research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of non-centrosymmetric bis­­(4-meth­­oxy­benzyl­ammonium) tetra­chlorido­zincate

CROSSMARK_Color_square_no_text.svg

aLaboratoire des Sciences des Matériaux et d'Environnement, Faculté des Sciences, Université de Sfax, BP 1171, Route de Soukra, 3018 Sfax, Tunisia, bUnité de Recherche, Catalyse et Matériaux pour l'Environnement et les Procédés, URCMEP, (UR11ES85), Faculté des Sciences de Gabès, Campus Universitaire, 6072 Gabès, Tunisia, and cDipartimento di Chimica, Universitá di Parma, Parco Area delle Scienze 17A, I-43124 Parma, Italy
*Correspondence e-mail: gianluca.calestani@unipr.it

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 June 2016; accepted 21 June 2016; online 24 June 2016)

The structure of the title non-centrosymmetric organic–inorganic hybrid salt, (C8H12NO)2[ZnCl4], consists of two 4-meth­oxy­benzyl­ammonium cations sandwiched between anionic layers, formed by isolated tetra­chlorido­zincate tetra­hedra. The double layers extend parallel to the ac plane. The crystal packing is assured by Coulombic inter­actions and by a complex N—H⋯Cl and C—H⋯Cl hydrogen-bonding system mostly involving the positively charged ammonium groups and the chloride ligands of the isolated tetra­hedral [ZnCl4]2− units. One of the methyl­ene­ammonium groups is disordered over two sets of sites in a 0.48 (2):0.52 (2) ratio. The crystal investigated was twinned by non-merohedry with a twin component ratio of 0.738 (2):0.262 (2).

1. Chemical context

Non-linear optical (NLO) materials have received much attention in different research areas due to their potential applications in high-density optical data storage, electro-optical shutters, optical communication and signal processing (Maury & Le Bozec, 2005[Maury, O. & Le Bozec, H. (2005). Acc. Chem. Res. 38, 691-704.]; Green et al., 2011[Green, K. A., Cifuentes, M. P., Samoc, M. & Humphrey, M. G. (2011). Coord. Chem. Rev. 255, 2530-2541.]; Evans & Lin, 2002[Evans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.]). Mostly connected in the past to a few families of inorganic materials, the research was then extended to organic materials, generally salts of amino acids with organic acids, which are expected to have relatively strong NLO properties due to delocalized electrons at ππ* orbitals. More recently, organic–inorganic hybrid materials showing non-centrosymmetric structures started gaining attention in the field, since they are expected to offer enhanced properties, such as second harmonic generation efficiency, by combining the characteristic features of both organic and inorganic moieties. These materials are usually constituted by the crystal packing of inorganic anions (typically halogenidometalates) and organic ammonium cations ensured by hydrogen bonds and Coulombic inter­actions (Brammer et al., 2002[Brammer, L., Swearingen, J. K., Bruton, E. Z. & Sherwood, P. (2002). Proc. Nat. Acad. Sci. USA, 99, 4956-4961.]). Herein we report the synthesis and crystal structure of a new organic–inorganic hybrid compound, bis­(4-meth­oxy­benzyl­ammonium) tetra­chlorido­zincate. This salt crystallizes in a non-centrosymmetric space group and hence could be a potential candidate for second order non-linear optical properties.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the crystal structure consists of an isolated tetra­chlorido­zincate anion, [ZnCl4]2− and two 4-meth­oxy­benzyl­ammonium cations, (C8H12NO)+, as shown in Fig. 1[link]. One of the cations shows positional disorder of the methyl­ene­ammonium moiety. The lengths of the C—C, C—N and C—O bonds in the two independent 4-meth­oxy­benzyl­ammonium cations are in accordance with corresponding distances found in the literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The ZnII atom is tetra­hedrally coordinated by four chloride ligands with Zn—Cl bond lengths ranging from 2.249 (2) to 2.289 (2) Å and Cl—Zn—Cl bond angles varying between 107.25 (8) and 112.41 (10)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Only the major component of the disordered methyl­ene­ammonium group is shown for clarity.

3. Supra­molecular features

The crystal structure consist of 4-meth­oxy­benzyl­ammonium cations sandwiched between tetra­chlorido­zincate layers extending parallel to the ac plane, as shown in Fig. 2[link]. The cationic units are linked into a two-dimensional network by weak C—H⋯π inter­actions (Table 1[link]). The crystal packing is assured by a complex hydrogen-bonding system, mostly involving the positively charged ammonium groups and the chloride ligands of the isolated tetra­hedral [ZnCl4]2− units (Table 1[link]), which reinforce the Coulombic inter­actions, as depicted in Fig. 3[link]. Whereas the N2 atom is blocked by a very efficient hydrogen-bonding system involving five donor⋯acceptor distances ranging from 3.279 (8) to 3.452 (7) Å, the N1 ammonium group is disordered over two sets of sites as a consequence of a less efficient hydrogen bonding.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C1–C6 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A1⋯Cl3 0.89 2.32 3.19 (2) 164
N1A—H1A2⋯Cl2i 0.89 2.75 3.26 (2) 118
N1A—H1A3⋯Cl4i 0.89 2.64 3.34 (2) 137
C8A—H8A2⋯Cl4ii 0.97 2.77 3.72 (2) 168
N1B—H1B1⋯Cl4ii 0.89 2.78 3.61 (3) 154
N1B—H1B2⋯Cl2i 0.89 2.66 3.33 (2) 133
N1B—H1B3⋯Cl3 0.89 2.80 3.45 (2) 131
C8B—H8B2⋯Cl1ii 0.97 2.82 3.60 (2) 138
N2—H1N⋯Cl1iii 0.89 2.65 3.364 (7) 138
N2—H1N⋯Cl2iii 0.89 2.75 3.336 (7) 125
N2—H2N⋯Cl3iv 0.89 2.45 3.279 (8) 156
N2—H3N⋯Cl1iv 0.89 2.72 3.331 (7) 127
N2—H3N⋯Cl2 0.89 2.71 3.452 (7) 141
C2—H2⋯Cg1 0.93 2.62 3.432 (8) 146
C6—H6⋯Cg2i 0.93 2.86 3.579 (8) 135
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) x, y+1, z.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the b axis, showing the alternate stacking, along the c axis, of organic and inorganic layers.
[Figure 3]
Figure 3
Partial packing diagram of the title compound approximately viewed along the b axis, showing the hydrogen-bonding network (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; last update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related compounds showed the occurrence of the cadmium analogue of formula (C8H12NO)2[CdCl4] (Kefi et al., 2011[Kefi, R., Maher, E. G., Zeller, M., Lefebvre, F. & Ben Nasr, C. (2011). Private communication (refcode XASKEJ). CCDC, Cambridge, England.]), in which the coordination sphere of the metal is octa­hedral, giving rise to the formation of perovskite-like edge-sharing units that built up two-dimensional anionic layers parallel to the bc plane.

5. Synthesis and crystallization

Single crystals of (C8H12NO)2[ZnCl4] were synthesized starting from 4-meth­oxy­benzyl­amine (Sigma–Aldrich, 98%), zinc chloride (Sigma–Aldrich, 98%) and HCl (37%), which were weighted in the stoichiometric proportion conforming to the equation reaction:

2 C8H11NO + 2 HCl + ZnCl2 → (C8H12NO)2[ZnCl4]

After mixing the reagents in 50 ml of water and stirring at room temperature for more 3 h, the resulting solution was placed in a Petri dish and allowed to evaporate slowly. Single crystals suitable for X-ray diffraction were obtained within a week (yield: 75%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystals of bis­(4-meth­oxy­benzyl­ammonium) tetra­chlorido­zincate were systematically affected by non-merohedral polar twinning. The ratio of the twin components of the crystal selected for X-ray analysis was refined to 0.738 (2):0.262 (2). One methyl­ene­ammonium group was found to be disordered over two sets of sites with a refined occupancy ratio of 0.52 (2):0.48 (2). During the refinement of the disordered group, the C—C and C—N bond lengths were constrained to be 1.50 (2) and 1.47 (1) Å, respectively. EADP and ISOR restraints (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) were also applied. All H atoms were placed geometrically and refined using a riding-model approximation, with C—H = 0.93–0.97 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, N) for methyl and ammonium H atoms, for which a rotating model was applied.

Table 2
Experimental details

Crystal data
Chemical formula (C8H12NO)2[ZnCl4]
Mr 483.54
Crystal system, space group Monoclinic, P21
Temperature (K) 294
a, b, c (Å) 10.6849 (10), 7.4540 (7), 13.3961 (12)
β (°) 93.482 (2)
V3) 1064.97 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.67
Crystal size (mm) 0.31 × 0.29 × 0.11
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.604, 0.827
No. of measured, independent and observed [I > 2σ(I)] reflections 2132, 2132, 1932
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.08
No. of reflections 2132
No. of parameters 239
No. of restraints 29
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.44
Absolute structure No quotients, so Flack parameter determined by classical intensity fit
Absolute structure parameter 0.09 (2)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and SCHAKAL (Keller, 1999[Keller, E. (1999). SCHAKAL. University of Freiburg, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012), VESTA (Momma & Izumi, 2011) and SCHAKAL (Keller, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Bis(4-methoxybenzylammonium) tetrachloridozincate top
Crystal data top
(C8H12NO)2[ZnCl4]F(000) = 496
Mr = 483.54Dx = 1.508 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.6849 (10) ÅCell parameters from 196 reflections
b = 7.4540 (7) Åθ = 7.3–17.5°
c = 13.3961 (12) ŵ = 1.67 mm1
β = 93.482 (2)°T = 294 K
V = 1064.97 (17) Å3Prism, colourless
Z = 20.31 × 0.29 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
1932 reflections with I > 2σ(I)
ω scanθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.604, Tmax = 0.827k = 09
2132 measured reflectionsl = 016
2132 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2617P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.42 e Å3
2132 reflectionsΔρmin = 0.44 e Å3
239 parametersAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
29 restraintsAbsolute structure parameter: 0.09 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.23731 (7)0.06114 (12)0.04066 (6)0.0413 (2)
Cl10.35118 (19)0.1525 (3)0.11156 (13)0.0464 (5)
Cl20.3173 (2)0.3349 (3)0.08077 (16)0.0515 (5)
Cl30.2564 (2)0.0169 (3)0.12644 (14)0.0541 (5)
Cl40.03137 (18)0.0515 (5)0.09460 (17)0.0714 (7)
O10.2318 (5)0.1370 (9)0.5695 (4)0.0585 (16)
O20.3732 (5)0.6144 (8)0.5857 (4)0.0541 (15)
N1A0.039 (2)0.010 (3)0.1458 (15)0.060 (4)0.52 (2)
H1A10.03980.01840.13450.090*0.52 (2)
H1A20.08630.00230.08890.090*0.52 (2)
H1A30.04180.12140.16930.090*0.52 (2)
C8A0.087 (2)0.115 (3)0.2197 (13)0.051 (4)0.52 (2)
H8A10.17410.08890.22880.062*0.52 (2)
H8A20.08160.23700.19450.062*0.52 (2)
N1B0.062 (2)0.077 (4)0.1398 (13)0.060 (4)0.48 (2)
H1B10.02690.18350.13030.090*0.48 (2)
H1B20.12270.05810.09260.090*0.48 (2)
H1B30.00390.00840.13650.090*0.48 (2)
C8B0.1142 (17)0.073 (4)0.2386 (12)0.051 (4)0.48 (2)
H8B10.15410.04220.24830.062*0.48 (2)
H8B20.17750.16560.24210.062*0.48 (2)
N20.4066 (6)0.6363 (10)0.1058 (5)0.0491 (16)
H1N0.48690.61500.12360.074*
H2N0.38970.75160.11580.074*
H3N0.39160.60990.04140.074*
C10.1468 (6)0.1175 (9)0.4901 (5)0.0369 (16)
C20.1783 (7)0.2035 (10)0.4051 (5)0.0424 (18)
H20.25350.26630.40480.051*
C30.0987 (8)0.1978 (11)0.3188 (6)0.0456 (18)
H30.11990.25720.26120.055*
C40.0124 (7)0.1024 (10)0.3201 (5)0.0409 (18)
C50.0412 (7)0.0166 (11)0.4056 (6)0.049 (2)
H50.11570.04770.40610.059*
C60.0374 (7)0.0223 (10)0.4917 (6)0.047 (2)
H60.01620.03720.54930.057*
C70.2037 (11)0.0551 (19)0.6615 (7)0.085 (3)
H7A0.12080.08920.67810.128*
H7B0.26340.09390.71350.128*
H7C0.20780.07290.65490.128*
C110.3734 (7)0.5951 (10)0.4849 (5)0.0393 (16)
C120.4613 (7)0.4999 (11)0.4364 (6)0.0423 (18)
H120.52960.44870.47210.051*
C130.4466 (7)0.4808 (12)0.3325 (6)0.0450 (19)
H130.50500.41380.29970.054*
C140.3470 (6)0.5594 (13)0.2768 (5)0.0440 (16)
C150.2628 (7)0.6580 (10)0.3274 (6)0.0472 (18)
H150.19670.71400.29120.057*
C160.2727 (8)0.6769 (10)0.4303 (6)0.0468 (18)
H160.21340.74270.46290.056*
C170.4625 (10)0.5122 (14)0.6466 (6)0.070 (3)
H17A0.45410.38730.62990.105*
H17B0.44730.52920.71580.105*
H17C0.54580.55170.63460.105*
C180.3266 (7)0.5243 (12)0.1665 (6)0.054 (2)
H18A0.34370.39890.15350.065*
H18B0.23940.54700.14610.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0397 (4)0.0455 (4)0.0384 (4)0.0002 (5)0.0005 (4)0.0012 (4)
Cl10.0524 (11)0.0456 (9)0.0416 (9)0.0014 (9)0.0070 (9)0.0042 (9)
Cl20.0516 (11)0.0415 (10)0.0607 (11)0.0008 (10)0.0015 (10)0.0091 (9)
Cl30.0695 (12)0.0560 (13)0.0369 (9)0.0119 (11)0.0042 (10)0.0018 (8)
Cl40.0364 (9)0.115 (2)0.0623 (12)0.0014 (15)0.0031 (9)0.0049 (16)
O10.056 (3)0.076 (4)0.042 (3)0.006 (3)0.014 (3)0.001 (3)
O20.063 (3)0.056 (4)0.044 (3)0.002 (3)0.007 (3)0.004 (3)
N1A0.056 (7)0.077 (12)0.047 (4)0.011 (9)0.007 (5)0.003 (8)
C8A0.047 (6)0.055 (7)0.052 (6)0.001 (5)0.002 (5)0.004 (5)
N1B0.056 (7)0.077 (12)0.047 (4)0.011 (9)0.007 (5)0.003 (8)
C8B0.047 (6)0.055 (7)0.052 (6)0.001 (5)0.002 (5)0.004 (5)
N20.051 (4)0.058 (4)0.038 (3)0.006 (3)0.006 (3)0.007 (3)
C10.033 (4)0.037 (4)0.041 (4)0.003 (3)0.004 (3)0.001 (3)
C20.037 (4)0.043 (4)0.048 (4)0.010 (3)0.010 (3)0.006 (3)
C30.058 (5)0.048 (4)0.031 (4)0.005 (4)0.008 (3)0.001 (3)
C40.041 (4)0.040 (5)0.041 (4)0.003 (3)0.004 (3)0.008 (3)
C50.034 (4)0.044 (5)0.069 (5)0.010 (3)0.005 (4)0.002 (4)
C60.052 (5)0.038 (4)0.053 (4)0.000 (4)0.014 (4)0.010 (3)
C70.105 (8)0.086 (7)0.062 (5)0.012 (9)0.016 (6)0.013 (7)
C110.044 (4)0.034 (4)0.041 (4)0.010 (4)0.007 (3)0.002 (3)
C120.036 (4)0.038 (4)0.052 (5)0.002 (3)0.004 (4)0.005 (4)
C130.038 (4)0.047 (4)0.052 (5)0.000 (4)0.016 (4)0.000 (4)
C140.043 (4)0.042 (4)0.048 (4)0.006 (5)0.010 (3)0.007 (4)
C150.042 (4)0.043 (4)0.057 (4)0.004 (4)0.007 (4)0.010 (4)
C160.051 (4)0.039 (4)0.052 (4)0.006 (4)0.015 (4)0.002 (3)
C170.093 (7)0.071 (7)0.045 (5)0.000 (6)0.004 (5)0.001 (5)
C180.048 (4)0.067 (6)0.047 (4)0.016 (4)0.002 (4)0.006 (4)
Geometric parameters (Å, º) top
Zn1—Cl12.249 (2)C2—C31.393 (11)
Zn1—Cl32.2595 (19)C2—H20.9300
Zn1—Cl42.275 (2)C3—C41.385 (11)
Zn1—Cl22.289 (2)C3—H30.9300
O1—C11.363 (8)C4—C51.363 (11)
O1—C71.424 (11)C5—C61.385 (11)
O2—C111.359 (9)C5—H50.9300
O2—C171.435 (11)C6—H60.9300
N1A—C8A1.473 (10)C7—H7A0.9600
N1A—H1A10.8900C7—H7B0.9600
N1A—H1A20.8900C7—H7C0.9600
N1A—H1A30.8900C11—C121.371 (11)
C8A—C41.523 (15)C11—C161.403 (11)
C8A—H8A10.9700C12—C131.398 (11)
C8A—H8A20.9700C12—H120.9300
N1B—C8B1.469 (10)C13—C141.392 (11)
N1B—H1B10.8900C13—H130.9300
N1B—H1B20.8900C14—C151.372 (11)
N1B—H1B30.8900C14—C181.504 (10)
C8B—C41.510 (15)C15—C161.384 (11)
C8B—H8B10.9700C15—H150.9300
C8B—H8B20.9700C16—H160.9300
N2—C181.474 (10)C17—H17A0.9600
N2—H1N0.8900C17—H17B0.9600
N2—H2N0.8900C17—H17C0.9600
N2—H3N0.8900C18—H18A0.9700
C1—C21.366 (10)C18—H18B0.9700
C1—C61.369 (10)
Cl1—Zn1—Cl3107.25 (8)C5—C4—C3119.2 (7)
Cl1—Zn1—Cl4112.41 (10)C5—C4—C8B110.5 (11)
Cl3—Zn1—Cl4109.72 (9)C3—C4—C8B130.3 (11)
Cl1—Zn1—Cl2108.22 (8)C5—C4—C8A129.8 (11)
Cl3—Zn1—Cl2110.50 (9)C3—C4—C8A110.9 (11)
Cl4—Zn1—Cl2108.73 (11)C4—C5—C6122.0 (7)
C1—O1—C7117.6 (7)C4—C5—H5119.0
C11—O2—C17117.9 (6)C6—C5—H5119.0
C8A—N1A—H1A1109.5C1—C6—C5118.5 (7)
C8A—N1A—H1A2109.5C1—C6—H6120.7
H1A1—N1A—H1A2109.5C5—C6—H6120.7
C8A—N1A—H1A3109.5O1—C7—H7A109.5
H1A1—N1A—H1A3109.5O1—C7—H7B109.5
H1A2—N1A—H1A3109.5H7A—C7—H7B109.5
N1A—C8A—C4111.8 (14)O1—C7—H7C109.5
N1A—C8A—H8A1109.3H7A—C7—H7C109.5
C4—C8A—H8A1109.3H7B—C7—H7C109.5
N1A—C8A—H8A2109.3O2—C11—C12124.6 (7)
C4—C8A—H8A2109.3O2—C11—C16115.1 (6)
H8A1—C8A—H8A2107.9C12—C11—C16120.3 (6)
C8B—N1B—H1B1109.5C11—C12—C13119.0 (7)
C8B—N1B—H1B2109.5C11—C12—H12120.5
H1B1—N1B—H1B2109.5C13—C12—H12120.5
C8B—N1B—H1B3109.5C14—C13—C12121.7 (7)
H1B1—N1B—H1B3109.5C14—C13—H13119.1
H1B2—N1B—H1B3109.5C12—C13—H13119.1
N1B—C8B—C4110.6 (15)C15—C14—C13117.7 (7)
N1B—C8B—H8B1109.5C15—C14—C18121.2 (7)
C4—C8B—H8B1109.5C13—C14—C18120.9 (7)
N1B—C8B—H8B2109.5C14—C15—C16122.3 (8)
C4—C8B—H8B2109.5C14—C15—H15118.9
H8B1—C8B—H8B2108.1C16—C15—H15118.9
C18—N2—H1N109.5C15—C16—C11119.0 (7)
C18—N2—H2N109.5C15—C16—H16120.5
H1N—N2—H2N109.5C11—C16—H16120.5
C18—N2—H3N109.5O2—C17—H17A109.5
H1N—N2—H3N109.5O2—C17—H17B109.5
H2N—N2—H3N109.5H17A—C17—H17B109.5
O1—C1—C2114.5 (6)O2—C17—H17C109.5
O1—C1—C6124.9 (7)H17A—C17—H17C109.5
C2—C1—C6120.6 (7)H17B—C17—H17C109.5
C1—C2—C3120.6 (7)N2—C18—C14112.9 (7)
C1—C2—H2119.7N2—C18—H18A109.0
C3—C2—H2119.7C14—C18—H18A109.0
C4—C3—C2119.1 (7)N2—C18—H18B109.0
C4—C3—H3120.5C14—C18—H18B109.0
C2—C3—H3120.5H18A—C18—H18B107.8
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C1–C6 rings, respectively
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···Cl30.892.323.19 (2)164
N1A—H1A2···Cl2i0.892.753.26 (2)118
N1A—H1A3···Cl4i0.892.643.34 (2)137
C8A—H8A2···Cl4ii0.972.773.72 (2)168
N1B—H1B1···Cl4ii0.892.783.61 (3)154
N1B—H1B2···Cl2i0.892.663.33 (2)133
N1B—H1B3···Cl30.892.803.45 (2)131
C8B—H8B2···Cl1ii0.972.823.60 (2)138
N2—H1N···Cl1iii0.892.653.364 (7)138
N2—H1N···Cl2iii0.892.753.336 (7)125
N2—H2N···Cl3iv0.892.453.279 (8)156
N2—H3N···Cl1iv0.892.723.331 (7)127
N2—H3N···Cl20.892.713.452 (7)141
C2—H2···Cg10.932.623.432 (8)146
C6—H6···Cg2i0.932.863.579 (8)135
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1/2, z; (iii) x+1, y+1/2, z; (iv) x, y+1, z.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationBrammer, L., Swearingen, J. K., Bruton, E. Z. & Sherwood, P. (2002). Proc. Nat. Acad. Sci. USA, 99, 4956–4961.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreen, K. A., Cifuentes, M. P., Samoc, M. & Humphrey, M. G. (2011). Coord. Chem. Rev. 255, 2530–2541.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKefi, R., Maher, E. G., Zeller, M., Lefebvre, F. & Ben Nasr, C. (2011). Private communication (refcode XASKEJ). CCDC, Cambridge, England.  Google Scholar
First citationKeller, E. (1999). SCHAKAL. University of Freiburg, Germany.  Google Scholar
First citationMaury, O. & Le Bozec, H. (2005). Acc. Chem. Res. 38, 691–704.  CrossRef PubMed CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds