research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(isonicotinamide-κN)bis­­(thio­cyanato-κN)cobalt(II)–isonicotinamide–ethanol (1/2/1)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 June 2016; accepted 6 July 2016; online 12 July 2016)

The asymmetric unit of the title compound, [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H5OH, comprises one CoII cation, two thio­cyanate anions, four coordinating and two solvent isonicotinamide molecules and one ethanol solvent mol­ecule. The CoII cations are octa­hedrally coordinated by four N-coordinating isonicotinamide ligands and two terminally N-bonded thio­cyanate anions. These discrete complexes are linked by inter­molecular N—H⋯O and N—H⋯S hydrogen-bonding inter­actions into a three-dimensional network. The two isonicotinamide and the ethanol solvent mol­ecules are embedded in channels of this network and are linked through further N—H⋯O and N—H⋯N hydrogen bonds to the network. The ethanol solvent mol­ecule is disordered over two sets of sites (occupancy ratio 0.6:0.4).

1. Chemical context

There is an increasing inter­est in compounds showing cooperative magnetic properties, such as ferromagnetism, anti­ferromagnetism and metamagnetism or a slow relaxation of the magnetization, indicative of single-mol­ecule or single-chain magnetism (Gao et al., 2009[Gao, E.-Q., Liu, P.-P., Wang, Y.-Q., Yue, Q. & Wang, Q.-L. (2009). Chem. Eur. J. 15, 1217-1226.]; Ma et al., 2009[Ma, Y., Zhang, J. Y., Cheng, A.-L., Sun, Q., Gao, E.-Q. & Liu, C.-M. (2009). Inorg. Chem. 48, 6142-6151.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). In this context we have reported on a number of one-dimensional cobalt(II) thio­cyanate coordination compounds with different N-donor co-ligands that show slow relaxations of the magnetization which in some compounds can be traced back to the behaviour of single-chain magnets (SCM) (Wöhlert et al., 2014[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298-8310.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.],b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236-3245.],c[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149-14158.],). In the course of our systematic investigation of these materials, we became inter­ested in the monodentate ligand isonicotinamide, which can coordinate with the N atom to the CoII atoms, forming the desired one-dimensional compounds. However, instead of the expected chain compound, a discrete complex with additional solvate mol­ecules of composition [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H5OH was obtained in the current study and characterized by single-crystal X-ray diffraction.

2. Structural commentary

The asymmetric unit of the title compound consists of one CoII cation, two thio­cyanate ligands, six isonicotinamide mol­ecules (four coordinating, two non-coordinating) and one positionally disordered ethanol solvent mol­ecule. The CoII cation is coordinated by two terminal N-bonded thio­cyanate anions and four N-coordinating isonicotinamide ligands, forming a slightly distorted octa­hedron (Fig. 1[link]). Bond lengths [Co—N range: 2.074 (3)–2.185 (2) Å] and angles [N—Co—N range: 88.09 (9)–91.91 (10)° for cis and 177.27 (10)–178.32 (11)° for trans angles] are indicative for a slight distortion and are comparable with those in similar coordination compounds with CoII, thio­cyanate anions and N-bound co-ligands.

[Scheme 1]
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The positional disorder of the ethanol mol­ecule is shown by full and open bonds for the two orientations.

3. Supra­molecular features

In the crystal structure of the title compound, neighboring complexes are linked into chains extending along the a axis by inter­molecular N—H⋯O hydrogen-bonding inter­actions (Fig. 2[link], Table 1[link]). These chains are further linked into a three-dimensional network by inter­chain N—H⋯S hydrogen bonding between the thio­cyanate anions and the amide H atoms of neighboring complexes (Fig. 3[link], Table 1[link]). In this way, two types of channels are formed along the a axis. In the larger channels, the isonicotinamide solvent mol­ecules are embedded whereas the smaller channels are occupied by the disordered ethanol mol­ecules (Figs. 2[link] and 3[link]). The solvent mol­ecules are linked by O—H⋯O, N—H⋯O and N—H⋯N hydrogen-bonding inter­actions to the the isonicotinamide ligands that form the channels. Weak C—H⋯O and C—H⋯S inter­actions are also observed, consolidating the packing of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S1i 0.95 3.03 3.676 (3) 127
C14—H14⋯O31ii 0.95 2.62 3.532 (4) 162
C15—H15⋯O81ii 0.95 2.60 3.454 (7) 149
N12—H12A⋯N51 0.88 2.09 2.936 (4) 160
N12—H12B⋯O31ii 0.88 2.12 2.879 (4) 144
C25—H25⋯O41iii 0.95 2.47 3.100 (4) 124
N22—H22A⋯S2iv 0.88 2.60 3.439 (3) 160
N22—H22B⋯O61v 0.88 2.26 3.005 (4) 142
C32—H32⋯O11vi 0.95 2.47 3.399 (4) 165
N32—H32A⋯N61vii 0.88 2.14 2.965 (4) 156
N32—H32B⋯O11vi 0.88 2.14 2.952 (4) 153
C41—H41⋯O21iv 0.95 2.32 3.113 (4) 140
C42—H42⋯O61iv 0.95 2.63 3.547 (4) 163
N42—H42A⋯S1iii 0.88 2.68 3.523 (3) 161
N42—H42B⋯O61iv 0.88 2.22 3.063 (4) 159
N52—H52A⋯O41viii 0.88 2.09 2.921 (4) 157
N52—H52B⋯O61ii 0.88 2.06 2.882 (4) 155
C62—H62⋯S1ix 0.95 2.89 3.734 (3) 148
N62—H62A⋯O21 0.88 2.03 2.854 (4) 156
N62—H62B⋯O51vi 0.88 1.94 2.775 (4) 159
O71—H71⋯O31ii 0.84 2.20 3.020 (13) 167
O81—H81⋯O11vi 0.84 2.37 2.855 (7) 118
O81—H81⋯N32 0.84 2.58 3.062 (8) 118
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y, -z; (v) -x+2, -y, -z; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y, -z+1; (viii) -x+1, -y+2, -z+1; (ix) x, y-1, z.
[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines and the second orientation of the disordered ethanol mol­ecule is omitted for clarity.
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along the b axis. Inter­molecular hydrogen bonding is shown as dashed lines and the second orientation of the disordered ethanol mol­ecule is omitted for clarity.

4. Database survey

In the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) only five structures of coordination compounds with isonicotinamide and thio­cyanate as ligands are reported: two clathrates of nickel coordination polymers, in which the metal atoms are connected into chains by μ-1,3-bridging thio­cyanate ligands of which one contains 9,10-anthra­quinone and the other pyrene as clathrate mol­ecules (Sekiya et al., 2009[Sekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251-2253.]). Furthermore, a one-dimensional cadmium 9,10-di­chloro­anthracene-clathrate with bridging μ-1,3-thio­cyanate ligands between the metal atoms is reported (Sekiya & Nishikiori, 2005[Sekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076-1077.]), as well as a three-dimensional network consisting of cadmium cations with μ-1,3-bridging thio­cyanate ligands (Yang et al., 2001[Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.]), and finally one Cu coordination polymer in which Cu–NCS sheets are observed (Đaković et al., 2010[Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910-1917.]). In this context we have reported recently on a Zn complex in which the Zn cations are tetra­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two isonicotinamide ligands (Neumann et al., 2016[Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 922-925.]).

5. Synthesis and crystallization

Cobalt(II) thio­cyanate and isonicotinamide were obtained from Alfa Aesar and were used without further purification. Single crystals suitable for structure analysis were obtained by the reaction of 26.3 mg Co(NCS)2 (0.15 mmol) with 73.3 mg isonicotinamide (0.6 mmol) in ethanol (1.5 ml) after being allowed to stand for a few days at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—H, O—H and N—H hydrogen atoms were located in a difference map but were positioned with idealized geometry (methyl and O—H hydrogen atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C,N) (1.5 for methyl and O—H hydrogen atoms) using a riding model with C—H = 0.95 Å for aromatic, C—H = 0.98 Å for methyl, N—H = 0.88 Å and O— H = 0.84 Å, respectively. The ethanol mol­ecule was found to be disordered over two sets of sites and was refined with fixed occupation factors of 0.6 and 0.4, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H6O
Mr 953.92
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 9.1877 (4), 13.6779 (5), 20.3185 (8)
α, β, γ (°) 104.027 (3), 97.256 (3), 109.576 (3)
V3) 2273.12 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.42 × 0.35 × 0.25
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.637, 0.805
No. of measured, independent and observed [I > 2σ(I)] reflections 23938, 9885, 8035
Rint 0.044
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.142, 1.10
No. of reflections 9885
No. of parameters 606
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.39
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(isonicotinamide-κN)bis(thiocyanato-κN)cobalt(II)–isonicotinamide–ethanol (1/2/1) top
Crystal data top
[Co(NCS)2(C6H6N2O)4]·2C6H6N2O·C2H6OZ = 2
Mr = 953.92F(000) = 990
Triclinic, P1Dx = 1.394 Mg m3
a = 9.1877 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6779 (5) ÅCell parameters from 9885 reflections
c = 20.3185 (8) Åθ = 3.3–54.0°
α = 104.027 (3)°µ = 0.53 mm1
β = 97.256 (3)°T = 200 K
γ = 109.576 (3)°Block, red
V = 2273.12 (17) Å30.42 × 0.35 × 0.25 mm
Data collection top
Stoe IPDS-2
diffractometer
8035 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
θmax = 27.0°, θmin = 1.7°
Tmin = 0.637, Tmax = 0.805h = 1110
23938 measured reflectionsk = 1717
9885 independent reflectionsl = 2425
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0507P)2 + 3.0411P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
9885 reflectionsΔρmax = 0.75 e Å3
606 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.61592 (5)0.35492 (3)0.21691 (2)0.02592 (11)
N10.8459 (3)0.4542 (2)0.22065 (14)0.0336 (6)
C10.9652 (4)0.4826 (2)0.20375 (15)0.0304 (6)
S11.13121 (10)0.52353 (9)0.17835 (5)0.0467 (2)
N20.3879 (3)0.2543 (2)0.21571 (14)0.0361 (6)
C20.2534 (4)0.2022 (2)0.20567 (15)0.0307 (6)
S20.06525 (11)0.12699 (8)0.18989 (5)0.0497 (2)
N110.5978 (3)0.4880 (2)0.29563 (13)0.0297 (5)
C110.4652 (4)0.5085 (3)0.29031 (16)0.0357 (7)
H110.37710.46150.25300.043*
C120.4506 (4)0.5955 (3)0.33693 (17)0.0363 (7)
H120.35470.60800.33100.044*
C130.5767 (4)0.6641 (2)0.39224 (16)0.0302 (6)
C140.7152 (4)0.6439 (3)0.39744 (16)0.0335 (6)
H140.80480.68950.43440.040*
C150.7213 (4)0.5563 (2)0.34796 (16)0.0316 (6)
H150.81750.54420.35140.038*
C160.5541 (4)0.7534 (3)0.44494 (16)0.0335 (6)
O110.4191 (3)0.7524 (2)0.44465 (12)0.0401 (5)
N120.6808 (4)0.8311 (3)0.49009 (18)0.0560 (9)
H12A0.67010.88420.52110.067*
H12B0.77550.82970.48910.067*
N210.6386 (3)0.2271 (2)0.13538 (13)0.0307 (5)
C210.5924 (4)0.1226 (2)0.13461 (16)0.0312 (6)
H210.53110.10020.16650.037*
C220.6302 (4)0.0461 (2)0.08948 (16)0.0319 (6)
H220.59510.02710.09060.038*
C230.7195 (3)0.0771 (2)0.04279 (15)0.0282 (6)
C240.7621 (4)0.1837 (2)0.04143 (16)0.0344 (7)
H240.81980.20740.00880.041*
C250.7195 (4)0.2552 (2)0.08825 (16)0.0346 (7)
H250.74940.32800.08680.041*
C260.7649 (4)0.0066 (2)0.00419 (15)0.0309 (6)
O210.7255 (3)0.09870 (17)0.00063 (12)0.0410 (5)
N220.8473 (4)0.0237 (2)0.04995 (15)0.0406 (6)
H22A0.87520.02330.07810.049*
H22B0.87390.09070.05220.049*
N310.7061 (3)0.2929 (2)0.29549 (13)0.0303 (5)
C310.6391 (4)0.2855 (3)0.34932 (16)0.0313 (6)
H310.55100.30670.35190.038*
C320.6913 (4)0.2485 (3)0.40192 (16)0.0318 (6)
H320.64150.24600.44000.038*
C330.8176 (4)0.2152 (2)0.39785 (15)0.0300 (6)
C340.8853 (4)0.2197 (3)0.34056 (17)0.0365 (7)
H340.97020.19570.33530.044*
C350.8271 (4)0.2594 (3)0.29166 (16)0.0348 (7)
H350.87520.26340.25310.042*
C360.8902 (4)0.1787 (3)0.45389 (16)0.0335 (6)
O311.0142 (3)0.1628 (2)0.44981 (13)0.0444 (6)
N320.8179 (4)0.1652 (3)0.50476 (16)0.0490 (8)
H32A0.85750.14400.53790.059*
H32B0.72990.17740.50560.059*
N410.5176 (3)0.4126 (2)0.13757 (13)0.0306 (5)
C410.3896 (4)0.3416 (2)0.08872 (16)0.0353 (7)
H410.35940.26640.08440.042*
C420.2986 (4)0.3719 (3)0.04405 (16)0.0346 (7)
H420.20920.31830.00970.041*
C430.3392 (3)0.4808 (2)0.05005 (15)0.0279 (6)
C440.4744 (4)0.5551 (2)0.09968 (17)0.0325 (6)
H440.50790.63070.10460.039*
C450.5596 (4)0.5178 (2)0.14181 (16)0.0319 (6)
H450.65230.56940.17530.038*
C460.2421 (4)0.5236 (3)0.00764 (15)0.0313 (6)
O410.2731 (3)0.62182 (19)0.02170 (13)0.0428 (6)
N420.1222 (3)0.4499 (2)0.04437 (15)0.0390 (6)
H42A0.06200.47130.07010.047*
H42B0.10370.38010.05290.047*
N510.6258 (4)0.9683 (2)0.61213 (16)0.0460 (7)
C510.5455 (5)1.0340 (3)0.61289 (19)0.0459 (8)
H510.50171.03980.56980.055*
C520.5234 (4)1.0931 (3)0.67293 (18)0.0406 (7)
H520.46271.13700.67100.049*
C530.5905 (4)1.0883 (3)0.73626 (17)0.0344 (6)
C540.6730 (4)1.0196 (3)0.73642 (19)0.0397 (7)
H540.71941.01290.77880.048*
C550.6854 (4)0.9609 (3)0.6724 (2)0.0447 (8)
H550.73980.91280.67220.054*
C560.5693 (4)1.1562 (3)0.80151 (18)0.0405 (7)
O510.4479 (3)1.1764 (3)0.79954 (15)0.0655 (9)
N520.6846 (3)1.1943 (2)0.85867 (15)0.0406 (6)
H52A0.67621.23580.89730.049*
H52B0.76931.17790.85780.049*
N611.0108 (4)0.1655 (3)0.36132 (16)0.0445 (7)
C611.0359 (4)0.2371 (3)0.3113 (2)0.0429 (8)
H611.08120.28450.32450.052*
C621.0002 (4)0.2467 (3)0.24140 (19)0.0377 (7)
H621.02140.29880.20780.045*
C630.9329 (3)0.1788 (2)0.22133 (17)0.0317 (6)
C640.9026 (4)0.1056 (3)0.27224 (17)0.0355 (7)
H640.85380.05920.26020.043*
C650.9444 (4)0.1010 (3)0.34117 (19)0.0429 (8)
H650.92500.04940.37590.051*
C660.9038 (4)0.1824 (2)0.14579 (15)0.0292 (6)
O610.9960 (3)0.20254 (18)0.10943 (12)0.0367 (5)
N620.7810 (3)0.1622 (2)0.12232 (14)0.0365 (6)
H62A0.76000.16240.07880.044*
H62B0.71940.14840.15010.044*
C710.678 (2)0.5974 (12)0.5795 (11)0.106 (6)0.4
H71A0.56570.55180.57490.127*0.4
H71B0.73170.61400.62860.127*0.4
C720.742 (3)0.526 (3)0.5390 (12)0.095 (8)0.4
H72A0.72520.46270.55540.142*0.4
H72B0.68740.50280.48990.142*0.4
H72C0.85530.56570.54420.142*0.4
O710.6780 (16)0.6932 (13)0.5727 (8)0.122 (4)0.4
H710.77020.73350.57310.182*0.4
C810.9012 (14)0.5036 (8)0.5864 (8)0.111 (4)0.6
H81A1.01000.54580.58360.133*0.6
H81B0.89270.53360.63460.133*0.6
C820.802 (2)0.531 (2)0.5447 (13)0.137 (10)0.6
H82A0.83180.60970.55980.205*0.6
H82B0.81110.50680.49630.205*0.6
H82C0.69260.49450.54780.205*0.6
O810.8947 (8)0.4053 (5)0.5805 (5)0.096 (2)0.6
H810.82850.36190.54390.145*0.6
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0294 (2)0.02770 (19)0.02199 (19)0.01389 (16)0.00461 (15)0.00611 (14)
N10.0332 (14)0.0347 (13)0.0328 (14)0.0136 (11)0.0090 (11)0.0081 (11)
C10.0347 (16)0.0326 (15)0.0265 (14)0.0175 (13)0.0046 (12)0.0083 (12)
S10.0337 (4)0.0697 (6)0.0498 (5)0.0260 (4)0.0163 (4)0.0288 (5)
N20.0343 (14)0.0376 (14)0.0356 (14)0.0141 (12)0.0046 (11)0.0108 (11)
C20.0342 (16)0.0330 (15)0.0262 (14)0.0159 (13)0.0082 (12)0.0062 (12)
S20.0331 (4)0.0516 (5)0.0533 (5)0.0102 (4)0.0159 (4)0.0018 (4)
N110.0324 (13)0.0331 (13)0.0239 (12)0.0164 (11)0.0043 (10)0.0046 (10)
C110.0336 (16)0.0433 (17)0.0279 (15)0.0198 (14)0.0010 (12)0.0025 (13)
C120.0338 (16)0.0438 (17)0.0324 (16)0.0222 (14)0.0035 (13)0.0052 (13)
C130.0317 (15)0.0335 (15)0.0280 (14)0.0158 (12)0.0096 (12)0.0076 (12)
C140.0315 (15)0.0343 (15)0.0309 (15)0.0143 (13)0.0042 (12)0.0018 (12)
C150.0279 (14)0.0366 (15)0.0291 (15)0.0160 (12)0.0039 (12)0.0040 (12)
C160.0351 (16)0.0368 (16)0.0313 (15)0.0191 (13)0.0081 (13)0.0071 (13)
O110.0372 (12)0.0475 (13)0.0394 (13)0.0247 (11)0.0120 (10)0.0059 (10)
N120.0380 (16)0.0531 (18)0.059 (2)0.0232 (15)0.0022 (14)0.0179 (15)
N210.0387 (14)0.0302 (12)0.0260 (12)0.0180 (11)0.0053 (10)0.0077 (10)
C210.0348 (15)0.0316 (15)0.0303 (15)0.0142 (12)0.0100 (12)0.0114 (12)
C220.0349 (15)0.0271 (14)0.0331 (15)0.0111 (12)0.0062 (13)0.0098 (12)
C230.0326 (15)0.0275 (13)0.0221 (13)0.0129 (12)0.0001 (11)0.0043 (11)
C240.0494 (18)0.0315 (15)0.0247 (14)0.0163 (14)0.0112 (13)0.0099 (12)
C250.0534 (19)0.0260 (14)0.0271 (15)0.0166 (14)0.0117 (14)0.0095 (12)
C260.0344 (15)0.0293 (14)0.0258 (14)0.0125 (12)0.0018 (12)0.0047 (11)
O210.0643 (16)0.0288 (11)0.0333 (12)0.0224 (11)0.0129 (11)0.0078 (9)
N220.0535 (17)0.0324 (13)0.0403 (16)0.0196 (13)0.0216 (13)0.0089 (12)
N310.0322 (13)0.0379 (13)0.0251 (12)0.0176 (11)0.0065 (10)0.0110 (10)
C310.0301 (15)0.0414 (16)0.0276 (15)0.0181 (13)0.0084 (12)0.0123 (12)
C320.0330 (15)0.0416 (16)0.0261 (14)0.0173 (13)0.0089 (12)0.0140 (12)
C330.0306 (14)0.0342 (15)0.0263 (14)0.0144 (12)0.0052 (12)0.0084 (12)
C340.0385 (17)0.0498 (19)0.0305 (16)0.0278 (15)0.0095 (13)0.0117 (14)
C350.0370 (16)0.0507 (18)0.0258 (15)0.0248 (15)0.0125 (12)0.0133 (13)
C360.0348 (16)0.0392 (16)0.0290 (15)0.0186 (13)0.0046 (12)0.0096 (13)
O310.0434 (13)0.0684 (16)0.0370 (13)0.0367 (13)0.0098 (10)0.0210 (12)
N320.0450 (17)0.084 (2)0.0408 (16)0.0394 (17)0.0153 (13)0.0352 (17)
N410.0368 (13)0.0313 (12)0.0251 (12)0.0172 (11)0.0041 (10)0.0064 (10)
C410.0502 (19)0.0257 (14)0.0261 (15)0.0162 (13)0.0004 (13)0.0030 (11)
C420.0422 (17)0.0320 (15)0.0250 (14)0.0150 (13)0.0010 (13)0.0040 (12)
C430.0324 (14)0.0336 (14)0.0232 (13)0.0167 (12)0.0107 (11)0.0102 (11)
C440.0349 (16)0.0276 (14)0.0361 (16)0.0114 (12)0.0084 (13)0.0122 (12)
C450.0311 (15)0.0305 (14)0.0310 (15)0.0097 (12)0.0042 (12)0.0085 (12)
C460.0379 (16)0.0378 (16)0.0254 (14)0.0198 (13)0.0107 (12)0.0126 (12)
O410.0587 (15)0.0357 (12)0.0384 (13)0.0232 (11)0.0045 (11)0.0144 (10)
N420.0413 (15)0.0409 (15)0.0371 (15)0.0212 (13)0.0002 (12)0.0125 (12)
N510.0463 (17)0.0402 (16)0.0415 (17)0.0134 (13)0.0096 (14)0.0006 (13)
C510.052 (2)0.048 (2)0.0357 (18)0.0201 (17)0.0089 (16)0.0080 (15)
C520.0428 (18)0.0433 (18)0.0354 (17)0.0198 (15)0.0057 (14)0.0079 (14)
C530.0294 (15)0.0380 (16)0.0328 (16)0.0112 (13)0.0090 (12)0.0070 (13)
C540.0361 (17)0.0373 (17)0.0421 (18)0.0120 (14)0.0060 (14)0.0097 (14)
C550.0404 (18)0.0334 (17)0.054 (2)0.0139 (15)0.0079 (16)0.0049 (15)
C560.0352 (17)0.052 (2)0.0369 (17)0.0205 (15)0.0128 (14)0.0110 (15)
O510.0451 (15)0.109 (3)0.0438 (15)0.0458 (17)0.0086 (12)0.0024 (16)
N520.0380 (15)0.0519 (17)0.0300 (14)0.0213 (13)0.0050 (12)0.0045 (12)
N610.0411 (16)0.0533 (17)0.0388 (16)0.0142 (14)0.0039 (13)0.0217 (14)
C610.0440 (19)0.0446 (19)0.046 (2)0.0190 (16)0.0059 (16)0.0236 (16)
C620.0389 (17)0.0339 (16)0.0440 (18)0.0154 (14)0.0089 (14)0.0166 (14)
C630.0259 (14)0.0318 (15)0.0349 (16)0.0087 (12)0.0021 (12)0.0117 (12)
C640.0352 (16)0.0432 (17)0.0314 (16)0.0195 (14)0.0058 (13)0.0118 (13)
C650.0422 (18)0.051 (2)0.0350 (17)0.0186 (16)0.0071 (14)0.0112 (15)
C660.0314 (14)0.0265 (13)0.0289 (14)0.0106 (12)0.0056 (12)0.0081 (11)
O610.0379 (12)0.0409 (12)0.0349 (12)0.0194 (10)0.0093 (10)0.0109 (10)
N620.0386 (14)0.0471 (15)0.0296 (13)0.0219 (13)0.0083 (11)0.0135 (12)
C710.125 (14)0.056 (8)0.129 (15)0.016 (9)0.034 (12)0.038 (9)
C720.12 (2)0.091 (15)0.071 (12)0.022 (16)0.041 (14)0.036 (11)
O710.108 (9)0.155 (12)0.136 (11)0.059 (9)0.054 (9)0.077 (10)
C810.091 (7)0.065 (6)0.169 (13)0.017 (5)0.006 (8)0.051 (7)
C820.096 (13)0.088 (10)0.167 (17)0.029 (9)0.051 (11)0.070 (11)
O810.064 (4)0.073 (4)0.132 (7)0.014 (3)0.001 (4)0.023 (4)
Geometric parameters (Å, º) top
Co1—N12.074 (3)C41—H410.9500
Co1—N22.079 (3)C42—C431.378 (4)
Co1—N312.179 (2)C42—H420.9500
Co1—N112.181 (2)C43—C441.391 (4)
Co1—N412.183 (2)C43—C461.511 (4)
Co1—N212.185 (2)C44—C451.384 (4)
N1—C11.160 (4)C44—H440.9500
C1—S11.635 (3)C45—H450.9500
N2—C21.162 (4)C46—O411.227 (4)
C2—S21.631 (3)C46—N421.338 (4)
N11—C111.337 (4)N42—H42A0.8800
N11—C151.339 (4)N42—H42B0.8800
C11—C121.387 (4)N51—C551.319 (5)
C11—H110.9500N51—C511.338 (5)
C12—C131.385 (4)C51—C521.370 (5)
C12—H120.9500C51—H510.9500
C13—C141.387 (4)C52—C531.381 (5)
C13—C161.508 (4)C52—H520.9500
C14—C151.388 (4)C53—C541.391 (5)
C14—H140.9500C53—C561.499 (4)
C15—H150.9500C54—C551.393 (5)
C16—O111.236 (4)C54—H540.9500
C16—N121.325 (4)C55—H550.9500
N12—H12A0.8800C56—O511.235 (4)
N12—H12B0.8800C56—N521.330 (4)
N21—C251.336 (4)N52—H52A0.8800
N21—C211.343 (4)N52—H52B0.8800
C21—C221.384 (4)N61—C611.333 (5)
C21—H210.9500N61—C651.339 (5)
C22—C231.382 (4)C61—C621.379 (5)
C22—H220.9500C61—H610.9500
C23—C241.387 (4)C62—C631.384 (4)
C23—C261.512 (4)C62—H620.9500
C24—C251.383 (4)C63—C641.381 (5)
C24—H240.9500C63—C661.510 (4)
C25—H250.9500C64—C651.385 (5)
C26—O211.221 (4)C64—H640.9500
C26—N221.328 (4)C65—H650.9500
N22—H22A0.8800C66—O611.247 (4)
N22—H22B0.8800C66—N621.309 (4)
N31—C311.330 (4)N62—H62A0.8800
N31—C351.341 (4)N62—H62B0.8800
C31—C321.388 (4)C71—O711.351 (19)
C31—H310.9500C71—C721.44 (4)
C32—C331.386 (4)C71—H71A0.9900
C32—H320.9500C71—H71B0.9900
C33—C341.392 (4)C72—H72A0.9800
C33—C361.515 (4)C72—H72B0.9800
C34—C351.375 (4)C72—H72C0.9800
C34—H340.9500O71—H710.8400
C35—H350.9500C81—O811.300 (11)
C36—O311.238 (4)C81—C821.37 (2)
C36—N321.314 (4)C81—H81A0.9900
N32—H32A0.8800C81—H81B0.9900
N32—H32B0.8800C82—H82A0.9800
N41—C411.336 (4)C82—H82B0.9800
N41—C451.336 (4)C82—H82C0.9800
C41—C421.385 (4)O81—H810.8400
N1—Co1—N2178.32 (11)C45—N41—Co1123.6 (2)
N1—Co1—N3190.01 (10)N41—C41—C42123.4 (3)
N2—Co1—N3188.33 (10)N41—C41—H41118.3
N1—Co1—N1189.42 (10)C42—C41—H41118.3
N2—Co1—N1190.36 (10)C43—C42—C41119.2 (3)
N31—Co1—N1192.30 (9)C43—C42—H42120.4
N1—Co1—N4191.91 (10)C41—C42—H42120.4
N2—Co1—N4189.74 (10)C42—C43—C44117.8 (3)
N31—Co1—N41178.04 (10)C42—C43—C46123.6 (3)
N11—Co1—N4188.09 (9)C44—C43—C46118.5 (3)
N1—Co1—N2188.74 (10)C45—C44—C43119.3 (3)
N2—Co1—N2191.53 (10)C45—C44—H44120.4
N31—Co1—N2189.72 (9)C43—C44—H44120.4
N11—Co1—N21177.27 (10)N41—C45—C44123.0 (3)
N41—Co1—N2189.95 (9)N41—C45—H45118.5
C1—N1—Co1158.0 (2)C44—C45—H45118.5
N1—C1—S1178.5 (3)O41—C46—N42122.7 (3)
C2—N2—Co1169.1 (3)O41—C46—C43120.3 (3)
N2—C2—S2178.5 (3)N42—C46—C43117.0 (3)
C11—N11—C15117.6 (3)C46—N42—H42A120.0
C11—N11—Co1120.6 (2)C46—N42—H42B120.0
C15—N11—Co1121.68 (19)H42A—N42—H42B120.0
N11—C11—C12122.8 (3)C55—N51—C51117.6 (3)
N11—C11—H11118.6N51—C51—C52123.1 (3)
C12—C11—H11118.6N51—C51—H51118.4
C13—C12—C11119.5 (3)C52—C51—H51118.4
C13—C12—H12120.2C51—C52—C53119.2 (3)
C11—C12—H12120.2C51—C52—H52120.4
C12—C13—C14117.9 (3)C53—C52—H52120.4
C12—C13—C16118.5 (3)C52—C53—C54118.4 (3)
C14—C13—C16123.6 (3)C52—C53—C56118.5 (3)
C13—C14—C15119.1 (3)C54—C53—C56123.1 (3)
C13—C14—H14120.4C53—C54—C55117.8 (3)
C15—C14—H14120.4C53—C54—H54121.1
N11—C15—C14123.1 (3)C55—C54—H54121.1
N11—C15—H15118.5N51—C55—C54123.7 (3)
C14—C15—H15118.5N51—C55—H55118.1
O11—C16—N12122.0 (3)C54—C55—H55118.1
O11—C16—C13119.4 (3)O51—C56—N52122.9 (3)
N12—C16—C13118.6 (3)O51—C56—C53118.8 (3)
C16—N12—H12A120.0N52—C56—C53118.2 (3)
C16—N12—H12B120.0C56—N52—H52A120.0
H12A—N12—H12B120.0C56—N52—H52B120.0
C25—N21—C21117.2 (3)H52A—N52—H52B120.0
C25—N21—Co1118.8 (2)C61—N61—C65116.8 (3)
C21—N21—Co1123.5 (2)N61—C61—C62124.0 (3)
N21—C21—C22122.9 (3)N61—C61—H61118.0
N21—C21—H21118.5C62—C61—H61118.0
C22—C21—H21118.5C61—C62—C63118.6 (3)
C23—C22—C21119.4 (3)C61—C62—H62120.7
C23—C22—H22120.3C63—C62—H62120.7
C21—C22—H22120.3C64—C63—C62118.3 (3)
C22—C23—C24117.9 (3)C64—C63—C66122.2 (3)
C22—C23—C26118.7 (3)C62—C63—C66119.4 (3)
C24—C23—C26123.4 (3)C63—C64—C65119.0 (3)
C25—C24—C23119.0 (3)C63—C64—H64120.5
C25—C24—H24120.5C65—C64—H64120.5
C23—C24—H24120.5N61—C65—C64123.3 (3)
N21—C25—C24123.5 (3)N61—C65—H65118.4
N21—C25—H25118.3C64—C65—H65118.4
C24—C25—H25118.3O61—C66—N62123.4 (3)
O21—C26—N22122.2 (3)O61—C66—C63119.9 (3)
O21—C26—C23119.9 (3)N62—C66—C63116.7 (3)
N22—C26—C23117.9 (3)C66—N62—H62A120.0
C26—N22—H22A120.0C66—N62—H62B120.0
C26—N22—H22B120.0H62A—N62—H62B120.0
H22A—N22—H22B120.0O71—C71—C72127.2 (19)
C31—N31—C35117.4 (3)O71—C71—H71A105.5
C31—N31—Co1119.99 (19)C72—C71—H71A105.5
C35—N31—Co1122.6 (2)O71—C71—H71B105.5
N31—C31—C32123.3 (3)C72—C71—H71B105.5
N31—C31—H31118.3H71A—C71—H71B106.1
C32—C31—H31118.3C71—C72—H72A109.5
C33—C32—C31118.8 (3)C71—C72—H72B109.5
C33—C32—H32120.6H72A—C72—H72B109.5
C31—C32—H32120.6C71—C72—H72C109.5
C32—C33—C34118.2 (3)H72A—C72—H72C109.5
C32—C33—C36123.5 (3)H72B—C72—H72C109.5
C34—C33—C36118.3 (3)C71—O71—H71109.5
C35—C34—C33118.9 (3)O81—C81—C82125.4 (14)
C35—C34—H34120.6O81—C81—H81A106.0
C33—C34—H34120.6C82—C81—H81A106.0
N31—C35—C34123.4 (3)O81—C81—H81B106.0
N31—C35—H35118.3C82—C81—H81B106.0
C34—C35—H35118.3H81A—C81—H81B106.3
O31—C36—N32123.0 (3)C81—C82—H82A109.5
O31—C36—C33118.8 (3)C81—C82—H82B109.5
N32—C36—C33118.2 (3)H82A—C82—H82B109.5
C36—N32—H32A120.0C81—C82—H82C109.5
C36—N32—H32B120.0H82A—C82—H82C109.5
H32A—N32—H32B120.0H82B—C82—H82C109.5
C41—N41—C45117.3 (3)C81—O81—H81109.5
C41—N41—Co1118.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S1i0.953.033.676 (3)127
C14—H14···O31ii0.952.623.532 (4)162
C15—H15···O81ii0.952.603.454 (7)149
N12—H12A···N510.882.092.936 (4)160
N12—H12B···O31ii0.882.122.879 (4)144
C25—H25···O41iii0.952.473.100 (4)124
N22—H22A···S2iv0.882.603.439 (3)160
N22—H22B···O61v0.882.263.005 (4)142
C32—H32···O11vi0.952.473.399 (4)165
N32—H32A···N61vii0.882.142.965 (4)156
N32—H32B···O11vi0.882.142.952 (4)153
C41—H41···O21iv0.952.323.113 (4)140
C42—H42···O61iv0.952.633.547 (4)163
N42—H42A···S1iii0.882.683.523 (3)161
N42—H42B···O61iv0.882.223.063 (4)159
N52—H52A···O41viii0.882.092.921 (4)157
N52—H52B···O61ii0.882.062.882 (4)155
C62—H62···S1ix0.952.893.734 (3)148
N62—H62A···O210.882.032.854 (4)156
N62—H62B···O51vi0.881.942.775 (4)159
O71—H71···O31ii0.842.203.020 (13)167
O81—H81···O11vi0.842.372.855 (7)118
O81—H81···N320.842.583.062 (8)118
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+2, y, z; (vi) x+1, y+1, z+1; (vii) x+2, y, z+1; (viii) x+1, y+2, z+1; (ix) x, y1, z.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationĐaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.  Google Scholar
First citationGao, E.-Q., Liu, P.-P., Wang, Y.-Q., Yue, Q. & Wang, Q.-L. (2009). Chem. Eur. J. 15, 1217–1226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Y., Zhang, J. Y., Cheng, A.-L., Sun, Q., Gao, E.-Q. & Liu, C.-M. (2009). Inorg. Chem. 48, 6142–6151.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 922–925.  CSD CrossRef IUCr Journals Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationSekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationSekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251–2253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236–3245.  Web of Science CSD CrossRef Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310.  Web of Science PubMed Google Scholar
First citationYang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds