research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 273-275

Crystal structure of bis­­(1,4-di­aza­bi­cyclo­[2.2.2]octan-1-ium) thio­sulfate dihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal, and bDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 January 2016; accepted 25 January 2016; online 3 February 2016)

The crystal structure of the hydrated title salt, 2C6H13N2+·S2O32−·2H2O, contains a centrosymmetric cyclic motif of eight hydrogen-bonded mol­ecular subunits. Two DABCOH+ cations (DABCO = 1,4-di­aza­bicyclo­[2.2.2]octa­ne) are linked to two water mol­ecules and two thio­sulfate anions via O—H⋯N and O—H⋯O hydrogen bonds, respectively. Two other water mol­ecules close the cyclic motif through O—H⋯O contacts to the first two water mol­ecules and to the two thio­sulfate anions. A second pair of DABCOH+ cations is N—H⋯O hydrogen bonded to the two anions and is pendant to the ring. Adjacent cyclic motifs are bridged into a block-like arrangement extending along [100] through O—H⋯O inter­actions involving the second pair of water mol­ecules and neighbouring thio­sulfate anions.

1. Chemical context

The title thio­sulfate was isolated accidentally when thio­acetamide was mixed in ethanol with DABCO (1,4-di­aza­bicyclo­[2.2.2]octa­ne), leading to the formation of the thio­sulfate anion in situ.

[Scheme 1]

2. Structural commentary

The asymmetric unit (Fig. 1[link]) consists of one thio­sulfate anion, two monoprotonated DABCOH+ cations and two water mol­ecules. The thio­sulfate anion exhibits approximate C3v symmetry. However, in the crystal it has C1 symmetry with S—O distances in the range 1.4688 (8) to 1.4898 (8) Å and an S—S bond length of 2.0047 (4) Å, and O—S—O and S—S—O angles ranging from 107.47 (4) to 110.48 (5)°. In both DABCOH+ cations, the three N—C bonds involving the protonated N atom are elongated [mean value 1.499 (2) Å] compared to the three N—C bonds involving the non-protonated N atoms [mean value 1.472 (4) Å].

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

The thio­sulfate anion is linked via charge-assisted N—H⋯O hydrogen bonds to two DABCOH+ cations. The third oxygen atom (O2) of the anion acts as a hydrogen-bond acceptor for one of the water mol­ecules (O4). The second hydrogen bond involving this water mol­ecule is directed towards a symmetry-related thio­sulfate anion. The second water mol­ecule (O5) is the donor of one O—H⋯O hydrogen bond to the other water mol­ecule and of one N—H⋯O hydrogen bond to one of the DABCOH+ cations. Numerical details of the hydrogen-bonding inter­actions are given in Table 1[link]. This arrangement leads to the formation of a centrosymmetric cyclic motif consisting of eight hydrogen-bonded mol­ecules with two pendant DABCOH+ cations (Fig. 2[link]). Adjacent cyclic motifs are bridged through O4—H44⋯O3 contacts into supra­molecular blocks running along [100] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.887 (17) 1.861 (17) 2.7380 (12) 169.6 (15)
N3—H3⋯O3 0.850 (18) 2.030 (17) 2.8003 (12) 150.4 (15)
O4—H4C⋯O2i 0.79 (2) 2.02 (2) 2.8121 (13) 173.4 (18)
O4—H4D⋯O3 0.81 (2) 2.04 (2) 2.8511 (13) 175.1 (18)
O5—H5C⋯N4ii 0.85 (2) 2.10 (2) 2.9273 (13) 163.9 (19)
O5—H5D⋯O4 0.91 (2) 1.94 (2) 2.8449 (14) 173.2 (19)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
View of the content of one unit cell, showing the hydrogen-bonded macrocycle made up from the asymmetric unit and its inversion-symmetry-related counterpart. H atoms not involved in hydrogen bonding (black dotted lines) are omitted for clarity.
[Figure 3]
Figure 3
View of three successive hydrogen-bonded cycles displayed in red, blue and green. Pendant DABCOH+ cations are shown in orange. H atoms not involved in hydrogen bonding (black dotted lines) are omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for salts with isolated thio­sulfate anions returned 25 records with ten of them featuring a metal complex for the cationic part. Entries with simple protonated amine functionalities include structures with tert-butyl­ammonium (Okuniewski et al., 2013[Okuniewski, A., Chojnacki, J., Baranowska, K. & Becker, B. (2013). Acta Cryst. C69, 195-198.]) and its hydrate (Dabrowska & Chojnacki, 2014[Dabrowska, A. & Chojnacki, J. (2014). Z. Kristallogr. 229, 2194-4946.]), cyclo­hexyl­ammonium (Dabrowska & Chojnacki, 2014[Dabrowska, A. & Chojnacki, J. (2014). Z. Kristallogr. 229, 2194-4946.]), tetra­methyl­ammonium tetra­hydrate (Yang & Ng, 2011[Yang, Y.-X. & Ng, S. W. (2011). Acta Cryst. E67, o1664.]), tetra­ethyl­ammonium dihydrate (Leyten et al., 1988[Leyten, W., Rettig, S. J. & Trotter, J. (1988). Acta Cryst. C44, 1749-1751.]), iso­propyl­ammonium (Okuniewski et al., 2013[Okuniewski, A., Chojnacki, J., Baranowska, K. & Becker, B. (2013). Acta Cryst. C69, 195-198.]), piperazinium (Srinivasan et al., 2011[Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55-61.]) and adamantanaminium (Jiang et al., 1998[Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998). J. Mater. Chem. 8, 733-741.]). The thio­sulfate anion has also been encapsulated in protonated aza­cryptands ligands (Maubert et al., 2001[Maubert, B. M., Nelson, J., McKee, V., Town, R. M. & Pál, I. (2001). J. Chem. Soc. Dalton Trans. pp. 1395-1397.]; Nelson et al., 2004[Nelson, J., Nieuwenhuyzen, M., Pàl, I. & Town, R. M. (2004). Dalton Trans. pp. 2303-2308.]).

5. Synthesis and crystallization

Crystals suitable for a single-crystal X-ray diffraction study were isolated from a clear ethano­lic solution of thio­acetamide and DABCO in an equimolar ratio.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located from Fourier difference maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula 2C6H13N2+·S2O32−·2H2O
Mr 374.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.5063 (2), 10.5966 (3), 13.2066 (4)
α, β, γ (°) 105.951 (1), 92.065 (1), 96.550 (1)
V3) 867.59 (5)
Z 2
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 1.98
Crystal size (mm) 0.51 × 0.18 × 0.06
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.170, 0.311
No. of measured, independent and observed [I > 2σ(I)] reflections 24479, 3965, 3865
Rint 0.040
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.07
No. of reflections 3965
No. of parameters 328
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.45, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The title thio­sulfate was isolated accidentally when thio­acetamide was mixed in ethanol with DABCO (1,4-di­aza­bicyclo­[2.2.2]o­ctane), leading to the formation of the thio­sulfate anion in situ.

Structural commentary top

The asymmetric unit (Fig. 1) consists of one thio­sulfate anion, two monoprotonated DABCOH+ cations and two water molecules. The thio­sulfate anion exhibits approximate C3v symmetry. However, in the crystal it has C1 symmetry with S—O distances in the range 1.4688 (8) to 1.4898 (8) Å and an S—S bond length of 2.0047 (4) Å, and O—S—O and S—S—O angles ranging from 107.47 (4) to 110.48 (5)°. In both DABCOH+ cations, the three N—C bonds involving the protonated N atom are elongated [mean value 1.499 (2) Å] compared to the three N—C bonds involving the non-protonated N atoms [mean value 1.472 (4) Å].

Supra­molecular features top

The thio­sulfate anion is linked via charge-assisted N—H···O hydrogen bonds to two DABCOH+ cations. The third oxygen atom (O2) of the anion acts as a hydrogen-bond acceptor for one of the water molecules (O4). The second hydrogen bond involving this water molecule is directed towards a symmetry-related thio­sulfate anion. The second water molecule (O5) is the donor of one O—H···O hydrogen bond to the other water molecule and of one N—H···O hydrogen bond to one of the DABCOH+ cations. Numerical details of the hydrogen-bonding inter­actions are given in Table 1. This arrangement leads to the formation of a centrosymmetric cyclic motif consisting of eight hydrogen-bonded molecules with two pendant DABCOH+ cations (Fig. 2). Adjacent cyclic motifs are bridged through O4—H44···O3 contacts into supra­molecular blocks running along [100] (Fig. 3).

Database survey top

A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014) for salts with isolated thio­sulfate anions returned 25 records with ten of them featuring a metal complex for the cationic part. Entries with simple protonated amine functionalities include structures with tert-butyl­ammonium (Okuniewski et al., 2013) and its hydrate (Dabrowska & Chojnacki, 2014), cyclo­hexyl­ammonium (Dabrowska & Chojnacki, 2014), tetra­methyl­ammonium tetra­hydrate (Yang & Ng, 2011), tetra­ethyl­ammonium dihydrate (Leyten et al., 1988), iso­propyl­ammonium (Okuniewski et al., 2013), piperazinium (Srinivasan et al., 2011) and adamantanaminium (Jiang et al., 1998). The thio­sulfate anion has also been encapsulated in protonated aza­cryptands ligands (Maubert et al., 2001; Nelson et al., 2004).

Synthesis and crystallization top

Crystals suitable for a single-crystal X-ray diffraction study were isolated from a clear ethano­lic solution of thio­acetamide and DABCO in an equimolar ratio.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were located from Fourier difference maps and were freely refined.

Structure description top

The title thio­sulfate was isolated accidentally when thio­acetamide was mixed in ethanol with DABCO (1,4-di­aza­bicyclo­[2.2.2]o­ctane), leading to the formation of the thio­sulfate anion in situ.

The asymmetric unit (Fig. 1) consists of one thio­sulfate anion, two monoprotonated DABCOH+ cations and two water molecules. The thio­sulfate anion exhibits approximate C3v symmetry. However, in the crystal it has C1 symmetry with S—O distances in the range 1.4688 (8) to 1.4898 (8) Å and an S—S bond length of 2.0047 (4) Å, and O—S—O and S—S—O angles ranging from 107.47 (4) to 110.48 (5)°. In both DABCOH+ cations, the three N—C bonds involving the protonated N atom are elongated [mean value 1.499 (2) Å] compared to the three N—C bonds involving the non-protonated N atoms [mean value 1.472 (4) Å].

The thio­sulfate anion is linked via charge-assisted N—H···O hydrogen bonds to two DABCOH+ cations. The third oxygen atom (O2) of the anion acts as a hydrogen-bond acceptor for one of the water molecules (O4). The second hydrogen bond involving this water molecule is directed towards a symmetry-related thio­sulfate anion. The second water molecule (O5) is the donor of one O—H···O hydrogen bond to the other water molecule and of one N—H···O hydrogen bond to one of the DABCOH+ cations. Numerical details of the hydrogen-bonding inter­actions are given in Table 1. This arrangement leads to the formation of a centrosymmetric cyclic motif consisting of eight hydrogen-bonded molecules with two pendant DABCOH+ cations (Fig. 2). Adjacent cyclic motifs are bridged through O4—H44···O3 contacts into supra­molecular blocks running along [100] (Fig. 3).

A search in the Cambridge Structural Database (CSD Version 5.36 with three updates; Groom & Allen, 2014) for salts with isolated thio­sulfate anions returned 25 records with ten of them featuring a metal complex for the cationic part. Entries with simple protonated amine functionalities include structures with tert-butyl­ammonium (Okuniewski et al., 2013) and its hydrate (Dabrowska & Chojnacki, 2014), cyclo­hexyl­ammonium (Dabrowska & Chojnacki, 2014), tetra­methyl­ammonium tetra­hydrate (Yang & Ng, 2011), tetra­ethyl­ammonium dihydrate (Leyten et al., 1988), iso­propyl­ammonium (Okuniewski et al., 2013), piperazinium (Srinivasan et al., 2011) and adamantanaminium (Jiang et al., 1998). The thio­sulfate anion has also been encapsulated in protonated aza­cryptands ligands (Maubert et al., 2001; Nelson et al., 2004).

Synthesis and crystallization top

Crystals suitable for a single-crystal X-ray diffraction study were isolated from a clear ethano­lic solution of thio­acetamide and DABCO in an equimolar ratio.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were located from Fourier difference maps and were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the content of one unit cell, showing the hydrogen-bonded macrocycle made up from the asymmetric unit and its inversion-symmetry-related counterpart. H atoms not involved in hydrogen bonding (black dotted lines) are omitted for clarity.
[Figure 3] Fig. 3. View of three successive hydrogen-bonded cycles displayed in red, blue and green. Pendant DABCOH+ cations are shown in orange. H atoms not involved in hydrogen bonding (black dotted lines) are omitted for clarity.
Bis(1,4-diazabicyclo[2.2.2]octan-1-ium) thiosulfate dihydrate top
Crystal data top
2C6H13N2+·S2O32·2H2OZ = 2
Mr = 374.52F(000) = 404
Triclinic, P1Dx = 1.434 Mg m3
a = 6.5063 (2) ÅGa Kα radiation, λ = 1.34139 Å
b = 10.5966 (3) ÅCell parameters from 9855 reflections
c = 13.2066 (4) Åθ = 3.0–60.7°
α = 105.951 (1)°µ = 1.98 mm1
β = 92.065 (1)°T = 100 K
γ = 96.550 (1)°Platelet, clear light colourless
V = 867.59 (5) Å30.51 × 0.18 × 0.06 mm
Data collection top
Bruker Venture Metaljet
diffractometer
3965 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source3865 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.040
Detector resolution: 10.24 pixels mm-1θmax = 60.6°, θmin = 3.0°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.170, Tmax = 0.311l = 1717
24479 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.2876P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3965 reflectionsΔρmax = 0.45 e Å3
328 parametersΔρmin = 0.31 e Å3
0 restraints
Crystal data top
2C6H13N2+·S2O32·2H2Oγ = 96.550 (1)°
Mr = 374.52V = 867.59 (5) Å3
Triclinic, P1Z = 2
a = 6.5063 (2) ÅGa Kα radiation, λ = 1.34139 Å
b = 10.5966 (3) ŵ = 1.98 mm1
c = 13.2066 (4) ÅT = 100 K
α = 105.951 (1)°0.51 × 0.18 × 0.06 mm
β = 92.065 (1)°
Data collection top
Bruker Venture Metaljet
diffractometer
3965 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
3865 reflections with I > 2σ(I)
Tmin = 0.170, Tmax = 0.311Rint = 0.040
24479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079All H-atom parameters refined
S = 1.07Δρmax = 0.45 e Å3
3965 reflectionsΔρmin = 0.31 e Å3
328 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37120 (14)0.25575 (9)0.89793 (7)0.01709 (19)
H10.474 (3)0.2918 (16)0.8688 (13)0.027 (4)*
N20.07772 (15)0.16056 (10)0.98667 (8)0.0204 (2)
C10.44755 (18)0.15612 (12)0.94669 (9)0.0204 (2)
H1A0.477 (2)0.0796 (16)0.8860 (13)0.026 (4)*
H1B0.572 (3)0.1986 (16)0.9896 (13)0.026 (4)*
C20.27163 (19)0.11153 (12)1.00935 (9)0.0227 (2)
H2A0.308 (3)0.1446 (18)1.0861 (15)0.036 (4)*
H2B0.250 (3)0.0161 (17)0.9902 (13)0.029 (4)*
C30.19715 (18)0.18911 (13)0.81671 (9)0.0211 (2)
H3A0.254 (2)0.1287 (16)0.7618 (13)0.025 (4)*
H3B0.149 (3)0.2574 (17)0.7886 (13)0.032 (4)*
C40.03175 (18)0.12017 (12)0.87190 (9)0.0215 (2)
H4A0.102 (3)0.1438 (16)0.8578 (13)0.028 (4)*
H4B0.027 (2)0.0273 (17)0.8492 (13)0.028 (4)*
C50.29855 (19)0.36527 (12)0.98198 (10)0.0226 (2)
H5A0.268 (3)0.4332 (17)0.9503 (13)0.029 (4)*
H5B0.417 (3)0.3988 (17)1.0355 (13)0.030 (4)*
C60.1044 (2)0.30577 (12)1.02479 (11)0.0263 (3)
H6A0.118 (3)0.3316 (18)1.1015 (15)0.037 (4)*
H6B0.020 (3)0.3362 (17)0.9978 (13)0.032 (4)*
N30.32970 (14)0.27267 (9)0.50138 (7)0.01556 (18)
H30.423 (3)0.2931 (16)0.5520 (13)0.028 (4)*
N40.05427 (14)0.20524 (9)0.34935 (7)0.01749 (19)
C70.02619 (17)0.11478 (11)0.41613 (9)0.0180 (2)
H7A0.050 (2)0.0289 (16)0.3785 (12)0.022 (4)*
H7B0.117 (2)0.1056 (15)0.4338 (11)0.020 (3)*
C80.17326 (17)0.16570 (11)0.51711 (9)0.0182 (2)
H8A0.107 (2)0.2033 (15)0.5776 (12)0.020 (3)*
H8B0.248 (2)0.1029 (16)0.5297 (12)0.024 (4)*
C90.26331 (18)0.20134 (12)0.30931 (9)0.0197 (2)
H9A0.265 (2)0.1127 (16)0.2591 (12)0.024 (4)*
H9B0.287 (2)0.2726 (16)0.2771 (13)0.026 (4)*
C100.43012 (17)0.22308 (12)0.40030 (8)0.0185 (2)
H10A0.482 (2)0.1435 (16)0.4030 (12)0.024 (4)*
H10B0.540 (2)0.2897 (15)0.3999 (12)0.022 (4)*
C110.03966 (18)0.34059 (11)0.41524 (9)0.0202 (2)
H11A0.091 (2)0.3368 (14)0.4464 (11)0.019 (3)*
H11B0.039 (2)0.3977 (16)0.3696 (13)0.026 (4)*
C120.22526 (17)0.39014 (11)0.49767 (9)0.0188 (2)
H12A0.328 (3)0.4497 (16)0.4780 (13)0.027 (4)*
H12B0.184 (2)0.4274 (15)0.5693 (12)0.023 (4)*
S10.73999 (4)0.36034 (2)0.71916 (2)0.01430 (8)
S20.66847 (4)0.16633 (3)0.64755 (2)0.01940 (9)
O10.70661 (12)0.38533 (8)0.83256 (6)0.01974 (17)
O20.95658 (12)0.40399 (8)0.70450 (6)0.02108 (18)
O30.59842 (12)0.43146 (8)0.67012 (6)0.02058 (17)
O40.31661 (15)0.56983 (9)0.80581 (8)0.02666 (19)
H4C0.211 (3)0.5246 (19)0.7817 (15)0.035 (5)*
H4D0.402 (3)0.5326 (18)0.7700 (15)0.036 (5)*
O50.31448 (14)0.83414 (9)0.79500 (7)0.02522 (19)
H5C0.196 (3)0.830 (2)0.7642 (16)0.048 (5)*
H5D0.308 (3)0.751 (2)0.8025 (16)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0159 (4)0.0205 (4)0.0158 (4)0.0012 (3)0.0031 (3)0.0069 (3)
N20.0205 (5)0.0199 (5)0.0201 (5)0.0000 (4)0.0066 (4)0.0045 (4)
C10.0186 (5)0.0246 (6)0.0204 (5)0.0038 (4)0.0005 (4)0.0097 (4)
C20.0251 (6)0.0253 (6)0.0199 (5)0.0001 (5)0.0018 (4)0.0115 (4)
C30.0180 (5)0.0295 (6)0.0151 (5)0.0022 (4)0.0008 (4)0.0059 (4)
C40.0161 (5)0.0236 (6)0.0226 (5)0.0003 (4)0.0005 (4)0.0042 (4)
C50.0256 (6)0.0174 (5)0.0236 (5)0.0005 (4)0.0064 (5)0.0040 (4)
C60.0272 (6)0.0209 (6)0.0284 (6)0.0019 (5)0.0132 (5)0.0020 (5)
N30.0135 (4)0.0200 (4)0.0134 (4)0.0025 (3)0.0005 (3)0.0049 (3)
N40.0154 (4)0.0190 (4)0.0191 (4)0.0021 (3)0.0008 (3)0.0072 (3)
C70.0156 (5)0.0160 (5)0.0230 (5)0.0014 (4)0.0014 (4)0.0069 (4)
C80.0175 (5)0.0201 (5)0.0201 (5)0.0033 (4)0.0031 (4)0.0104 (4)
C90.0178 (5)0.0263 (6)0.0143 (5)0.0013 (4)0.0009 (4)0.0052 (4)
C100.0138 (5)0.0256 (5)0.0154 (5)0.0041 (4)0.0030 (4)0.0039 (4)
C110.0178 (5)0.0181 (5)0.0269 (6)0.0047 (4)0.0001 (4)0.0091 (4)
C120.0194 (5)0.0156 (5)0.0211 (5)0.0029 (4)0.0029 (4)0.0043 (4)
S10.01214 (13)0.01792 (14)0.01419 (13)0.00319 (9)0.00261 (9)0.00605 (9)
S20.01877 (14)0.01794 (14)0.02064 (14)0.00461 (10)0.00074 (10)0.00317 (10)
O10.0211 (4)0.0228 (4)0.0144 (4)0.0000 (3)0.0044 (3)0.0044 (3)
O20.0139 (4)0.0256 (4)0.0247 (4)0.0016 (3)0.0051 (3)0.0085 (3)
O30.0199 (4)0.0209 (4)0.0228 (4)0.0063 (3)0.0010 (3)0.0081 (3)
O40.0197 (4)0.0269 (5)0.0302 (5)0.0071 (4)0.0005 (4)0.0015 (4)
O50.0196 (4)0.0290 (5)0.0251 (4)0.0034 (3)0.0016 (3)0.0047 (3)
Geometric parameters (Å, º) top
N1—H10.887 (17)N4—C71.4720 (14)
N1—C11.4988 (14)N4—C91.4778 (14)
N1—C31.4984 (14)N4—C111.4746 (14)
N1—C51.5025 (14)C7—H7A0.942 (16)
N2—C21.4694 (16)C7—H7B0.967 (15)
N2—C41.4668 (15)C7—C81.5428 (15)
N2—C61.4691 (15)C8—H8A0.933 (15)
C1—H1A1.013 (16)C8—H8B0.916 (16)
C1—H1B0.959 (17)C9—H9A0.991 (16)
C1—C21.5421 (16)C9—H9B0.963 (17)
C2—H2A0.988 (18)C9—C101.5401 (15)
C2—H2B0.964 (17)C10—H10A0.952 (16)
C3—H3A0.942 (16)C10—H10B0.947 (16)
C3—H3B0.975 (18)C11—H11A0.960 (15)
C3—C41.5469 (16)C11—H11B0.964 (17)
C4—H4A0.960 (17)C11—C121.5380 (16)
C4—H4B0.943 (17)C12—H12A0.958 (17)
C5—H5A0.962 (17)C12—H12B0.979 (16)
C5—H5B0.992 (17)S1—S22.0047 (4)
C5—C61.5424 (16)S1—O11.4761 (8)
C6—H6A0.972 (18)S1—O21.4688 (8)
C6—H6B0.993 (17)S1—O31.4898 (8)
N3—H30.850 (18)O4—H4C0.79 (2)
N3—C81.4985 (14)O4—H4D0.81 (2)
N3—C101.4969 (13)O5—H5C0.85 (2)
N3—C121.4958 (14)O5—H5D0.91 (2)
C1—N1—H1109.6 (10)C12—N3—C8109.71 (8)
C1—N1—C5109.73 (9)C12—N3—C10109.52 (8)
C3—N1—H1110.5 (11)C7—N4—C9108.87 (9)
C3—N1—C1109.37 (9)C7—N4—C11108.26 (9)
C3—N1—C5110.23 (9)C11—N4—C9108.68 (9)
C5—N1—H1107.4 (11)N4—C7—H7A110.5 (9)
C4—N2—C2108.23 (9)N4—C7—H7B109.8 (9)
C4—N2—C6108.88 (10)N4—C7—C8110.60 (9)
C6—N2—C2109.51 (10)H7A—C7—H7B105.1 (13)
N1—C1—H1A106.3 (9)C8—C7—H7A110.1 (9)
N1—C1—H1B106.9 (10)C8—C7—H7B110.6 (9)
N1—C1—C2107.31 (9)N3—C8—C7107.51 (8)
H1A—C1—H1B111.4 (13)N3—C8—H8A106.7 (9)
C2—C1—H1A110.7 (9)N3—C8—H8B105.6 (10)
C2—C1—H1B113.7 (10)C7—C8—H8A113.8 (9)
N2—C2—C1111.18 (9)C7—C8—H8B113.4 (10)
N2—C2—H2A108.2 (10)H8A—C8—H8B109.2 (13)
N2—C2—H2B109.3 (10)N4—C9—H9A107.4 (9)
C1—C2—H2A111.0 (11)N4—C9—H9B106.9 (9)
C1—C2—H2B108.9 (10)N4—C9—C10110.83 (9)
H2A—C2—H2B108.2 (14)H9A—C9—H9B113.4 (13)
N1—C3—H3A107.1 (10)C10—C9—H9A109.4 (9)
N1—C3—H3B106.8 (10)C10—C9—H9B108.9 (10)
N1—C3—C4107.21 (9)N3—C10—C9107.32 (9)
H3A—C3—H3B108.1 (14)N3—C10—H10A106.7 (9)
C4—C3—H3A112.5 (10)N3—C10—H10B105.8 (9)
C4—C3—H3B114.6 (10)C9—C10—H10A112.9 (9)
N2—C4—C3111.11 (9)C9—C10—H10B112.7 (9)
N2—C4—H4A107.9 (10)H10A—C10—H10B111.0 (13)
N2—C4—H4B106.8 (10)N4—C11—H11A106.2 (9)
C3—C4—H4A110.0 (10)N4—C11—H11B108.1 (10)
C3—C4—H4B111.5 (10)N4—C11—C12110.79 (9)
H4A—C4—H4B109.5 (14)H11A—C11—H11B109.1 (13)
N1—C5—H5A108.0 (10)C12—C11—H11A113.0 (9)
N1—C5—H5B105.4 (10)C12—C11—H11B109.4 (10)
N1—C5—C6107.54 (9)N3—C12—C11107.39 (9)
H5A—C5—H5B110.3 (14)N3—C12—H12A105.8 (10)
C6—C5—H5A111.7 (10)N3—C12—H12B105.9 (9)
C6—C5—H5B113.5 (10)C11—C12—H12A112.4 (10)
N2—C6—C5110.75 (9)C11—C12—H12B113.0 (9)
N2—C6—H6A108.4 (11)H12A—C12—H12B111.7 (13)
N2—C6—H6B107.4 (10)O1—S1—S2109.01 (3)
C5—C6—H6A109.9 (11)O1—S1—O3109.73 (5)
C5—C6—H6B108.8 (10)O2—S1—S2110.12 (4)
H6A—C6—H6B111.6 (14)O2—S1—O1110.48 (5)
C8—N3—H3108.5 (11)O2—S1—O3109.98 (5)
C10—N3—H3108.3 (11)O3—S1—S2107.47 (4)
C10—N3—C8109.88 (9)H4C—O4—H4D103.3 (18)
C12—N3—H3110.8 (11)H5C—O5—H5D100.6 (18)
N1—C1—C2—N210.05 (13)N4—C7—C8—N313.10 (12)
N1—C3—C4—N210.16 (13)N4—C9—C10—N313.22 (13)
N1—C5—C6—N211.29 (14)N4—C11—C12—N314.10 (12)
C1—N1—C3—C455.01 (12)C7—N4—C9—C1051.09 (12)
C1—N1—C5—C666.86 (12)C7—N4—C11—C1267.80 (11)
C2—N2—C4—C365.61 (12)C8—N3—C10—C967.72 (11)
C2—N2—C6—C552.04 (13)C8—N3—C12—C1152.05 (11)
C3—N1—C1—C266.56 (11)C9—N4—C7—C866.64 (11)
C3—N1—C5—C653.66 (12)C9—N4—C11—C1250.30 (12)
C4—N2—C2—C153.54 (12)C10—N3—C8—C752.78 (11)
C4—N2—C6—C566.11 (13)C10—N3—C12—C1168.63 (11)
C5—N1—C1—C254.47 (12)C11—N4—C7—C851.34 (11)
C5—N1—C3—C465.72 (12)C11—N4—C9—C1066.62 (12)
C6—N2—C2—C165.02 (12)C12—N3—C8—C767.68 (11)
C6—N2—C4—C353.35 (12)C12—N3—C10—C952.85 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.887 (17)1.861 (17)2.7380 (12)169.6 (15)
N3—H3···O30.850 (18)2.030 (17)2.8003 (12)150.4 (15)
O4—H4C···O2i0.79 (2)2.02 (2)2.8121 (13)173.4 (18)
O4—H4D···O30.81 (2)2.04 (2)2.8511 (13)175.1 (18)
O5—H5C···N4ii0.85 (2)2.10 (2)2.9273 (13)163.9 (19)
O5—H5D···O40.91 (2)1.94 (2)2.8449 (14)173.2 (19)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.887 (17)1.861 (17)2.7380 (12)169.6 (15)
N3—H3···O30.850 (18)2.030 (17)2.8003 (12)150.4 (15)
O4—H4C···O2i0.79 (2)2.02 (2)2.8121 (13)173.4 (18)
O4—H4D···O30.81 (2)2.04 (2)2.8511 (13)175.1 (18)
O5—H5C···N4ii0.85 (2)2.10 (2)2.9273 (13)163.9 (19)
O5—H5D···O40.91 (2)1.94 (2)2.8449 (14)173.2 (19)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C6H13N2+·S2O32·2H2O
Mr374.52
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5063 (2), 10.5966 (3), 13.2066 (4)
α, β, γ (°)105.951 (1), 92.065 (1), 96.550 (1)
V3)867.59 (5)
Z2
Radiation typeGa Kα, λ = 1.34139 Å
µ (mm1)1.98
Crystal size (mm)0.51 × 0.18 × 0.06
Data collection
DiffractometerBruker Venture Metaljet
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Tmin, Tmax0.170, 0.311
No. of measured, independent and
observed [I > 2σ(I)] reflections
24479, 3965, 3865
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.07
No. of reflections3965
No. of parameters328
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.31

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation and the Université de Montréal for financial support.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDabrowska, A. & Chojnacki, J. (2014). Z. Kristallogr. 229, 2194–4946.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998). J. Mater. Chem. 8, 733–741.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeyten, W., Rettig, S. J. & Trotter, J. (1988). Acta Cryst. C44, 1749–1751.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaubert, B. M., Nelson, J., McKee, V., Town, R. M. & Pál, I. (2001). J. Chem. Soc. Dalton Trans. pp. 1395–1397.  Web of Science CSD CrossRef Google Scholar
First citationNelson, J., Nieuwenhuyzen, M., Pàl, I. & Town, R. M. (2004). Dalton Trans. pp. 2303–2308.  Web of Science CSD CrossRef Google Scholar
First citationOkuniewski, A., Chojnacki, J., Baranowska, K. & Becker, B. (2013). Acta Cryst. C69, 195–198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55–61.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y.-X. & Ng, S. W. (2011). Acta Cryst. E67, o1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 273-275
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds