 (C–3), 140.5 (C–1), 135.7 (C–6), 128.8 (C–5), 128.0 (C–2), 123.4 (C–4), 0.2 (C–8) p.p.m.

29Si NMR (187 MHz, CDCl3): δ = 7.61 p.p.m.

IR (ATR): ν = 3189 (m), 2955 (w), 1398 (m), 1251 (m), 1111 (w), 1068 (m), 897 (s), 863 (s), 820 (s), 799 (s), 764 (s), 691 (s), 645 (m), 534 (m) cm−1.

HRMS (EI–sector) m/z: [M]+ calculated for [C16H22N2O2Si2]+ 330.1220, found 330.1222.

M.p.: T = 374 K.

4,4′-Bis(hy­droxy­dimethyl­silane)azo­benzene

4,4′-Bis(tri­methyl­stann­yl)azo­benzene (3.80 g, 7.48 mmol) was dissolved in dry THF (100 ml). A solution of methyl lithium (12.0 ml, 19.0 mmol, 1.6 M solution in diethyl ether) in THF (18.0 ml) was added at 195 K. The orange solution turned dark and was stirred for 10 min. Then di­chloro­dimeth­yl­silane (30.0 ml, 32.1 g, 249 mmol) was added to quench the reaction and the reaction mixture allowed to warm to 298 K in a cooling bath. Then the solvent and the excess of di­chloro­dimethyl­silane were evaporated in inert conditions under reduced pressure. The residual orange solid was dissolved in diethyl ether (25 ml) and added dropwise over the course of 15 min to a solution of sodium methoxide (4.00 g, 74.0 mmol) in methanol (50 ml). Both of the latter steps were performed under inert conditions. To this mixture, a solution of sodium hydroxide (17.5 g, 435 mmol) in methanol (105 ml) and water (10 ml) was added. The resulting mixture was stirred 15 minutes and then a further portion of sodium hydroxide (17.5 g) in water (105 ml) was added. The reaction mixture was stirred for 1 h. This mixture was then poured into a vigorously stirred solution of monopotassium phosphate (155 g, 1.14 mol) in water (200 ml). The orange precipitate was filtered and purified by three recrystallization cycles from diethyl ether/n-hexane (v/v, 1:1). The product was isolated as a bright-orange solid in a yield of 864 mg (35%). Crystals were obtained by dissolving the product in chlroroform, adding a layer of n-hexane and allowing the n-hexane to diffuse into the chloroform, leading to crystal formation at the phase boundary.

1H NMR (500 MHz, CDCl3): δ = 7.92 (m, 4 H, H–3, 3′), 7.75 (m, 4 H, H–2, 2′), 1.99 (s, 2H, OH), 0.46 (s, 12 H, H–5) p.p.m.

13C NMR (126 MHz, CDCl3): δ = 153.3 (C–4), 142.8 (C–1), 133.9 (C–2,2′), 122.1 (C–3,3′), 0.2 (C–5) p.p.m.

29Si NMR (187 MHz, CDCl3): δ = 7.77 p.p.m.

IR (ATR): ν = 3141 (m), 2956 (w), 1385 (m), 1251 (m), 1106 (w), 859 (s), 833 (s), 815 (s), 776 (s), 667 (s), 553 (s), 529 (m), 491 (m) cm−1.

HRMS (EI–sector) m/z: [M]+ calculated for [C16H22N2O2Si2]+ 330.1220, found 330.1221.

M.p.: T = 414 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C- and O-bound H atoms were located in difference maps but were positioned with idealized geometry (methyl and hydroxyl H atoms allowed to rotate but not to tip) and refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl and hydroxyl H atoms) using a riding model.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C16H22N2O2Si2 C16H22N2O2Si2
Mr 330.53 330.53
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 200 200
a, b, c (Å) 6.6731 (4), 9.8806 (6), 21.4108 (10) 17.8705 (4), 10.0016 (3), 20.5323 (5)
α, β, γ (°) 83.992 (4), 82.810 (4), 87.508 (5) 90, 97.013 (2), 90
V3) 1392.25 (14) 3642.36 (16)
Z 3 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.20 0.20
Crystal size (mm) 0.30 × 0.20 × 0.10 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.850, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 11236, 4845, 3542 30514, 7877, 6720
Rint 0.040 0.026
(sin θ/λ)max−1) 0.595 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 1.03 0.037, 0.096, 1.04
No. of reflections 4845 7877
No. of parameters 308 409
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.26 0.32, −0.20
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) (E)-[Diazene-1,2-diylbis(3,1-phenylene)]bis(dimethylsilanol) top
Crystal data top
C16H22N2O2Si2Z = 3
Mr = 330.53F(000) = 528
Triclinic, P1Dx = 1.183 Mg m3
a = 6.6731 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8806 (6) ÅCell parameters from 11236 reflections
c = 21.4108 (10) Åθ = 1.9–25.0°
α = 83.992 (4)°µ = 0.20 mm1
β = 82.810 (4)°T = 200 K
γ = 87.508 (5)°Block, yellow-orange
V = 1392.25 (14) Å30.30 × 0.20 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
3542 reflections with I > 2σ(I)
ω scanRint = 0.040
Absorption correction: numerical
(X-RED32 and X-SHAPE; Stoe, 2008)
θmax = 25.0°, θmin = 1.9°
Tmin = 0.850, Tmax = 0.974h = 77
11236 measured reflectionsk = 911
4845 independent reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.3154P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.22 e Å3
4845 reflectionsΔρmin = 0.26 e Å3
308 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.029 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8173 (4)0.1655 (3)0.46148 (13)0.0589 (7)
C20.9324 (4)0.1796 (3)0.40274 (12)0.0588 (7)
H20.97930.26690.38580.071*
C30.9809 (4)0.0679 (3)0.36788 (12)0.0590 (7)
C40.9071 (5)0.0579 (3)0.39497 (13)0.0657 (7)
H40.93670.13560.37240.079*
C50.7927 (5)0.0728 (3)0.45353 (14)0.0679 (8)
H50.74480.15970.47050.082*
C60.7477 (4)0.0383 (3)0.48736 (13)0.0641 (7)
H60.67020.02830.52780.077*
Si11.14136 (12)0.07944 (8)0.28970 (4)0.0599 (2)
O11.1934 (3)0.23933 (19)0.26646 (9)0.0620 (5)
H1O1.08780.28220.25740.093*
C71.3851 (5)0.0109 (4)0.29776 (17)0.0863 (10)
H7A1.46980.00330.25680.129*
H7B1.36200.10710.31190.129*
H7C1.45350.02970.32890.129*
C81.0036 (6)0.0100 (4)0.23111 (15)0.0858 (10)
H8A0.87890.06420.22650.129*
H8B0.97010.08470.24550.129*
H8C1.08860.01350.19020.129*
N10.7784 (4)0.2872 (3)0.49246 (11)0.0636 (6)
N20.6495 (4)0.2720 (3)0.54049 (11)0.0660 (6)
C90.6026 (4)0.3926 (3)0.57206 (13)0.0610 (7)
C100.4536 (4)0.3763 (3)0.62337 (12)0.0602 (7)
H100.39610.28950.63470.072*
C110.3852 (4)0.4840 (3)0.65906 (12)0.0576 (7)
C120.4745 (4)0.6092 (3)0.63984 (13)0.0624 (7)
H120.43250.68500.66260.075*
C130.6230 (5)0.6259 (3)0.58829 (13)0.0646 (7)
H130.68020.71250.57630.077*
C140.6878 (4)0.5178 (3)0.55437 (13)0.0642 (7)
H140.78990.52930.51930.077*
Si20.18738 (12)0.45838 (8)0.72857 (4)0.0575 (2)
O20.1366 (3)0.60480 (19)0.75838 (9)0.0611 (5)
H2O0.23960.63000.77230.092*
C150.0549 (5)0.4071 (3)0.70559 (16)0.0727 (8)
H15A0.15050.38620.74370.109*
H15B0.03140.32630.68240.109*
H15C0.11090.48180.67850.109*
C160.2840 (5)0.3318 (3)0.78818 (14)0.0736 (8)
H16A0.40260.36720.80310.110*
H16B0.32220.24700.76910.110*
H16C0.17860.31400.82400.110*
C210.8037 (5)0.9557 (3)0.95728 (13)0.0678 (8)
C220.7417 (5)0.8341 (3)0.94069 (13)0.0690 (8)
H220.81110.75190.95350.083*
C230.5797 (5)0.8287 (3)0.90556 (13)0.0687 (8)
C240.4812 (5)0.9522 (4)0.88898 (14)0.0749 (9)
H240.36980.95240.86530.090*
C250.5405 (5)1.0746 (4)0.90590 (15)0.0776 (9)
H250.46911.15680.89420.093*
C260.7043 (5)1.0774 (4)0.93990 (14)0.0757 (9)
H260.74731.16110.95100.091*
Si30.49665 (14)0.66640 (10)0.88091 (4)0.0702 (3)
O30.4598 (3)0.6900 (2)0.80611 (8)0.0677 (5)
H3O0.56990.70750.78370.102*
C270.6904 (6)0.5296 (4)0.8920 (2)0.0997 (12)
H27A0.64390.44480.87950.150*
H27B0.71320.51640.93660.150*
H27C0.81690.55490.86580.150*
C280.2455 (6)0.6217 (5)0.92350 (17)0.1031 (13)
H28A0.14360.68920.90990.155*
H28B0.24910.62100.96910.155*
H28C0.21080.53140.91400.155*
N30.9716 (4)0.9442 (3)0.99348 (12)0.0740 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0606 (16)0.0613 (17)0.0564 (15)0.0072 (13)0.0107 (12)0.0128 (13)
C20.0612 (16)0.0597 (17)0.0559 (15)0.0026 (12)0.0085 (12)0.0074 (12)
C30.0614 (16)0.0602 (17)0.0571 (15)0.0065 (13)0.0120 (12)0.0126 (13)
C40.0732 (18)0.0611 (18)0.0636 (17)0.0021 (14)0.0063 (14)0.0146 (14)
C50.0716 (18)0.0658 (19)0.0658 (17)0.0038 (14)0.0040 (14)0.0085 (14)
C60.0618 (17)0.073 (2)0.0578 (16)0.0028 (14)0.0060 (13)0.0108 (14)
Si10.0667 (5)0.0561 (5)0.0563 (4)0.0066 (3)0.0036 (4)0.0103 (3)
O10.0623 (11)0.0595 (12)0.0640 (11)0.0066 (9)0.0075 (9)0.0082 (9)
C70.085 (2)0.081 (2)0.084 (2)0.0239 (18)0.0051 (18)0.0033 (17)
C80.108 (3)0.087 (2)0.0633 (18)0.015 (2)0.0026 (18)0.0195 (17)
N10.0657 (14)0.0709 (16)0.0557 (13)0.0081 (11)0.0102 (11)0.0142 (11)
N20.0680 (15)0.0708 (16)0.0600 (14)0.0053 (12)0.0050 (12)0.0162 (11)
C90.0654 (17)0.0649 (18)0.0548 (15)0.0078 (13)0.0114 (13)0.0148 (13)
C100.0653 (17)0.0583 (17)0.0589 (16)0.0036 (13)0.0112 (13)0.0119 (13)
C110.0627 (16)0.0575 (17)0.0556 (15)0.0072 (12)0.0170 (12)0.0120 (12)
C120.0704 (18)0.0606 (18)0.0593 (16)0.0093 (14)0.0186 (14)0.0124 (13)
C130.0748 (19)0.0587 (17)0.0621 (16)0.0011 (14)0.0157 (14)0.0075 (13)
C140.0657 (17)0.073 (2)0.0545 (15)0.0036 (14)0.0114 (13)0.0084 (14)
Si20.0626 (5)0.0558 (5)0.0563 (4)0.0083 (3)0.0125 (3)0.0139 (3)
O20.0612 (11)0.0605 (11)0.0652 (11)0.0086 (9)0.0150 (9)0.0196 (9)
C150.0712 (19)0.071 (2)0.081 (2)0.0037 (15)0.0183 (16)0.0245 (16)
C160.083 (2)0.068 (2)0.0701 (19)0.0099 (16)0.0127 (16)0.0087 (15)
C210.0696 (18)0.080 (2)0.0578 (16)0.0022 (15)0.0166 (14)0.0172 (14)
C220.0742 (19)0.077 (2)0.0599 (16)0.0046 (15)0.0185 (14)0.0172 (14)
C230.0694 (18)0.088 (2)0.0527 (15)0.0013 (16)0.0142 (13)0.0175 (14)
C240.076 (2)0.092 (2)0.0613 (17)0.0020 (17)0.0201 (15)0.0163 (16)
C250.087 (2)0.082 (2)0.0681 (19)0.0087 (17)0.0245 (17)0.0164 (16)
C260.087 (2)0.081 (2)0.0642 (18)0.0045 (17)0.0236 (16)0.0211 (16)
Si30.0746 (6)0.0834 (6)0.0560 (5)0.0069 (4)0.0152 (4)0.0130 (4)
O30.0668 (12)0.0866 (14)0.0530 (10)0.0069 (11)0.0113 (9)0.0155 (10)
C270.120 (3)0.085 (3)0.104 (3)0.003 (2)0.049 (2)0.011 (2)
C280.106 (3)0.137 (4)0.068 (2)0.031 (2)0.002 (2)0.019 (2)
N30.0767 (16)0.0849 (19)0.0667 (15)0.0016 (14)0.0218 (13)0.0214 (13)
Geometric parameters (Å, º) top
C1—C21.386 (4)C14—H140.9500
C1—C61.394 (4)Si2—O21.6468 (18)
C1—N11.432 (3)Si2—C161.847 (3)
C2—C31.400 (4)Si2—C151.853 (3)
C2—H20.9500O2—H2O0.8400
C3—C41.398 (4)C15—H15A0.9800
C3—Si11.867 (3)C15—H15B0.9800
C4—C51.381 (4)C15—H15C0.9800
C4—H40.9500C16—H16A0.9800
C5—C61.379 (4)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—H60.9500C21—C221.382 (4)
Si1—O11.644 (2)C21—C261.387 (4)
Si1—C71.839 (3)C21—N31.434 (4)
Si1—C81.848 (3)C22—C231.398 (4)
O1—H1O0.8400C22—H220.9500
C7—H7A0.9800C23—C241.394 (4)
C7—H7B0.9800C23—Si31.867 (3)
C7—H7C0.9800C24—C251.386 (5)
C8—H8A0.9800C24—H240.9500
C8—H8B0.9800C25—C261.389 (4)
C8—H8C0.9800C25—H250.9500
N1—N21.256 (3)C26—H260.9500
N2—C91.434 (3)Si3—O31.642 (2)
C9—C141.381 (4)Si3—C271.848 (4)
C9—C101.387 (4)Si3—C281.853 (4)
C10—C111.402 (4)O3—H3O0.8400
C10—H100.9500C27—H27A0.9800
C11—C121.396 (4)C27—H27B0.9800
C11—Si21.865 (3)C27—H27C0.9800
C12—C131.389 (4)C28—H28A0.9800
C12—H120.9500C28—H28B0.9800
C13—C141.378 (4)C28—H28C0.9800
C13—H130.9500N3—N3i1.250 (5)
C2—C1—C6120.3 (2)O2—Si2—C16110.15 (12)
C2—C1—N1116.0 (3)O2—Si2—C15105.38 (12)
C6—C1—N1123.7 (2)C16—Si2—C15111.68 (16)
C1—C2—C3121.3 (3)O2—Si2—C11108.83 (12)
C1—C2—H2119.3C16—Si2—C11108.79 (13)
C3—C2—H2119.3C15—Si2—C11111.93 (14)
C4—C3—C2116.9 (2)Si2—O2—H2O109.5
C4—C3—Si1119.7 (2)Si2—C15—H15A109.5
C2—C3—Si1123.3 (2)Si2—C15—H15B109.5
C5—C4—C3122.1 (3)H15A—C15—H15B109.5
C5—C4—H4119.0Si2—C15—H15C109.5
C3—C4—H4119.0H15A—C15—H15C109.5
C6—C5—C4120.2 (3)H15B—C15—H15C109.5
C6—C5—H5119.9Si2—C16—H16A109.5
C4—C5—H5119.9Si2—C16—H16B109.5
C5—C6—C1119.2 (3)H16A—C16—H16B109.5
C5—C6—H6120.4Si2—C16—H16C109.5
C1—C6—H6120.4H16A—C16—H16C109.5
O1—Si1—C7106.33 (15)H16B—C16—H16C109.5
O1—Si1—C8109.67 (14)C22—C21—C26120.5 (3)
C7—Si1—C8112.18 (18)C22—C21—N3115.2 (3)
O1—Si1—C3109.77 (11)C26—C21—N3124.3 (3)
C7—Si1—C3109.72 (14)C21—C22—C23121.9 (3)
C8—Si1—C3109.13 (14)C21—C22—H22119.1
Si1—O1—H1O109.5C23—C22—H22119.1
Si1—C7—H7A109.5C24—C23—C22116.6 (3)
Si1—C7—H7B109.5C24—C23—Si3120.7 (2)
H7A—C7—H7B109.5C22—C23—Si3122.7 (2)
Si1—C7—H7C109.5C25—C24—C23122.1 (3)
H7A—C7—H7C109.5C25—C24—H24118.9
H7B—C7—H7C109.5C23—C24—H24118.9
Si1—C8—H8A109.5C24—C25—C26120.1 (3)
Si1—C8—H8B109.5C24—C25—H25119.9
H8A—C8—H8B109.5C26—C25—H25119.9
Si1—C8—H8C109.5C21—C26—C25118.8 (3)
H8A—C8—H8C109.5C21—C26—H26120.6
H8B—C8—H8C109.5C25—C26—H26120.6
N2—N1—C1112.8 (2)O3—Si3—C27109.67 (15)
N1—N2—C9114.5 (3)O3—Si3—C28104.44 (15)
C14—C9—C10120.2 (2)C27—Si3—C28112.7 (2)
C14—C9—N2125.7 (3)O3—Si3—C23109.09 (13)
C10—C9—N2114.1 (3)C27—Si3—C23110.39 (17)
C9—C10—C11122.0 (3)C28—Si3—C23110.32 (17)
C9—C10—H10119.0Si3—O3—H3O109.5
C11—C10—H10119.0Si3—C27—H27A109.5
C12—C11—C10116.3 (3)Si3—C27—H27B109.5
C12—C11—Si2122.7 (2)H27A—C27—H27B109.5
C10—C11—Si2121.0 (2)Si3—C27—H27C109.5
C13—C12—C11121.8 (3)H27A—C27—H27C109.5
C13—C12—H12119.1H27B—C27—H27C109.5
C11—C12—H12119.1Si3—C28—H28A109.5
C14—C13—C12120.5 (3)Si3—C28—H28B109.5
C14—C13—H13119.7H28A—C28—H28B109.5
C12—C13—H13119.7Si3—C28—H28C109.5
C13—C14—C9119.2 (3)H28A—C28—H28C109.5
C13—C14—H14120.4H28B—C28—H28C109.5
C9—C14—H14120.4N3i—N3—C21114.0 (3)
C6—C1—C2—C30.3 (4)C12—C13—C14—C90.3 (4)
N1—C1—C2—C3179.9 (2)C10—C9—C14—C130.0 (4)
C1—C2—C3—C40.3 (4)N2—C9—C14—C13178.0 (3)
C1—C2—C3—Si1178.2 (2)C12—C11—Si2—O22.3 (3)
C2—C3—C4—C50.4 (4)C10—C11—Si2—O2178.2 (2)
Si1—C3—C4—C5178.1 (2)C12—C11—Si2—C16117.7 (2)
C3—C4—C5—C60.1 (5)C10—C11—Si2—C1661.7 (3)
C4—C5—C6—C10.6 (4)C12—C11—Si2—C15118.4 (2)
C2—C1—C6—C50.8 (4)C10—C11—Si2—C1562.2 (3)
N1—C1—C6—C5179.7 (3)C26—C21—C22—C230.7 (5)
C4—C3—Si1—O1175.9 (2)N3—C21—C22—C23179.8 (3)
C2—C3—Si1—O15.7 (3)C21—C22—C23—C241.1 (4)
C4—C3—Si1—C767.6 (3)C21—C22—C23—Si3178.5 (2)
C2—C3—Si1—C7110.8 (3)C22—C23—C24—C250.4 (5)
C4—C3—Si1—C855.7 (3)Si3—C23—C24—C25179.2 (2)
C2—C3—Si1—C8125.9 (3)C23—C24—C25—C260.7 (5)
C2—C1—N1—N2169.9 (2)C22—C21—C26—C250.4 (5)
C6—C1—N1—N210.5 (4)N3—C21—C26—C25178.6 (3)
C1—N1—N2—C9178.6 (2)C24—C25—C26—C211.1 (5)
N1—N2—C9—C140.9 (4)C24—C23—Si3—O345.4 (3)
N1—N2—C9—C10177.3 (2)C22—C23—Si3—O3134.2 (2)
C14—C9—C10—C110.4 (4)C24—C23—Si3—C27166.0 (3)
N2—C9—C10—C11178.6 (2)C22—C23—Si3—C2713.6 (3)
C9—C10—C11—C120.4 (4)C24—C23—Si3—C2868.8 (3)
C9—C10—C11—Si2179.0 (2)C22—C23—Si3—C28111.6 (3)
C10—C11—C12—C130.1 (4)C22—C21—N3—N3i178.2 (3)
Si2—C11—C12—C13179.4 (2)C26—C21—N3—N3i2.7 (5)
C11—C12—C13—C140.3 (4)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2ii0.841.872.708 (3)173
O2—H2O···O30.841.862.701 (3)177
O3—H3O···O1iii0.841.862.696 (3)175
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
(II) (E)-[Diazene-1,2-diylbis(4,1-phenylene)]bis(dimethylsilanol) top
Crystal data top
C16H22N2O2Si2F(000) = 1408
Mr = 330.53Dx = 1.206 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.8705 (4) ÅCell parameters from 30514 reflections
b = 10.0016 (3) Åθ = 1.6–27.0°
c = 20.5323 (5) ŵ = 0.20 mm1
β = 97.013 (2)°T = 200 K
V = 3642.36 (16) Å3Block, yellow-orange
Z = 80.15 × 0.15 × 0.10 mm
Data collection top
Stoe IPDS-2
diffractometer
Rint = 0.026
ω scanθmax = 27.0°, θmin = 1.6°
30514 measured reflectionsh = 2122
7877 independent reflectionsk = 1212
6720 reflections with I > 2σ(I)l = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.133P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7877 reflectionsΔρmax = 0.32 e Å3
409 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19059 (8)0.23669 (15)0.59401 (8)0.0364 (3)
C20.22138 (8)0.17528 (17)0.54266 (8)0.0384 (3)
H20.18960.14300.50550.046*
C30.29912 (8)0.16162 (16)0.54617 (8)0.0367 (3)
H30.32000.12040.51080.044*
C40.34777 (8)0.20714 (14)0.60064 (8)0.0327 (3)
C50.31467 (8)0.26393 (16)0.65218 (8)0.0367 (3)
H50.34590.29250.69040.044*
C60.23712 (9)0.27968 (16)0.64880 (8)0.0390 (3)
H60.21590.32010.68420.047*
Si10.45332 (2)0.20260 (4)0.60238 (2)0.03318 (10)
O10.48169 (6)0.05197 (11)0.58463 (6)0.0408 (3)
H1O0.44970.00460.59340.061*
C70.48428 (10)0.3152 (2)0.53913 (10)0.0515 (4)
H7A0.53860.30430.53780.077*
H7B0.47360.40810.55000.077*
H7C0.45700.29270.49620.077*
C80.49909 (9)0.25256 (18)0.68462 (9)0.0461 (4)
H8A0.48170.19410.71800.069*
H8B0.48590.34540.69340.069*
H8C0.55390.24460.68600.069*
N10.11185 (7)0.26482 (15)0.59598 (7)0.0425 (3)
N20.06893 (7)0.20943 (15)0.55168 (7)0.0450 (3)
C90.00927 (8)0.24351 (18)0.55369 (9)0.0420 (4)
C100.06127 (9)0.16317 (19)0.51704 (10)0.0486 (4)
H100.04470.09180.49180.058*
C110.13769 (9)0.18688 (18)0.51714 (9)0.0445 (4)
H110.17300.12950.49270.053*
C120.16403 (8)0.29287 (16)0.55217 (8)0.0363 (3)
C130.11024 (9)0.37422 (19)0.58751 (10)0.0477 (4)
H130.12650.44770.61150.057*
C140.03342 (9)0.3507 (2)0.58862 (10)0.0505 (4)
H140.00220.40760.61310.061*
Si20.26733 (2)0.32811 (4)0.54879 (2)0.03409 (10)
O20.31512 (6)0.19837 (11)0.51653 (6)0.0398 (3)
H2O0.32380.14560.54650.060*
C150.29259 (10)0.47159 (19)0.49411 (10)0.0525 (4)
H15A0.27870.45220.45040.079*
H15B0.26550.55130.51190.079*
H15C0.34700.48760.49100.079*
C160.29391 (9)0.3644 (2)0.63169 (9)0.0488 (4)
H16A0.34770.38650.62810.073*
H16B0.26420.44010.65090.073*
H16C0.28390.28560.65980.073*
C210.61508 (8)0.71201 (17)0.15593 (8)0.0375 (3)
C220.65679 (9)0.59473 (17)0.15840 (9)0.0415 (4)
H220.63210.51050.15680.050*
C230.73454 (9)0.60146 (16)0.16321 (9)0.0406 (4)
H230.76280.52090.16450.049*
C240.77264 (8)0.72423 (16)0.16626 (8)0.0349 (3)
C250.72921 (9)0.84003 (16)0.16432 (9)0.0414 (4)
H250.75360.92460.16720.050*
C260.65100 (9)0.83465 (17)0.15830 (9)0.0439 (4)
H260.62230.91490.15580.053*
Si30.87781 (2)0.72742 (4)0.16980 (2)0.03419 (10)
O30.90109 (6)0.66783 (12)0.10016 (6)0.0385 (2)
H3O0.86800.68940.06930.058*
C270.92173 (10)0.6144 (2)0.23463 (9)0.0525 (5)
H27A0.89870.52560.22900.079*
H27B0.91390.65010.27770.079*
H27C0.97590.60750.23160.079*
C280.91362 (10)0.90032 (19)0.18323 (11)0.0525 (5)
H28A0.96850.90080.18370.079*
H28B0.90070.93360.22530.079*
H28C0.89060.95810.14770.079*
N30.53461 (7)0.71741 (15)0.15146 (7)0.0418 (3)
N40.50481 (7)0.60550 (15)0.15605 (8)0.0444 (3)
C290.42441 (8)0.61110 (18)0.15328 (8)0.0404 (4)
C300.39022 (10)0.4941 (2)0.16917 (12)0.0610 (6)
H300.41950.41600.17970.073*
C310.31279 (10)0.4912 (2)0.16968 (13)0.0619 (6)
H310.28980.41060.18160.074*
C320.26775 (8)0.60174 (17)0.15338 (8)0.0403 (4)
C330.30402 (9)0.7174 (2)0.13659 (11)0.0537 (5)
H330.27490.79510.12490.064*
C340.38159 (10)0.7227 (2)0.13647 (11)0.0548 (5)
H340.40500.80300.12480.066*
Si40.16320 (2)0.59274 (5)0.15397 (2)0.03874 (11)
O40.13140 (6)0.49686 (12)0.09145 (6)0.0399 (3)
H4O0.08470.48620.09080.060*
C350.14182 (11)0.5168 (3)0.23169 (10)0.0614 (6)
H35A0.08810.49440.22810.092*
H35B0.15420.58040.26770.092*
H35C0.17180.43540.24040.092*
C360.12030 (11)0.7614 (2)0.14383 (12)0.0616 (5)
H36A0.13700.80510.10540.092*
H36B0.13600.81510.18310.092*
H36C0.06520.75320.13770.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (7)0.0364 (8)0.0494 (9)0.0036 (6)0.0080 (6)0.0062 (7)
C20.0283 (7)0.0438 (8)0.0421 (8)0.0007 (6)0.0008 (6)0.0016 (7)
C30.0287 (7)0.0406 (8)0.0416 (8)0.0022 (6)0.0071 (6)0.0003 (6)
C40.0244 (6)0.0324 (7)0.0417 (8)0.0024 (5)0.0054 (6)0.0041 (6)
C50.0283 (7)0.0393 (8)0.0426 (8)0.0007 (6)0.0053 (6)0.0010 (6)
C60.0308 (7)0.0412 (8)0.0466 (9)0.0028 (6)0.0116 (6)0.0018 (7)
Si10.02102 (18)0.0348 (2)0.0440 (2)0.00213 (15)0.00485 (16)0.00273 (17)
O10.0256 (5)0.0385 (6)0.0595 (7)0.0017 (4)0.0104 (5)0.0014 (5)
C70.0327 (8)0.0568 (11)0.0667 (12)0.0029 (7)0.0123 (8)0.0183 (9)
C80.0336 (8)0.0465 (9)0.0567 (10)0.0040 (7)0.0006 (7)0.0046 (8)
N10.0282 (6)0.0496 (8)0.0498 (8)0.0009 (6)0.0058 (6)0.0017 (6)
N20.0306 (7)0.0527 (8)0.0516 (8)0.0044 (6)0.0052 (6)0.0027 (7)
C90.0262 (7)0.0523 (10)0.0479 (9)0.0057 (7)0.0059 (6)0.0014 (7)
C100.0340 (8)0.0556 (10)0.0558 (11)0.0090 (7)0.0032 (7)0.0117 (8)
C110.0295 (7)0.0481 (9)0.0549 (10)0.0032 (7)0.0007 (7)0.0087 (8)
C120.0257 (7)0.0412 (8)0.0418 (8)0.0020 (6)0.0033 (6)0.0004 (6)
C130.0295 (8)0.0516 (10)0.0613 (11)0.0014 (7)0.0035 (7)0.0145 (8)
C140.0292 (8)0.0577 (11)0.0628 (12)0.0037 (7)0.0012 (8)0.0102 (9)
Si20.02215 (18)0.0379 (2)0.0418 (2)0.00151 (15)0.00216 (16)0.00057 (17)
O20.0321 (5)0.0449 (6)0.0413 (6)0.0063 (5)0.0001 (5)0.0027 (5)
C150.0448 (9)0.0458 (10)0.0662 (12)0.0065 (8)0.0036 (9)0.0085 (9)
C160.0342 (8)0.0613 (11)0.0516 (10)0.0026 (8)0.0075 (7)0.0094 (8)
C210.0245 (7)0.0461 (9)0.0428 (8)0.0018 (6)0.0083 (6)0.0057 (7)
C220.0319 (8)0.0385 (8)0.0551 (10)0.0057 (6)0.0092 (7)0.0067 (7)
C230.0309 (7)0.0357 (8)0.0558 (10)0.0014 (6)0.0077 (7)0.0044 (7)
C240.0270 (7)0.0384 (8)0.0400 (8)0.0011 (6)0.0065 (6)0.0029 (6)
C250.0289 (7)0.0359 (8)0.0604 (10)0.0021 (6)0.0095 (7)0.0028 (7)
C260.0301 (7)0.0390 (8)0.0635 (11)0.0038 (6)0.0100 (7)0.0042 (8)
Si30.02369 (19)0.0376 (2)0.0413 (2)0.00047 (15)0.00444 (16)0.00222 (17)
O30.0293 (5)0.0447 (6)0.0416 (6)0.0066 (4)0.0046 (4)0.0003 (5)
C270.0408 (9)0.0705 (12)0.0466 (10)0.0139 (8)0.0073 (8)0.0073 (9)
C280.0338 (8)0.0480 (10)0.0754 (13)0.0065 (7)0.0055 (8)0.0148 (9)
N30.0255 (6)0.0502 (8)0.0505 (8)0.0027 (6)0.0077 (6)0.0058 (6)
N40.0266 (6)0.0522 (8)0.0550 (9)0.0039 (6)0.0070 (6)0.0097 (7)
C290.0250 (7)0.0507 (9)0.0458 (9)0.0047 (6)0.0056 (6)0.0103 (7)
C300.0316 (8)0.0468 (10)0.1041 (17)0.0016 (7)0.0063 (10)0.0007 (10)
C310.0309 (8)0.0484 (10)0.1067 (18)0.0088 (7)0.0096 (10)0.0032 (11)
C320.0270 (7)0.0511 (9)0.0425 (9)0.0064 (6)0.0029 (6)0.0097 (7)
C330.0293 (8)0.0553 (11)0.0764 (13)0.0002 (7)0.0054 (8)0.0086 (9)
C340.0320 (8)0.0536 (11)0.0792 (14)0.0066 (7)0.0086 (8)0.0113 (10)
Si40.02365 (19)0.0507 (3)0.0421 (2)0.00499 (17)0.00473 (16)0.00942 (19)
O40.0237 (5)0.0515 (7)0.0448 (6)0.0043 (5)0.0050 (4)0.0091 (5)
C350.0390 (9)0.0998 (17)0.0458 (10)0.0148 (10)0.0074 (8)0.0047 (10)
C360.0388 (9)0.0592 (12)0.0872 (16)0.0020 (8)0.0094 (10)0.0177 (11)
Geometric parameters (Å, º) top
C1—C61.383 (2)C21—C261.383 (2)
C1—C21.390 (2)C21—C221.387 (2)
C1—N11.4403 (19)C21—N31.4307 (19)
C2—C31.389 (2)C22—C231.382 (2)
C2—H20.9500C22—H220.9500
C3—C41.406 (2)C23—C241.402 (2)
C3—H30.9500C23—H230.9500
C4—C51.395 (2)C24—C251.392 (2)
C4—Si11.8827 (14)C24—Si31.8723 (15)
C5—C61.388 (2)C25—C261.389 (2)
C5—H50.9500C25—H250.9500
C6—H60.9500C26—H260.9500
Si1—O11.6446 (12)Si3—O31.6487 (12)
Si1—C81.8527 (18)Si3—C271.8466 (19)
Si1—C71.8536 (18)Si3—C281.8528 (18)
O1—H1O0.8400O3—H3O0.8400
C7—H7A0.9800C27—H27A0.9800
C7—H7B0.9800C27—H27B0.9800
C7—H7C0.9800C27—H27C0.9800
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
N1—N21.246 (2)N3—N41.248 (2)
N2—C91.4439 (19)N4—C291.4321 (19)
C9—C101.380 (2)C29—C341.373 (3)
C9—C141.388 (3)C29—C301.378 (3)
C10—C111.386 (2)C30—C311.385 (2)
C10—H100.9500C30—H300.9500
C11—C121.395 (2)C31—C321.385 (3)
C11—H110.9500C31—H310.9500
C12—C131.394 (2)C32—C331.390 (3)
C12—Si21.8723 (15)C32—Si41.8719 (15)
C13—C141.390 (2)C33—C341.387 (2)
C13—H130.9500C33—H330.9500
C14—H140.9500C34—H340.9500
Si2—O21.6473 (11)Si4—O41.6469 (12)
Si2—C151.8438 (19)Si4—C351.849 (2)
Si2—C161.8578 (19)Si4—C361.854 (2)
O2—H2O0.8400O4—H4O0.8400
C15—H15A0.9800C35—H35A0.9800
C15—H15B0.9800C35—H35B0.9800
C15—H15C0.9800C35—H35C0.9800
C16—H16A0.9800C36—H36A0.9800
C16—H16B0.9800C36—H36B0.9800
C16—H16C0.9800C36—H36C0.9800
C6—C1—C2119.98 (13)C26—C21—C22120.25 (14)
C6—C1—N1114.13 (14)C26—C21—N3115.31 (14)
C2—C1—N1125.87 (14)C22—C21—N3124.44 (14)
C3—C2—C1119.34 (15)C23—C22—C21119.49 (15)
C3—C2—H2120.3C23—C22—H22120.3
C1—C2—H2120.3C21—C22—H22120.3
C2—C3—C4121.79 (15)C22—C23—C24121.62 (15)
C2—C3—H3119.1C22—C23—H23119.2
C4—C3—H3119.1C24—C23—H23119.2
C5—C4—C3117.20 (13)C25—C24—C23117.48 (13)
C5—C4—Si1120.80 (11)C25—C24—Si3122.72 (12)
C3—C4—Si1121.88 (12)C23—C24—Si3119.77 (11)
C6—C5—C4121.44 (15)C26—C25—C24121.45 (15)
C6—C5—H5119.3C26—C25—H25119.3
C4—C5—H5119.3C24—C25—H25119.3
C1—C6—C5120.19 (15)C21—C26—C25119.69 (15)
C1—C6—H6119.9C21—C26—H26120.2
C5—C6—H6119.9C25—C26—H26120.2
O1—Si1—C8109.59 (7)O3—Si3—C27105.89 (8)
O1—Si1—C7105.95 (8)O3—Si3—C28110.33 (8)
C8—Si1—C7109.78 (9)C27—Si3—C28110.81 (10)
O1—Si1—C4110.68 (6)O3—Si3—C24108.57 (6)
C8—Si1—C4109.91 (8)C27—Si3—C24110.72 (8)
C7—Si1—C4110.86 (7)C28—Si3—C24110.40 (8)
Si1—O1—H1O109.5Si3—O3—H3O109.5
Si1—C7—H7A109.5Si3—C27—H27A109.5
Si1—C7—H7B109.5Si3—C27—H27B109.5
H7A—C7—H7B109.5H27A—C27—H27B109.5
Si1—C7—H7C109.5Si3—C27—H27C109.5
H7A—C7—H7C109.5H27A—C27—H27C109.5
H7B—C7—H7C109.5H27B—C27—H27C109.5
Si1—C8—H8A109.5Si3—C28—H28A109.5
Si1—C8—H8B109.5Si3—C28—H28B109.5
H8A—C8—H8B109.5H28A—C28—H28B109.5
Si1—C8—H8C109.5Si3—C28—H28C109.5
H8A—C8—H8C109.5H28A—C28—H28C109.5
H8B—C8—H8C109.5H28B—C28—H28C109.5
N2—N1—C1114.15 (14)N4—N3—C21113.33 (14)
N1—N2—C9112.70 (14)N3—N4—C29113.40 (14)
C10—C9—C14120.03 (15)C34—C29—C30120.02 (15)
C10—C9—N2115.89 (15)C34—C29—N4124.57 (15)
C14—C9—N2124.07 (15)C30—C29—N4115.41 (16)
C9—C10—C11119.84 (16)C29—C30—C31119.46 (18)
C9—C10—H10120.1C29—C30—H30120.3
C11—C10—H10120.1C31—C30—H30120.3
C10—C11—C12121.69 (16)C32—C31—C30122.21 (18)
C10—C11—H11119.2C32—C31—H31118.9
C12—C11—H11119.2C30—C31—H31118.9
C13—C12—C11117.22 (14)C31—C32—C33116.73 (15)
C13—C12—Si2121.58 (12)C31—C32—Si4120.74 (13)
C11—C12—Si2121.15 (12)C33—C32—Si4122.53 (13)
C14—C13—C12121.79 (16)C34—C33—C32121.88 (17)
C14—C13—H13119.1C34—C33—H33119.1
C12—C13—H13119.1C32—C33—H33119.1
C9—C14—C13119.39 (16)C29—C34—C33119.67 (17)
C9—C14—H14120.3C29—C34—H34120.2
C13—C14—H14120.3C33—C34—H34120.2
O2—Si2—C15106.97 (8)O4—Si4—C35110.22 (8)
O2—Si2—C16110.13 (8)O4—Si4—C36110.10 (8)
C15—Si2—C16109.57 (9)C35—Si4—C36110.14 (11)
O2—Si2—C12109.08 (7)O4—Si4—C32105.83 (6)
C15—Si2—C12109.64 (8)C35—Si4—C32109.69 (8)
C16—Si2—C12111.35 (8)C36—Si4—C32110.79 (9)
Si2—O2—H2O109.5Si4—O4—H4O109.5
Si2—C15—H15A109.5Si4—C35—H35A109.5
Si2—C15—H15B109.5Si4—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
Si2—C15—H15C109.5Si4—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
Si2—C16—H16A109.5Si4—C36—H36A109.5
Si2—C16—H16B109.5Si4—C36—H36B109.5
H16A—C16—H16B109.5H36A—C36—H36B109.5
Si2—C16—H16C109.5Si4—C36—H36C109.5
H16A—C16—H16C109.5H36A—C36—H36C109.5
H16B—C16—H16C109.5H36B—C36—H36C109.5
C6—C1—C2—C32.0 (2)C26—C21—C22—C230.0 (3)
N1—C1—C2—C3176.33 (15)N3—C21—C22—C23179.51 (16)
C1—C2—C3—C40.6 (2)C21—C22—C23—C240.6 (3)
C2—C3—C4—C51.6 (2)C22—C23—C24—C250.1 (3)
C2—C3—C4—Si1174.51 (12)C22—C23—C24—Si3177.88 (14)
C3—C4—C5—C62.5 (2)C23—C24—C25—C261.2 (3)
Si1—C4—C5—C6173.69 (12)Si3—C24—C25—C26176.63 (14)
C2—C1—C6—C51.2 (2)C22—C21—C26—C251.1 (3)
N1—C1—C6—C5177.35 (15)N3—C21—C26—C25178.40 (16)
C4—C5—C6—C11.1 (2)C24—C25—C26—C211.8 (3)
C5—C4—Si1—O1131.37 (13)C25—C24—Si3—O3112.31 (15)
C3—C4—Si1—O152.65 (14)C23—C24—Si3—O365.53 (15)
C5—C4—Si1—C810.19 (15)C25—C24—Si3—C27131.84 (15)
C3—C4—Si1—C8173.84 (13)C23—C24—Si3—C2750.33 (16)
C5—C4—Si1—C7111.36 (14)C25—C24—Si3—C288.75 (18)
C3—C4—Si1—C764.62 (15)C23—C24—Si3—C28173.41 (14)
C6—C1—N1—N2170.00 (15)C26—C21—N3—N4173.24 (16)
C2—C1—N1—N211.6 (2)C22—C21—N3—N46.3 (2)
C1—N1—N2—C9177.93 (14)C21—N3—N4—C29178.47 (14)
N1—N2—C9—C10165.08 (17)N3—N4—C29—C3410.4 (3)
N1—N2—C9—C1416.0 (3)N3—N4—C29—C30169.46 (18)
C14—C9—C10—C112.4 (3)C34—C29—C30—C311.7 (3)
N2—C9—C10—C11178.70 (17)N4—C29—C30—C31178.15 (19)
C9—C10—C11—C121.7 (3)C29—C30—C31—C321.3 (4)
C10—C11—C12—C130.2 (3)C30—C31—C32—C330.3 (3)
C10—C11—C12—Si2177.25 (15)C30—C31—C32—Si4179.41 (18)
C11—C12—C13—C140.6 (3)C31—C32—C33—C340.4 (3)
Si2—C12—C13—C14178.11 (16)Si4—C32—C33—C34179.90 (16)
C10—C9—C14—C131.5 (3)C30—C29—C34—C331.0 (3)
N2—C9—C14—C13179.64 (18)N4—C29—C34—C33178.80 (18)
C12—C13—C14—C90.0 (3)C32—C33—C34—C290.0 (3)
C13—C12—Si2—O2168.44 (14)C31—C32—Si4—O470.12 (18)
C11—C12—Si2—O214.17 (16)C33—C32—Si4—O4109.57 (16)
C13—C12—Si2—C1574.73 (17)C31—C32—Si4—C3548.75 (19)
C11—C12—Si2—C15102.66 (16)C33—C32—Si4—C35131.55 (17)
C13—C12—Si2—C1646.69 (17)C31—C32—Si4—C36170.56 (17)
C11—C12—Si2—C16135.93 (15)C33—C32—Si4—C369.75 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.841.862.6686 (15)161
O2—H2O···O4i0.841.922.7297 (16)160
O3—H3O···O2ii0.841.902.7010 (15)160
O4—H4O···O1iii0.841.872.7063 (14)175
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are thankful for financial support by Special Research Area 677 `Function by Switching' of the Deutsche Forschungsgemeinschaft (DFG), Project C14. AS and DPS acknowledge funding for a Short Term Scientific Mission from the COST action COST 1302: `European Network on Smart Inorganic Polymers'. This research has been supported by the Institutional Strategy of the University of Bremen, funded by the German Excellence Initiative. DPS is grateful to the MEC for a FPU grant.

References

First citationBernstein, J., Davis, E. R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKano, N., Komatsu, F. & Kawashima, T. (2001). Chem. Lett. 30, 338–339.  CSD CrossRef Google Scholar
First citationKano, N., Yamamura, M., Komatsu, F. & Kawashima, T. (2003). J. Organomet. Chem. 686, 192–197.  CSD CrossRef CAS Google Scholar
First citationKizilkan, E., Strüben, J., Jin, X., Schaber, C. F., Adelung, R., Staubitz, A. & Gorb, S. N. (2016). R. Soc. Open Sci. 3, 150700.  CrossRef PubMed Google Scholar
First citationLagrasta, C., Bellobono, I. R. & Bonardi, M. (1997). J. Photochem. Photobiol. A, 110, 201–205.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrüben, J., Gates, P. J. & Staubitz, A. (2014). J. Org. Chem. 79, 1719–1728.  PubMed Google Scholar
First citationStrüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Soennichsen, F. D. & Staubitz, A. (2015). Chem. Eur. J. 21, 11165–11173.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamura, M., Kano, N. & Kawashima, T. (2009). Z. Anorg. Allg. Chem. 635, 1295–1299.  CSD CrossRef CAS Google Scholar
First citationYesodha, S. K., Sadashiva, C. K., Pillai, P. & Tsutsumi, N. (2004). Prog. Polym. Sci. 29, 45–74.  CrossRef CAS Google Scholar
First citationYu, Y., Nakano, M. & Ikeda, T. (2003). Nature, 425, 145.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds