inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages i6-i7

Redetermination of the crystal structure of β-zinc molybdate from single-crystal X-ray diffraction data

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo-CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain, and bLaboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Route de Soukra, 3000 Sfax, Tunisia
*Correspondence e-mail: sgg@uniovi.es

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 May 2015; accepted 21 June 2015; online 27 June 2015)

The crystal structure of the β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005[Katikaneani, P. & Arunachalam, R. (2005). Eur. J. Inorg. Chem. pp. 3080-3087.]). Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcante et al. (2013[Cavalcante, L. S., Moraes, E., Almeida, M. A. P., Dalmaschio, C. J., Batista, N. C., Varela, J. A., Longo, E., Siu Li, M., Andrés, J. & Beltrán, A. (2013). Polyhedron, 54, 13-25.]). Polyhedron, 54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octa­hedra, both with point group symmetry 2. The distortion of the octa­hedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the crystal structure, the same type of MO6 octa­hedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexa­gonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octa­hedral voids.

1. Related literature

Most molybdates of divalent cations crystallize either in the scheelite-type or in the wolframite-type (Macavei & Schulz, 1993[Macavei, J. & Schulz, H. (1993). Z. Kristallogr. 207, 193-208.]). Zinc molybdate (ZnMoO4) is an inorganic semiconductor. It adopts the wolframite-type of structure (Keeling, 1957[Keeling, R. O. (1957). Acta Cryst. 10, 209-213.]) and is dimorphic. The two phases, referred to as α- (triclinc symmetry) and β- (monoclinic symmetry), can be selectively obtained by controlling the synthetic conditions (Abrahams et al., 1967[Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052-2063.]; Zhang et al., 2010[Zhang, G., Yu, S., Yang, Y., Jiang, W., Zhang, S. & Huang, B. (2010). J. Cryst. Growth, 312, 1866-1874.]). Previous crystal structure refinements of β-ZnMoO4, based on X-ray powder diffraction data, were reported by Cavalcante et al. (2013[Cavalcante, L. S., Moraes, E., Almeida, M. A. P., Dalmaschio, C. J., Batista, N. C., Varela, J. A., Longo, E., Siu Li, M., Andrés, J. & Beltrán, A. (2013). Polyhedron, 54, 13-25.]) and Katikaneani & Arunachalam (2005[Katikaneani, P. & Arunachalam, R. (2005). Eur. J. Inorg. Chem. pp. 3080-3087.]). For structure refinement of ZnWO4, isotypic with the title compound, see: Trots et al. (2009[Trots, D. M., Senyshyn, A., Vasylechko, L., Niewa, R., Vad, T., Mikhailik, V. B. & Kraus, H. (2009). J. Phys. Condens. Matter, 21, 325402.]).

2. Experimental

2.1. Crystal data

  • ZnMoO4

  • Mr = 225.31

  • Monoclinic, P 2/c

  • a = 4.6980 (3) Å

  • b = 5.7380 (4) Å

  • c = 4.8960 (4) Å

  • β = 90.311 (7)°

  • V = 131.98 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.62 mm−1

  • T = 293 K

  • 0.08 × 0.06 × 0.03 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2014[Oxford Diffraction (2014). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Tmin = 0.905, Tmax = 1.000

  • 1207 measured reflections

  • 405 independent reflections

  • 358 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.10

  • 405 reflections

  • 29 parameters

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2014[Oxford Diffraction (2014). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2014[Oxford Diffraction (2014). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Allemagne.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Synthesis and crystallization top

Reagents were used as commercial sources with no further purification. An aqueous solution was prepared by a mixture of 0.047 g 2,2'-bi­pyridine, 0.015 g of molybdenum trioxide and 0.043 g of zinc acetate in 10 ml water. The reaction mixture was stirred at room temperature to homogeneity, then transferred into a teflon-lined stainless steel vessel (40 ml) and heated to 453 K for 48 h under autogenous pressure and after-wards cooled slowly to room temperature. The resulting material was obtained as colorless single-crystals without side products. The solid was filtered off, washed thoroughly with distilled water, and finally air-dried at room temperature.

Refinement top

The remaining maximum and minimum electron densities were found 0.77 Å and 0.90 Å, respectively, from the O1 atom. O1 is located on the center of a tree-metal triangle, bridging one Mo and two Zn atoms.

Related literature top

Most molybdates of divalent cations crystallize either in the scheelite-type or in the wolframite-type (Macavei & Schulz, 1993). Zinc molybdate (ZnMoO4) is an inorganic semiconductor. It adopts the wolframite-type of structure (Keeling, 1957) and is dimorphic. The two phases, referred to as α- (triclinc symmetry) and β- (monoclinic symmetry), can be selectively obtained by controlling the synthetic conditions (Abrahams et al., 1967; Zhang et al., 2010). Previous crystal structure refinements of β-ZnMoO4, based on X-ray powder diffraction data, were reported by Cavalcante et al. (2013) and Katikaneani & Arunachalam (2005). For structure refinement of ZnWO4, isotypic with the title compound, see: Trots et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2014); cell refinement: CrysAlis RED (Oxford Diffraction, 2014); data reduction: CrysAlis RED (Oxford Diffraction, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the crystal structure of β-ZnMoO4. Anisotropic displacement parameters are drawn at the 50% probability level.
β-Zinc molybdate top
Crystal data top
MoO4ZnF(000) = 208
Mr = 225.31Dx = 5.670 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 4.6980 (3) ÅCell parameters from 570 reflections
b = 5.7380 (4) Åθ = 3.6–31.1°
c = 4.8960 (4) ŵ = 13.62 mm1
β = 90.311 (7)°T = 293 K
V = 131.98 (2) Å3Prism, colourless
Z = 20.08 × 0.06 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
405 independent reflections
Radiation source: Enhance (Mo) X-ray Source358 reflections with I > 2σ(I)
Detector resolution: 10.2673 pixels mm-1Rint = 0.036
ω– and ϕ–scansθmax = 31.3°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2014)
h = 66
Tmin = 0.905, Tmax = 1.000k = 88
1207 measured reflectionsl = 66
Refinement top
Refinement on F229 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.5403P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.20 e Å3
405 reflectionsΔρmin = 1.17 e Å3
Crystal data top
MoO4ZnV = 131.98 (2) Å3
Mr = 225.31Z = 2
Monoclinic, P2/cMo Kα radiation
a = 4.6980 (3) ŵ = 13.62 mm1
b = 5.7380 (4) ÅT = 293 K
c = 4.8960 (4) Å0.08 × 0.06 × 0.03 mm
β = 90.311 (7)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
405 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2014)
358 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 1.000Rint = 0.036
1207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02829 parameters
wR(F2) = 0.0680 restraints
S = 1.10Δρmax = 1.20 e Å3
405 reflectionsΔρmin = 1.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo11.00000.81190 (10)0.25000.00507 (18)
Zn11.50000.69182 (15)0.75000.0092 (2)
O11.2538 (7)0.6236 (6)0.4014 (7)0.0080 (7)
O20.7835 (7)0.8950 (6)0.5603 (7)0.0058 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0065 (3)0.0045 (3)0.0041 (3)0.0000.0002 (2)0.000
Zn10.0087 (4)0.0116 (4)0.0073 (4)0.0000.0009 (3)0.000
O10.0089 (17)0.0110 (16)0.0041 (17)0.0006 (14)0.0003 (13)0.0004 (14)
O20.0088 (16)0.0064 (14)0.0021 (16)0.0005 (13)0.0016 (12)0.0010 (13)
Geometric parameters (Å, º) top
Mo1—O1i1.769 (3)Zn1—O2iv2.002 (3)
Mo1—O11.769 (3)Zn1—O2v2.002 (3)
Mo1—O21.894 (3)Zn1—O1vi2.094 (3)
Mo1—O2i1.894 (3)Zn1—O12.094 (3)
Mo1—O2ii2.171 (3)Zn1—O1vii2.274 (4)
Mo1—O2iii2.171 (3)Zn1—O1viii2.274 (4)
O1i—Mo1—O1104.7 (2)O2iv—Zn1—O195.54 (14)
O1i—Mo1—O297.25 (15)O2v—Zn1—O196.96 (14)
O1—Mo1—O2100.46 (15)O1vi—Zn1—O1158.4 (2)
O1i—Mo1—O2i100.46 (15)O2iv—Zn1—O1vii162.81 (14)
O1—Mo1—O2i97.25 (15)O2v—Zn1—O1vii88.37 (13)
O2—Mo1—O2i150.8 (2)O1vi—Zn1—O1vii82.25 (14)
O1i—Mo1—O2ii164.89 (14)O1—Zn1—O1vii80.63 (11)
O1—Mo1—O2ii88.90 (14)O2iv—Zn1—O1viii88.37 (13)
O2—Mo1—O2ii73.39 (16)O2v—Zn1—O1viii162.81 (14)
O2i—Mo1—O2ii84.01 (11)O1vi—Zn1—O1viii80.63 (11)
O1i—Mo1—O2iii88.90 (14)O1—Zn1—O1viii82.24 (14)
O1—Mo1—O2iii164.89 (15)O1vii—Zn1—O1viii74.53 (18)
O2—Mo1—O2iii84.01 (11)Mo1—O1—Zn1126.54 (19)
O2i—Mo1—O2iii73.39 (16)Mo1—O1—Zn1viii133.83 (18)
O2ii—Mo1—O2iii78.49 (18)Zn1—O1—Zn1viii97.75 (14)
O2iv—Zn1—O2v108.8 (2)Mo1—O2—Zn1ix125.93 (18)
O2iv—Zn1—O1vi96.96 (14)Mo1—O2—Mo1ii106.61 (16)
O2v—Zn1—O1vi95.54 (14)Zn1ix—O2—Mo1ii124.32 (17)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+2, y+2, z+1; (iii) x, y+2, z1/2; (iv) x+1, y, z; (v) x+2, y, z+3/2; (vi) x+3, y, z+3/2; (vii) x, y+1, z+1/2; (viii) x+3, y+1, z+1; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formulaMoO4Zn
Mr225.31
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)4.6980 (3), 5.7380 (4), 4.8960 (4)
β (°) 90.311 (7)
V3)131.98 (2)
Z2
Radiation typeMo Kα
µ (mm1)13.62
Crystal size (mm)0.08 × 0.06 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2014)
Tmin, Tmax0.905, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1207, 405, 358
Rint0.036
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.10
No. of reflections405
No. of parameters29
Δρmax, Δρmin (e Å3)1.20, 1.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2014), CrysAlis RED (Oxford Diffraction, 2014), SIR2011 (Burla et al., 2012), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PARST (Nardelli, 1995).

 

Acknowledgements

We acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MAT2013–40950-R), Gobierno del Principado de Asturias (GRUPIN14–060) and ERDF.

References

First citationAbrahams, S. C. (1967). J. Chem. Phys. 46, 2052–2063.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Allemagne.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavalcante, L. S., Moraes, E., Almeida, M. A. P., Dalmaschio, C. J., Batista, N. C., Varela, J. A., Longo, E., Siu Li, M., Andrés, J. & Beltrán, A. (2013). Polyhedron, 54, 13–25.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatikaneani, P. & Arunachalam, R. (2005). Eur. J. Inorg. Chem. pp. 3080–3087.  Google Scholar
First citationKeeling, R. O. (1957). Acta Cryst. 10, 209–213.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacavei, J. & Schulz, H. (1993). Z. Kristallogr. 207, 193–208.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2014). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrots, D. M., Senyshyn, A., Vasylechko, L., Niewa, R., Vad, T., Mikhailik, V. B. & Kraus, H. (2009). J. Phys. Condens. Matter, 21, 325402.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G., Yu, S., Yang, Y., Jiang, W., Zhang, S. & Huang, B. (2010). J. Cryst. Growth, 312, 1866–1874.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages i6-i7
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds